JP4132193B2 - Superconducting terahertz electromagnetic wave generation module - Google Patents

Superconducting terahertz electromagnetic wave generation module Download PDF

Info

Publication number
JP4132193B2
JP4132193B2 JP07366798A JP7366798A JP4132193B2 JP 4132193 B2 JP4132193 B2 JP 4132193B2 JP 07366798 A JP07366798 A JP 07366798A JP 7366798 A JP7366798 A JP 7366798A JP 4132193 B2 JP4132193 B2 JP 4132193B2
Authority
JP
Japan
Prior art keywords
temperature superconducting
signal
electromagnetic wave
superconducting
terahertz electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07366798A
Other languages
Japanese (ja)
Other versions
JPH11274585A (en
Inventor
努 山下
健介 中島
健 陳
シャフランジュク セルゲイ
華兵 王
昌 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP07366798A priority Critical patent/JP4132193B2/en
Publication of JPH11274585A publication Critical patent/JPH11274585A/en
Application granted granted Critical
Publication of JP4132193B2 publication Critical patent/JP4132193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超伝導テラヘルツ電磁波発生モジュールに関するものである。
【0002】
【従来の技術】
現在、テラヘルツ帯での発振器としては、主にガス励起型遠赤外レーザやフェムト秒パルスレーザ励振型などのものが利用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの装置は大型で、操作が難しく、コントロール性が乏しいなどの欠点を持つ以外に、ガス励起型遠赤外レーザは、出力周波数が離散的となり、任意な周波数を持つ高出力信号を得ることは不可能である。
【0004】
また、フェムト秒パルスレーザ励振型発振器の出力はパルス信号であり、スペクトル純度の高い連続波信号が要求される応用には不適である。
【0005】
さらに、精密な計測を実現するには、発振器の周波数やパワーなどの出力情報をモニターすると同時に、そのモニタ情報に基づいたコントロールを行うことも必要である。
【0006】
そのための計測器としては、マイクロ波帯でよく使われていたヘテロダインミキシング技術があるが、その技術では周波数の上昇に伴い変換効率が急激に減少するため、テラヘルツ帯への応用は難しく、しかも広帯域の連続計測は不可能である。
【0007】
また、回折や干渉などの光学技術も利用されているが、その複雑な操作や長波長による回折損失の増加などが問題となる。
【0008】
本発明は、上記問題点を除去し、注入される準粒子や交流ジョセフソン電流の制御により、周波数可変のコヒーレントな連続電磁波発生を可能とし、その連続電磁波発生に伴う出力情報の連続計測が可能な超伝導テラヘルツ電磁波発生モジュールを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〕超伝導テラヘルツ電磁波発生モジュールにおいて、異なった結晶方位を持つ2つの単結晶を高真空ホットプレス方法により拡散接合で合成したバイクリスタル基板(10)からなる高温超伝導ジョセフソン接合装置(1,11)と、前記バイクリスタル基板(10)上に形成される高温超伝導薄膜(18)と、この高温超伝導薄膜(18)上に形成される外部接合部(3A,13A)とプラズマ共振器(3,13)とを備え、微弱な高周波信号を励振し、その信号を前記外部接合部(3A,13A)及びプラズマ共振器(3,13)中で共振させ、増幅した信号の一部をストリップ線(20)により高温超伝導ジョセフソン接合装置(1,11)に伝送し、この高温超伝導ジョセフソン接合装置(1,11)の電気特性を測定し、その信号の特性をモニターするとともに前記高温超伝導ジョセフソン接合装置(1,11)及びプラズマ共振器(3,13)へフィードバックし、その信号を制御可能にするようにしたものである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0011】
図1は本発明の実施例を示す超伝導テラヘルツ電磁波発生システムの構成図、図2はその超伝導テラヘルツ電磁波発生システムを固体化したモジュールを示す斜視図である。
【0012】
これらの図において、10はバイクリスタル基板、1,11はバイクリスタルJJ、2,12:4は伝送路、3,13は単結晶のプラズマ共振器(テラヘルツ帯発振器)、3A,13Aはその単結晶のプラズマ共振器の外部接合部、5,15:6,16は電流・電圧リード線、7,17は出力端子、18は高温超伝導薄膜、19は金属膜、20はストリップ線、21は制御装置である。
【0013】
以下、本発明の実施例を示す超伝導テラヘルツ電磁波発生システムを構成する主要な部分について説明する。
【0014】
ここで、バイクリスタルJJ(1,11)について説明すると、異なった結晶方位(斜角)を持つ2つの単結晶を高真空ホットプレス方法により拡散接合で合成した基板をバイクリスタル基板と言い、その2つの単結晶の接続界面を粒界と言い、弱い結合をなす。
【0015】
ジョセフソン接合(JJ)とは、超伝導薄膜やバルク等の材料に超伝導的に弱い結合部分(ブリッジ型接合:くびれた形、トンネリング接合:薄い絶縁層、金属層等を挟んだ形)を作製することにより形成した非線型電気的特性を示す素子である。半導体領域のPN接合のように、JJは超伝導電子デバイスとして最も基本的な素子である。発振器や検出器などの高周波デバイスとして期待されている。
【0016】
バイクリスタルJJ(1,11)は、超伝導素子であり、この超伝導素子は、上記したバイクリスタル基板10上で高温超伝導薄膜18をエピタキシャル成長させることにより、薄膜に結晶粒界を形成することができ、この粒界上の薄膜をエッチングによって更に細くすることにより、超伝導電流が均一に流れるように構成されている。
【0017】
また、バイクリスタルJJ(1,11)は、他の高温超伝導JJより作製と特性の再現性がよく、高い動作温度で非常に高い周波数まで動作することが実証されている。ここでは、発振した信号を計測する機能を有する。
【0018】
次に、伝送路(2,12)(4)について説明すると、マイクロストリップ線路、誘電体伝送線路、更にテラヘルツ帯では空中伝送や準光学系なども考えられる。図2では、マイクロストリップ線路12として形成されており、発振した信号を伝達する機能を有する。
【0019】
次に、単結晶のプラズマ共振器(3,13)について説明すると、銅酸化物高温超伝導単結晶体では、その層状構造により強い異方性があるため、プラズマ振動という現象が存在する。また、このプラズマ振動の周波数に対応するエネルギーは、高温超伝導体の大きなエネルギーギャップより小さいため、プラズマ周波数(数十ギガヘルツ以上)とエネルギーギャップに対応する周波数(数テラヘルツ)間の周波数を持つ電磁波では高温超伝導単結晶体中で減衰せず伝播することができるという特徴がある。
【0020】
このプラズマ振動の特徴を持つ単結晶材料を一定な寸法(波長の整数倍或いは整数分の1の大きさ)で作製したものが単結晶のプラズマ共振器(3,13)になる。その単結晶プラズマ共振器(3,13)は励振された高周波信号を増幅して出力する機能を有する。つまり、テラヘルツ帯発振器となる。また、この単結晶のプラズマ共振器(3,13)は外部接合部3A,13Aが形成されている。
【0021】
バイクリスタルJJ(1,11)と単結晶のプラズマ共振器(3,13)にはそれぞれ電流・電圧リード線5,15:6,16を介して電流を流すことにより、バイクリスタルJJ(1,11)と単結晶のプラズマ共振器(3,13)がバイアスされる。また、電流・電圧リード線5,15:6,16を介して、電圧が出力され、その電圧を測定することにより、バイクリスタルJJ(1,11)と単結晶のプラズマ共振器(3,13)の出力情報を制御装置21で計測し、この出力情報に基づいて、システムの制御を行うことができる。
【0022】
特に、図2に示すように、バイクリスタル基板10上に高温超伝導薄膜18をエピタキシャル成長させた後、設計した各寸法(JJの接合幅、共振器、伝送路、電極などのサイズ)をエッチングして形成し、絶縁層(高周波エネルギー結合用のキャパシタンスの形成や電気絶縁などに用いる)と金属層19(電流、電圧電極端子など)を積層することにより、固体化したモジュールができる。
【0023】
一定寸法を持つ共振器上の外部接合(準粒子注入用のトンネリング型接合或いは交流ジョセフソン効果を利用するジョセフソン接合など)により微弱な高周波信号を励振し、その信号を共振器中で共振させ、増幅した信号の一部がストリップ線20によりバイクリスタルJJ(11)に伝送され、バイクリスタルJJ(11)の電気特性を測定することにより、その信号の特性(周波数、出力パワー、周波数とパワーの安定性、スペクトル純度など)を制御装置21でモニターすると、同時にその情報励振動接合部へフィードバックし、信号を制御する。
【0024】
一方、信号の残る部分は、空中や他の伝送路を経由し、必要なところへ伝送することにより発振器となる。
【0025】
このように、本発明によれば、高品質な高温超伝導単結晶からなるバイクリスタル基板と高温超伝導薄膜を用いて、ガス励起型遠赤外レーザより遙かに小型で、高効率な超伝導テラヘルツ電磁波発生モジュールを構成することができる。
【0026】
また、注入される準粒子や交流ジョセフソン電流の制御により、周波数可変のコヒーレントな連続電磁波を発生させることができる。
【0027】
さらに、これまでは連続計測不可能であったテラヘルツ帯までの広い帯域のスペクトルを計測できるジョセフソン検出器との組み合わせにより、電磁波発生回路を迅速、かつ、的確に制御することができる。
【0028】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0029】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏することができる。
【0030】
高品質な高温超伝導単結晶からなるバイクリスタル基板と高温超伝導薄膜を用いて、ガス励起型遠赤外レーザより遙かに小型で、高効率な超伝導テラヘルツ電磁波発生モジュールを構成することができる。
【0031】
また、注入される準粒子や交流ジョセフソン電流の制御により、周波数可変のコヒーレントな連続電磁波を発生させることができる。
【0032】
これまでは連続計測不可能であったテラヘルツ帯までの広い帯域のスペクトルを計測できるジョセフソン検出器との組み合わせにより、電磁波発生回路を迅速、かつ的確に制御することができる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す超伝導テラヘルツ電磁波発生システムの構成図である。
【図2】 本発明の実施例を示す超伝導テラヘルツ電磁波発生システムを固体化したモジュールを示す斜視図である。
【符号の説明】
1,11 バイクリスタルJJ
2,12:4 伝送路
3,13 単結晶のプラズマ共振器(テラヘルツ帯発振器)
3A,13A 外部接合部
5,15:6,16 電流・電圧リード線
7,17 出力端子
10 バイクリスタル基板
18 高温超伝導薄膜
19 金属層
20 ストリップ線
21 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to superconducting THz onset Namamo Joules.
[0002]
[Prior art]
At present, gas-excited far-infrared lasers, femtosecond pulse laser excitation types, and the like are mainly used as oscillators in the terahertz band.
[0003]
[Problems to be solved by the invention]
However, in addition to the drawbacks of these devices being large, difficult to operate, and poor controllability, gas-pumped far-infrared lasers have a discrete output frequency and provide a high output signal with an arbitrary frequency. It is impossible to get.
[0004]
Further, the output of the femtosecond pulse laser excitation type oscillator is a pulse signal, which is unsuitable for applications requiring a continuous wave signal with high spectral purity.
[0005]
Furthermore, in order to realize precise measurement, it is necessary to monitor output information such as the frequency and power of the oscillator and at the same time perform control based on the monitor information.
[0006]
For this purpose, there is a heterodyne mixing technique that is often used in the microwave band. However, because the conversion efficiency decreases rapidly with increasing frequency, it is difficult to apply to the terahertz band, and the broadband It is impossible to measure continuously.
[0007]
Optical techniques such as diffraction and interference are also used, but there are problems such as complicated operation and increase of diffraction loss due to long wavelength.
[0008]
The present invention eliminates the above-mentioned problems, enables the generation of coherent continuous electromagnetic waves with variable frequency by controlling the injected quasiparticles and AC Josephson current, and enables continuous measurement of output information associated with the generation of the continuous electromagnetic waves. and to provide a superconducting THz onset Namamo joules.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[ 1 ] In a superconducting terahertz electromagnetic wave generating module, a high-temperature superconducting Josephson junction device (1) comprising a bicrystal substrate (10) in which two single crystals having different crystal orientations are synthesized by diffusion bonding by a high vacuum hot pressing method (1) 11), a high-temperature superconducting thin film (18) formed on the bicrystal substrate (10), and an external junction (3A, 13A) formed on the high-temperature superconducting thin film (18) and plasma resonance. And a part of the amplified signal by exciting a weak high-frequency signal, resonating the signal in the external junction (3A, 13A) and the plasma resonator (3, 13). Is transmitted to the high-temperature superconducting Josephson junction device (1, 11) through the strip wire (20), and the electrical characteristics of the high-temperature superconducting Josephson junction device (1, 11) are measured. And the feedback high temperature superconductor Josephson junction device (1, 11) and the plasma cavity to the (3, 13) as well as monitor the characteristics of the signal, is obtained so as to enable control the signal.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0011]
FIG. 1 is a configuration diagram of a superconducting terahertz electromagnetic wave generation system showing an embodiment of the present invention, and FIG. 2 is a perspective view showing a module obtained by solidifying the superconducting terahertz electromagnetic wave generation system.
[0012]
In these figures, 10 is a bicrystal substrate, 1 and 11 are bicrystal JJ, 2, 12: 4 are transmission lines, 3 and 13 are single crystal plasma resonators (terahertz-band oscillators), and 3A and 13A are single units. External junction of crystal plasma resonator, 5, 15: 6, 16 are current / voltage lead wires, 7 and 17 are output terminals, 18 is a high-temperature superconducting thin film, 19 is a metal film, 20 is a strip line, 21 is It is a control device.
[0013]
Hereinafter, the main part which comprises the superconducting terahertz electromagnetic wave generation system which shows the Example of this invention is demonstrated.
[0014]
Here, bicrystal JJ (1, 11) will be described. A substrate obtained by synthesizing two single crystals having different crystal orientations (oblique angles) by diffusion bonding using a high vacuum hot press method is called a bicrystal substrate. The connection interface between two single crystals is called a grain boundary and forms a weak bond.
[0015]
Josephson Junction (JJ) is a superconductingly weak coupling part (bridge type: constricted shape, tunneling junction: shape with a thin insulating layer, metal layer, etc.) in materials such as superconducting thin films and bulk. It is an element having non-linear electrical characteristics formed by fabrication. Like a PN junction in a semiconductor region, JJ is the most basic element as a superconducting electronic device. Expected to be used as high-frequency devices such as oscillators and detectors.
[0016]
The bicrystal JJ (1, 11) is a superconducting element, and this superconducting element forms a grain boundary in the thin film by epitaxially growing the high-temperature superconducting thin film 18 on the bicrystal substrate 10 described above. The thin film on the grain boundary is made thinner by etching, so that the superconducting current flows uniformly.
[0017]
In addition, bicrystal JJ (1, 11) is better fabricated and has better reproducibility than other high temperature superconducting JJs and has been demonstrated to operate at very high frequencies at high operating temperatures. Here, it has a function of measuring the oscillated signal.
[0018]
Next, the transmission paths (2, 12) and (4) will be described. Microstrip lines, dielectric transmission lines, and in-air transmission and quasi-optical systems in the terahertz band are also conceivable. In FIG. 2, it is formed as a microstrip line 12 and has a function of transmitting an oscillated signal.
[0019]
Next, the single crystal plasma resonator (3, 13) will be described. The copper oxide high-temperature superconducting single crystal has a strong anisotropy due to its layered structure, and thus a phenomenon called plasma oscillation exists. In addition, since the energy corresponding to the frequency of this plasma oscillation is smaller than the large energy gap of the high-temperature superconductor, an electromagnetic wave having a frequency between the plasma frequency (several tens of gigahertz) and the frequency corresponding to the energy gap (several terahertz). Is characteristic in that it can propagate without being attenuated in a high-temperature superconducting single crystal.
[0020]
A single-crystal plasma resonator (3, 13) is produced by producing a single-crystal material having the characteristics of this plasma oscillation with a certain size (integer multiple of wavelength or size of 1 / integer). The single crystal plasma resonator (3, 13) has a function of amplifying and outputting the excited high frequency signal. That is, it becomes a terahertz band oscillator. The single crystal plasma resonators (3, 13) are formed with external joints 3A, 13A.
[0021]
The bicrystal JJ (1, 11) and the single crystal plasma resonator (3, 13) are supplied with current through the current / voltage lead wires 5, 15: 6, 16 respectively, thereby producing the bicrystal JJ (1, 11). 11) and the single crystal plasma resonator (3, 13) are biased. In addition, a voltage is output through the current / voltage lead wires 5, 15: 6, 16 and by measuring the voltage, the bicrystal JJ (1, 11) and the single crystal plasma resonator (3, 13) are output. ) Is measured by the control device 21, and the system can be controlled based on this output information.
[0022]
In particular, as shown in FIG. 2, after the high-temperature superconducting thin film 18 is epitaxially grown on the bicrystal substrate 10, the designed dimensions (JJ junction width, resonator, transmission line, electrode size, etc.) are etched. By forming an insulating layer (used for forming a capacitance for high-frequency energy coupling or electrical insulation) and a metal layer 19 (current, voltage electrode terminal, etc.), a solidified module can be obtained.
[0023]
A weak high-frequency signal is excited by an external junction (such as a tunneling junction for quasiparticle injection or a Josephson junction using the AC Josephson effect) on a resonator having a certain size, and the signal is resonated in the resonator. A part of the amplified signal is transmitted to the bicrystal JJ (11) through the strip line 20, and by measuring the electrical characteristics of the bicrystal JJ (11), the characteristics of the signal (frequency, output power, frequency and power) When the controller 21 monitors the stability, spectral purity, etc.), the information is simultaneously fed back to the information excitation vibration junction to control the signal.
[0024]
On the other hand, the remaining part of the signal becomes an oscillator by transmitting it to the necessary place through the air or other transmission paths.
[0025]
As described above, according to the present invention, a high-temperature superconducting thin film that is much smaller than a gas-excited far-infrared laser and uses a high-temperature superconducting single crystal and a high-temperature superconducting thin film. It may constitute a conductive THz radiation onset Namamo joules.
[0026]
In addition, a variable frequency coherent continuous electromagnetic wave can be generated by controlling the injected quasiparticles and AC Josephson current.
[0027]
Furthermore, the electromagnetic wave generation circuit can be controlled quickly and accurately by combining with a Josephson detector capable of measuring a spectrum in a wide band up to the terahertz band, which has been impossible to measure continuously.
[0028]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0029]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0030]
Using bicrystal substrate and the high temperature superconducting thin film made of a high-quality high-temperature superconductor single crystals, a small much more gas pumped far-infrared laser, constitute a highly efficient superconducting terahertz electromagnetic wave onset Namamo Joules be able to.
[0031]
In addition, a variable frequency coherent continuous electromagnetic wave can be generated by controlling the injected quasiparticles and AC Josephson current.
[0032]
By combining with a Josephson detector capable of measuring a spectrum in a wide band up to the terahertz band, which could not be continuously measured until now, the electromagnetic wave generating circuit can be controlled quickly and accurately.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a superconducting terahertz electromagnetic wave generation system showing an embodiment of the present invention.
FIG. 2 is a perspective view showing a module obtained by solidifying a superconducting terahertz electromagnetic wave generation system according to an embodiment of the present invention.
[Explanation of symbols]
1,11 Bicrystal JJ
2,12: 4 Transmission path 3,13 Single crystal plasma resonator (terahertz band oscillator)
3A, 13A External junction 5, 15: 6, 16 Current / voltage lead wire 7, 17 Output terminal 10 Bicrystal substrate 18 High-temperature superconducting thin film 19 Metal layer 20 Strip line 21 Control device

Claims (1)

超伝導テラヘルツ電磁波発生モジュールにおいて、
(a)異なった結晶方位を持つ2つの単結晶を高真空ホットプレス方法により拡散接合で合成したバイクリスタル基板(10)からなる高温超伝導ジョセフソン接合装置(1,11)と、
(b)前記バイクリスタル基板(10)上に形成される高温超伝導薄膜(18)と、
(c)該高温超伝導薄膜(18)上に形成される外部接合部(3A,13A)とプラズマ共振器(3,13)とを備え、
(d)微弱な高周波信号を励振し、その信号を前記外部接合部(3A,13A)及びプラズマ共振器(3,13)中で共振させ、増幅した信号の一部をストリップ線(20)により高温超伝導ジョセフソン接合装置(1,11)に伝送し、該高温超伝導ジョセフソン接合装置(1,11)の電気特性を測定し、その信号の特性をモニターするとともに前記高温超伝導ジョセフソン接合装置(1,11)及びプラズマ共振器(3,13)へフィードバックし、その信号を制御可能にすることを特徴とする超伝導テラヘルツ電磁波発生モジュール。
In the superconducting terahertz electromagnetic wave generation module,
(A) a high-temperature superconducting Josephson junction device (1, 11) comprising a bicrystal substrate (10) obtained by synthesizing two single crystals having different crystal orientations by diffusion bonding using a high vacuum hot press method;
(B) a high-temperature superconducting thin film (18) formed on the bicrystal substrate (10);
(C) an external junction (3A, 13A) formed on the high-temperature superconducting thin film (18) and a plasma resonator (3, 13);
(D) A weak high-frequency signal is excited, the signal is resonated in the external junction (3A, 13A) and the plasma resonator (3, 13), and a part of the amplified signal is stripped by the strip line (20). The high-temperature superconducting Josephson junction device (1, 11) is transmitted, the electrical characteristics of the high-temperature superconducting Josephson junction device (1, 11) are measured, the signal characteristics are monitored, and the high-temperature superconducting Josephson device A superconducting terahertz electromagnetic wave generating module that feeds back to a bonding device (1, 11) and a plasma resonator (3, 13) to control the signal.
JP07366798A 1998-03-23 1998-03-23 Superconducting terahertz electromagnetic wave generation module Expired - Fee Related JP4132193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07366798A JP4132193B2 (en) 1998-03-23 1998-03-23 Superconducting terahertz electromagnetic wave generation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07366798A JP4132193B2 (en) 1998-03-23 1998-03-23 Superconducting terahertz electromagnetic wave generation module

Publications (2)

Publication Number Publication Date
JPH11274585A JPH11274585A (en) 1999-10-08
JP4132193B2 true JP4132193B2 (en) 2008-08-13

Family

ID=13524840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07366798A Expired - Fee Related JP4132193B2 (en) 1998-03-23 1998-03-23 Superconducting terahertz electromagnetic wave generation module

Country Status (1)

Country Link
JP (1) JP4132193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211798B2 (en) 2016-06-27 2019-02-19 International Business Machines Corporation Driving the common-mode of a Josephson parametric converter using a short-circuited coplanar stripline

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213774B1 (en) 1999-08-16 2010-12-15 Japan Science and Technology Agency Optical superconducting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211798B2 (en) 2016-06-27 2019-02-19 International Business Machines Corporation Driving the common-mode of a Josephson parametric converter using a short-circuited coplanar stripline
US10581394B2 (en) 2016-06-27 2020-03-03 International Business Machines Corporation Driving the common-mode of a Josephson parametric converter using a short-circuited coplanar stripline

Also Published As

Publication number Publication date
JPH11274585A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
Maestrini et al. A 540-640-GHz high-efficiency four-anode frequency tripler
TW490869B (en) Tunable microwave devices
Schneider et al. Microwave and millimeter wave hybrid integrated circuits for radio systems
Thomas et al. A broadband 835–900-GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes
De Flaviis et al. Planar microwave integrated phase-shifter design with high purity ferroelectric material
Porterfield High-efficiency terahertz frequency triplers
Itoh et al. Distributed Bragg reflector Gunn oscillators for dielectric millimeter-wave integrated circuits
JP4132193B2 (en) Superconducting terahertz electromagnetic wave generation module
Meledin et al. Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer
Haas et al. Low noise broadband tunerless waveguide sis receivers for 440–500 GHz and 630–690 GHz
JP4229654B2 (en) High frequency circuit monitoring apparatus and high frequency circuit monitoring method
Newman et al. A novel planar diode mixer for submillimeter-wave applications
Skalare et al. Receiver measurements at 1267 GHz using a diffusion-cooled superconducting transition-edge bolometer
Wentworth et al. Millimeter wave twin slot antennas on layered substrates
US4996505A (en) Frequency triplicator for microwaves
Bae et al. A W-band overmoded-waveguide oscillator with Gunn diodes
JPH10256833A (en) Superconductive intrinsic josephson junction array element oscillator
JPH0964643A (en) Superconductive oscillator and its production
Tretyakov et al. Ultrawide noise bandwidth of NbN hot-electron bolometer mixers with in situ gold contacts
Asayama et al. A fixed-tuned W-band waveguide SIS mixer with 4.0-7.5 GHz IF
Kunkel et al. Millimeter-wave radiation in high-T/sub c/Josephson junctions
Reynolds et al. Microwave circuits for high-efficiency operation of transferred electron oscillators
JPH0983021A (en) Superconducting circuit and fabrication thereof
Crowe et al. Terahertz GaAs devices and circuits for heterodyne receiver applications
Febvre et al. A 380 GHz SIS receiver using Nb/AlO (x)/Nb junctions for a radioastronomical balloon-borne experiment: PRONAOS

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees