JP4130952B2 - Smelting raw material processing method - Google Patents

Smelting raw material processing method Download PDF

Info

Publication number
JP4130952B2
JP4130952B2 JP2002073648A JP2002073648A JP4130952B2 JP 4130952 B2 JP4130952 B2 JP 4130952B2 JP 2002073648 A JP2002073648 A JP 2002073648A JP 2002073648 A JP2002073648 A JP 2002073648A JP 4130952 B2 JP4130952 B2 JP 4130952B2
Authority
JP
Japan
Prior art keywords
raw material
pressure
molding
converter
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002073648A
Other languages
Japanese (ja)
Other versions
JP2003268456A (en
Inventor
康祐 井野口
耕司 山田
博美 玉内
孝 高旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2002073648A priority Critical patent/JP4130952B2/en
Publication of JP2003268456A publication Critical patent/JP2003268456A/en
Application granted granted Critical
Publication of JP4130952B2 publication Critical patent/JP4130952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は有価金属を含有する粉状等の製錬原料を加圧成形し、転炉等の溶融製錬工程に供給し有価金属を回収する技術に関するものである。
【0002】
【従来の技術】
例えば、銅類が回収対象となる有価金属を含有するリサイクル用製錬原料としては、電子基板焼却灰、切削屑、条材打抜き屑、条材切断片、針状金属(ワイヤー類)屑等がある。
このようなリサイクル用製錬原料は金、銀、銅等の銅族金属やパラジウム、白金等の白金族金属を含み、多くは、銅製錬工程におけるPS(ピアズ・スミス)型転炉に供給し、転炉造銅期に白カワ(銅硫化物)を酸化することにより発生する余剰熱を利用して、電解後の残基銅等の工程内繰返し物と共に炉内で溶融し粗銅として回収している。
【0003】
このPS型転炉(以下単に転炉という。)は、マグネシア煉瓦、マグクロ煉瓦等で内張りされた横型塩基性炉で、その一方側の側面下方に一列に複数の羽口が設けられ、炉上方に作業口が設けられている。操業は回分式で、溶鉱炉、反射炉、自溶炉等からの溶融カワ(銅、鉄の複合硫化物)は上方の作業口から炉内に装入し、羽口から空気(酸素富化空気の場合がある。)をこの溶融カワ中に直接吹き込み(吹錬ということがある。)、ケイ酸鉱(珪石)を少しずつ投入することによりカワ中の鉄が酸化鉄となって除去されケイ酸鉱と反応してカラミを形成するので、これを炉外へ流し出す。この造かん工程を2〜3回繰り返して得られる白カワに前記の工程内繰返し物や前記リサイクル用製錬原料等を装入する。引き続いて造銅工程において、空気の吹き込みで、白カワ中の硫化物のS分を酸化除去すると共に、鉛、砒素、アンチモン等の不純物を酸化あるいは揮発させて除き、有価金属を濃縮した電解アノード用粗銅を得る。
【0004】
転炉に供給する溶融カワ以外の原料のうち、三方押しプレス機等でプレス成形可能な故銅類については、冷材装入設備により装入可能な寸法形状にプレスした後、転炉へ供給している。三方押しプレス機でプレスしても成形できない原料もしくは成形できても十分な強度を得られない原料(粉体を除く)は原料装入用コンテナに入れクレーンを用いて転炉内に供給している。
【0005】
プレス成形できない原料のうち塊状物を含まない粉体状原料については、
(1)自溶炉で鉱石と共に溶融した後、溶融状態でカワとして転炉へ装入し処理する、
(2)粉体原料の水分を除去した後、そのまま前記原料装入用コンテナで転炉内に投入する、
(3)粉体原料の水分を調整してバインダーの添加を行った後、団鉱機で塊状化して乾燥後に転炉に供給する、
等のいずれかの方法で処理を行っている。
【0006】
【発明が解決しようとする課題】
しかしながら、リサイクル用等の製錬原料には粉体、金属特に真鍮の切削屑、弾性の強い金属の条材およびその切断屑、ワイヤ屑、インゴット状の原料等がある。このうちインゴット状の原料以外の原料は、見掛け比重が小さく保管、搬送、転炉装入時に飛散し易い。すなわち、比重が小さいとそのままでは転炉での吹錬中に連続的に転炉へ供給することができないという問題がある。
【0007】
また、粒径10mm以下の粉体であれば団鉱機で100kg/cm程度の面圧を加えることで団鉱に成形することができるが、その際、水分の調整とバインダーの添加を行わなければ十分な強度が得られず、さらに成形した原料を転炉処理する前に乾燥して含有水分を除去する必要がある。また、この方法においては成形後のサイズが径50mm程度に限定され、原料中に径10mmを超える塊状物や金属片が混入している粉体状原料は成形できないという問題がある。
【0008】
粉体原料は保管時に水分を吸収し易く、また受け入れ当初から水分や油脂分が付着している場合が少なくない。水分を多量に含んだ原料を転炉に供給した場合、水蒸気爆発により炉内の融体や供給した原料が炉外に吹き出すという安全上にまで及ぶ問題がある。また、不燃性の油脂分を多量に含んでいる原料を転炉で処理した場合、黒煙が発生して転炉排ガスから製造される硫酸に着色が生じ硫酸の品質が劣化するという問題がある。
【0009】
粉体状の原料は自溶炉で処理することも可能であるが、硫化物のような酸化発熱が期待できないリサイクル等の製錬原料を処理する場合は原料の溶解のため自溶炉での燃料使用量が増加する。さらに、自溶炉へ供給した場合、カラミ中に混入することによる有価金属ロス量が増加するという問題がある。
【0010】
以上の種々の問題点に鑑み、本発明の目的は、保管、搬送、転炉装入時にも飛散することなく、処理が煩雑な団鉱成形手法によることなく、水分や油脂分を含有したものであっても不都合なくかつ安全に、使用燃料費の増加や有価金属のロスが懸念される自溶炉で処理する必要のないように、粉体状リサイクル原料を効率的に処理し、さらに有価金属を効果的に回収できる方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、第1に、水分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2で加圧成形して脱水し、次いで該加圧に伴う発熱により水分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法を、第2に、水分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2金型内において所定時間圧力保持する加圧成形を行って脱水し、次いで該加圧に伴う発熱により水分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法を、第3に、油分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2で加圧成形して脱油し、次いで該加圧に伴う発熱により油分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法を、第4に、油分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2金型内において所定時間圧力保持する加圧成形を行って脱油し、次いで該加圧に伴う発熱により油分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法を、第5に、前記焼却灰がリサイクル用製錬原料である第1〜4のいずれかに記載の焼却灰の処理方法を、第6に、前記焼却灰が粒径が1μm〜300mmである第1〜5のいずれかに記載の焼却灰の処理方法を、第7に、前記製錬原料が溶融製錬工程の溶体中へ装入される原料である第1〜6のいずれかに記載の焼却灰の処理方法を提供するものである。
【0012】
【発明の実施の形態】
転炉供給用原料で嵩比重が真比重の50%以下の原料で、粉体、シュレッダーダスト状の原料は、そのまま加圧成形のための受入れホッパーに供給する。金型内キャビティ径の50%以上のサイズの塊状物が含まれている場合は、予めスクリーンを通して塊状物を除去する。また条材は二軸破砕機等で300mm以下の長さまで切断した後、プレス装置の受入れホッパーに供給する。
【0013】
以下、図1に示した実施例による原料成形プレス装置Aの概略断面図を参照して説明する。受入れホッパー1に供給された製錬原料は適時この受入れホッパー1から供給ホッパー2に供給され、モーター駆動の斜降するスクリューフィーダー3によりスリーブ4内に供給される。さらに、スリーブ4内に供給された製錬原料は、油圧ユニット5により油圧駆動されるピストン6により円筒形状の成形金型7内に所定圧力で押し込まれ、所定時間加圧状態で保持される。そして、成形後、成形金型7に付設のスライドダンパー8を開き、ピストン6を移動させて成形原料を成形金型7外に排出する。前記スクリューフィーダー3はプランジャー手段に換えてもよい。
本発明の方法の原料は、銅、銅合金、銅化合物等銅類に限るものではないが、銅類において特に好適である。
【0014】
本発明に用いられる原料の種類は、粉体または粉体に近似した形状寸法の粉体状原料すなわち粒状、灰状、粉状、針状、シュレッダーダスト状、細片状、もしくは薄板状、またはこれらのうちから選ばれた2種以上の混合状(これらを準粉体と総称することがある。)の製錬原料であり、より具体的には、針状金属、金属粉、銅線、焼却灰、焼却金属箔、リードフレーム、条材等の原料が使用でき、いずれの原料も金、銀、銅、またパラジウムや白金等の白金族金属など有価金属のいずれかが含まれる銅、銅合金または銅化合物の単体または混合物が主体である。原料としては、有価金属である金、銀、銅、白金族金属が数ppm〜100%の範囲で含有されるものが多い。混合は、粉状、灰状など細かい物と針状金属、リードフレームなど大きい金属(10mm以上)で含まれる物を混合するとよい。こうすることにより比較的ハンドリングの良くない、すなわち飛散しやすい粉状、灰状の物を混合することができ、集荷時の数量、品位ともに変化が大きい場合でも安定して処理し、製錬工程へ供給することができる。
【0015】
本発明は、1μm程度の粒径のものから300mm程度の大きさのものまでの粉体および準粉体からなる粉体状原料に適用できる。
例えば、針状金属は、電気配線等に使われる銅線等を10〜30mm程度に切断されたものである。焼却灰は、主に電子基板を焼却して残存した焼却物であって、各種電子部品、基板の素材が含まれ、その他家庭電化製品の廃棄物が、1mm以下の粉状のものから数十mmの塊状のものまでが混在している。焼却金属箔は、金属の箔が焼却、または切断されたものであって、厚さは0.1mm程度である。リードフレームは、コネクター等の金属部品を打ち抜いた打抜き屑で、メッキなどが施されているものであり、5mmから30mm程度のものが混在している。条材は、金属で薄板状となっているもので、厚さは1mm以下からあり、短冊状に切断されているかアトランダムに折り畳み曲げてあるものが多い。表面に油等が付着している場合もある。切削屑は、金属の切削工程等で発生する金属の削り屑で、1mm〜100mm程度の長さのものが混在している。切削油などが付着している場合がある。
【0016】
上記原料は、見掛け比重(嵩比重)が0.3〜1.4g/cmであり、水分2%以上を含むものがほとんどである。含まれる水分は30%以下が好ましい。水分が30%を超える場合は、予め乾燥した方が安全上もコスト的にも有利になる場合がある。粉体、シュレッダーダスト状の原料であって、嵩比重が、原料成分、原料成分比率、係数等により計算される真比重の50%以上の場合はそのまま原料として使用できることがある。
【0017】
それぞれの原料は、単独で加圧成形することも可能であるが、金属の含有量、油分、水分の含有量等により組み合わせて使用できる。切削屑などに多い真鍮は加圧成型し難いが、焼却灰、リードフレームなどと混合すると成形性が向上する。また、酸化物が多い焼却灰は成形後の形状保持が難しいため、銅線等の単体金属と混合するのが好ましい。特に、原料の表面に凹凸があり、荒れているものがよい。これは成形時にその凹凸により、原料同士が絡み合い、形状保持性がよいのと、その凹凸の隙間より水分や油分が流出し、原料内の水分、油分が排出され易いためである。
【0018】
成形金型7の形状は、粉体状原料が圧縮できれば特に問わないが、特には円筒状のものがよい。円筒状であれば円断面の半径方向に均一に圧力がかかり、特に水分が抜けやすい。また成形後、転炉に投入する際、原料装入用コンテナでの引っ掛かりが少なくて詰まりが防止でき、自転的に転炉内へ落下するため装入ミスも少ない。
また、成形金型7の大きさは、後工程の設備仕様、工程の操業条件により決められるが、内径が30〜200mmで、高さは50〜200mmがよいが、内径に対して高さは等倍以上にならないようにする。これは成形後の圧縮原料の形状を保持するためと、水分や油分などを排除し易くするためである。この水分の排水性や後工程の管理の点からは、特に内径80〜150mmのものが好ましい。
また、成形金型7の材質は、強度、化学的安定性、コスト等を考慮して選択できる。
【0019】
原料の圧縮は、上記成形金型7を用いて、油圧プレス機等で行う。面圧は500kg/cm以上、4000kg/cm以下までが実用的であり、800〜3000kg/cmがもっとも前記原料等の処理には適している。
500kg/cmを下回ると成形性に劣り特に脱水性が不十分である。4000kg/cmを超える高圧プレスは不必要であり、加圧成形の効果も飽和し経済性からしても不利である。
プレス機構としては、圧力制御の点から特に油圧プレスが好ましく、プレス加圧時の保持圧力設定や時間設定がし易く、粉体状原料の圧縮には適している。
【0020】
受け入れホッパー1内、成形金型7入口付近で停滞しないように金型内径の50%以上の塊状物が入らないように予めスクリーン等で選別するとさらに好ましい。所定量の重量または容量にて原料をスクリューフィーダー3で切り出し、成形金型7内へ原料を装入する。
【0021】
成形時は、成形開始の初期圧から成形終了時の終期圧まで徐々に加圧力を上げていき、成形終了時から数秒間(1〜30秒間)、成形機の圧力をそのまま保持する。原料に応じて1〜3秒間でもよい。そして圧力を解除して成形が終了する。この成形の際に、原料中の水分、油分等は金型外へ脱水、脱油される。成形終期から圧力をそのまま保持するのはこの方が水分等を除去できるのと成形された原料内の残留応力を高めるためである。
【0022】
加圧成形終了後、成形原料を金型から取り出して放置すると、成形原料は圧縮残留応力に基づく内部摩擦熱により熱エネルギーを発生して発熱する。すなわち、プレスにおける加圧により残留応力を生じ、この残留応力は圧力保持後にやや急速に低下して解消されるが、成形原料の温度はこの残留応力解消過程において始めはやや緩やかに昇温し、昇温した後低下する。
この成形原料の発熱昇温によりさらに水分、油分が蒸発減量する。金型取出し後の放置時間は、操業状況等に対応させるが、室温で30分以上、12時間あれば十分である。成形原料の水分は、プレス直後は5%以下、さらに放置後3%以下となる。油分も減少し転炉用製錬原料として十分に使用可能である。
【0023】
成形原料の嵩比重は、真比重の60%以上となり、保管、搬送、装入時の原料飛散がなく、転炉吹錬中においても連続装入が問題なく行えるものとなる。
なお、以上において、水分、油分を含む原料についての効果を説明したが、本発明は、水分、油分を含む原料の処理方法に限られるものではなく、水分、油分を含まない原料に対しても好適に適用できるものである。
【0024】
加圧成形終了後、成形金型7から排出された成形原料は図2に示す転炉原料装入装置Bの原料ホッパー9に貯留する。原料ホッパー9に貯留した成形原料は適時定量抜き出しを行い、搬送コンベア10で転炉11まで運ばれ、転炉11の操業と連動して装入物スライダー12によって転炉作業口13に装入する。14は転炉フードである。上記装入物スライダー12は原料装入用コンテナとクレーンによる装入手段であってもよい。
【0025】
転炉の操業において、前記成形原料は、造銅期の吹錬中に装入されるのが好ましい。すなわち、造銅期における空気吹き込みで白カワを酸化することにより発生する余熱を利用し、工程内繰返し物と共に添加された成形原料中の金、銀、銅、白金族等の有価金属を最も効率的に回収できる。転炉装入時に原料中の金属はほとんどがそのまま転炉中の粗銅中に熔解するため回収効率がよい。粗銅はアノード鋳型に鋳込まれてアノードとして電解に供され、電解で回収されなかった残基銅も繰り返し原料となるので、有価金属の回収率は略100%といえる。
【0026】
前記原料成形におけるプレス加圧は一工程で済み、乾燥工程が不要となるので、転炉操業に連動させた作業とすることができ、トータル作業性は著しく向上する。
【0027】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明の技術的範囲は実施例の記載に限定されるものではないことは言うまでもない。
【0028】
〔実施例1〕 原料として、粒径が1μm〜1mmの範囲内のものが混在し、比重が0.8、水分が10重量%の焼却灰を使用した。この原料を用いて、目標とする成形サイズをφ120mm×高さ50〜80mmとし、図1に示した原料成形プレス装置Aにより成形金型7に供給した。
成形金型7に装入された原料を、プレス圧をそれぞれ800kg/cm、1500kg/cmおよび2000kg/cmとし、プレス時間(原料投入から排出までのサイクル時間)を20秒とし、圧力保持時間を2秒として成形し、成形性を評価した。その結果を表1に示した。
成形性はいずれのプレス圧においても良好であった。プレス圧力1500kg/cm以上の場合に成形後の成形原料の水分は5重量%であった。
【0029】
実施例1と同様に、試料2〜13についてプレス成形を行い、その結果を表1に示す。
【0030】
【表1】

Figure 0004130952
【0031】
〔実施例2〕 原料が、短いリードフレーム屑と金属箔との混合物からなる打ち抜き屑である試料No.12の場合と、針状金属と金属粉と基板焼却灰からなる混合粉体である試料No.13の場合について、実施例1の場合と同様に1500kg/cmおよび2000kg/cmのプレス負荷を懸けた場合の比重の変化をみた。結果を表2に示した。
なお、プレス後の比重は成形原料1個当たりの比重であり、プレス前の原料比重とプレス後の装入用コンテナ積載時の成形原料比重は嵩比重である。
その結果面圧1500kg/cm以上の負荷で成形原料の比重、特に見掛け比重が表2のように大きくなり、保管、搬送、転炉装入の効率が向上したことが確認された。
【0032】
【表2】
Figure 0004130952
【0033】
〔実施例3〕 原料が、電子基板焼却灰を主体とする試料No.3の場合について、実施例2の場合と同様にして、1500、2000kg/cmのプレス成形を行い、プレス直後と24時間成形原料を放置した場合の原料含有水分の状況をみた。その結果を表3に示した。
その結果、上記の面圧を負荷することで、原料中の水分が抜けることが確認できた。また、圧縮時に生じる発熱により、外部から熱を与えないでも原料中の水分がさらに低下することも確認することができた。
【0034】
【表3】
Figure 0004130952
【0035】
〔実施例4〕 実施例3で得られた成形原料を操業中の転炉に装入して順調に熔解されるかどうかの状況をみた。また、転炉排ガスから副生される硫酸に着色がないかどうかを調査した。その結果を表4に示した。
前記成形原料を、転炉の造銅期の吹錬中において、100kg投入した。この投入量は成形原料中の金、銀の含有量から計算し、金20ppm(wt)、銀1000ppm(wt)、銅30wt%の投入となる。投入は図2の転炉原料装入装置Bによって行った。投入時の成形原料の飛散、型くずれ等もなかった。
その結果、上記の方法で成形され脱水された原料を転炉吹錬中に装入した場合、残留水分による水蒸気爆発がなく、装入時および吹錬時の原料飛散もなくかつ黒煙の発生もなかった。また、この時の排ガスを使用してつくられた硫酸にも油分による着色はみられず、上記成形原料が転炉処理に適したものであることが確認できた。
【0036】
【表4】
Figure 0004130952
【0037】
【発明の効果】
面圧500〜4000kg/cmという比較的高い圧力でリサイクル用等の粉体状原料を加圧成形することによって、原料の形態、品位を問わず、また、水分、バインダーの有無によらず原料の加圧成形が可能になる。また、本発明による成形原料は、成形に伴う圧縮と発熱作用による脱水効果を有するため、水分を含んだ粉体状原料であっても、加熱乾燥を必要とせず、エネルギーと滞留時間削減の効果がある。
したがってまた、本発明の方法は、原料の保管、搬送時の原料飛散の防止および作業効率の向上効果を有する。また、転炉への原料装入においても原料の飛散や水蒸気爆発の恐れがなく、副産される硫酸への影響もなく、転炉吹錬中における原料供給が可能となり、転炉の休風時間を低減できる等転炉作業性の向上が可能となる。
さらに、本発明のリサイクル等の原料の処理方法は、連続作業が可能で、転炉操業に組み込んで実施でき、原料中に含まれる有価金属のロスが防止できるという効果と共に、転炉操業における一層の作業性の向上が期待できるという顕著な効果を有する。
【図面の簡単な説明】
【図1】実施例における原料成形プレス装置の概略断面図である。
【図2】実施例における転炉原料装入装置の概略断面図である。
【符号の説明】
A 原料成形プレス装置
B 転炉原料装入装置
1 受入れホッパー
2 供給ホッパー
3 スクリューフィーダー
4 スリーブ
5 油圧ユニット
6 ピストン
7 成形金型
8 スライドダンパー
9 原料ホッパー
10 搬送コンベア
11 転炉
12 装入物スライダー
13 転炉作業口
14 転炉フード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for pressure-molding a powdered smelting raw material containing a valuable metal and supplying it to a melting smelting process such as a converter to recover the valuable metal.
[0002]
[Prior art]
For example, as smelting raw materials for recycling containing valuable metals for which copper is to be recovered, electronic board incineration ash, cutting scraps, strip punching scraps, strip cuttings, acicular metal (wires) scraps, etc. is there.
Such smelting raw materials for recycling include copper group metals such as gold, silver and copper, and platinum group metals such as palladium and platinum, and many supply them to PS (Pierce Smith) type converters in the copper smelting process. Using the excess heat generated by oxidizing white river (copper sulfide) during the converter copper making stage, it is melted in the furnace together with repeated products in the process such as residual copper after electrolysis and recovered as crude copper ing.
[0003]
This PS-type converter (hereinafter simply referred to as the converter) is a horizontal basic furnace lined with magnesia bricks, magcro bricks, etc., with a plurality of tuyere in a row below the side of one side, There is a work port. The operation is batch-type. Molten river (copper and iron composite sulfide) from blast furnaces, reverberation furnaces, flash furnaces, etc. is charged into the furnace from the upper working port, and air from the tuyere (oxygen-enriched air) ) Is blown directly into this molten river (sometimes called blowing), and the iron in the river is removed as iron oxide by adding silicate ore (silica stone) little by little. Since it reacts with the acid ore to form calami, it is poured out of the furnace. A white river obtained by repeating this forging process 2 to 3 times is charged with the repetitive material in the process, the refining raw material for recycling, and the like. Subsequently, in the copper making process, air is blown to oxidize and remove sulfides in white river, and impurities such as lead, arsenic and antimony are removed by oxidation or volatilization to concentrate valuable metals. Crude copper is obtained.
[0004]
Of the raw materials other than the molten metal to be supplied to the converter, the copper that can be press-molded with a three-way press or the like is pressed into a size and shape that can be charged by the cold material charging equipment, and then supplied to the converter. is doing. Raw materials that cannot be molded even if they are pressed with a three-way press or raw materials that do not have sufficient strength even though they can be molded (excluding powder) are placed in a raw material charging container and supplied to the converter using a crane. Yes.
[0005]
For powdered raw materials that do not include bulk materials among raw materials that cannot be press molded,
(1) After being melted together with ore in a flash smelting furnace, in a molten state, it is charged and processed into a converter as a river.
(2) After removing moisture from the powder raw material, it is put into the converter as it is with the raw material charging container.
(3) After adjusting the moisture of the powder raw material and adding the binder, it is agglomerated with a briquetting machine and dried and then supplied to the converter.
The processing is performed by any one of the methods.
[0006]
[Problems to be solved by the invention]
However, smelting raw materials for recycling include powders, metals, particularly brass cutting scraps, highly elastic metal strips and cutting scraps, wire scraps, ingot-shaped raw materials, and the like. Among these, raw materials other than the ingot-shaped raw material have a small apparent specific gravity and are easily scattered during storage, transportation, and charging of the converter. That is, if the specific gravity is small, there is a problem that it cannot be continuously supplied to the converter during blowing in the converter.
[0007]
In addition, if the powder has a particle size of 10 mm or less, it can be formed into briquette by applying a surface pressure of about 100 kg / cm 2 with a briquetting machine. At that time, adjustment of moisture and addition of binder are performed. Otherwise, sufficient strength cannot be obtained, and further, it is necessary to dry the formed raw material to remove the contained moisture before the converter treatment. In addition, in this method, the size after molding is limited to about 50 mm in diameter, and there is a problem that a powdery raw material in which a lump or metal piece having a diameter exceeding 10 mm is mixed in the raw material cannot be formed.
[0008]
The powder raw material easily absorbs moisture during storage, and often has moisture and fats and oils attached from the beginning. When a raw material containing a large amount of moisture is supplied to the converter, there is a problem in terms of safety that the melt in the furnace or the supplied raw material blows out of the furnace due to the steam explosion. In addition, when a raw material containing a large amount of nonflammable oils and fats is processed in a converter, there is a problem that black smoke is generated and the sulfuric acid produced from the converter exhaust gas is colored and the quality of the sulfuric acid deteriorates. .
[0009]
Powdered raw materials can also be processed in flash furnaces, but when processing smelting raw materials such as sulfides that cannot be expected to generate oxidation heat, recycling in the flash furnace is necessary to dissolve the raw materials. Fuel consumption increases. Furthermore, when it supplies to a flash smelting furnace, there exists a problem that the amount of valuable metal loss by mixing in calami increases.
[0010]
In view of the above-mentioned various problems, the object of the present invention is to contain moisture and fats and oils without scattering even during storage, transportation, and charging of a converter, and without using a complex ore molding method. Even if it is not inconvenient and safe, the powdered recycled raw material is efficiently processed so that it does not need to be processed in a flash smelting furnace where there is a concern about increased fuel costs and loss of valuable metals. The object is to provide a method capable of effectively recovering metal.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention firstly dehydrates incinerated ash containing moisture and containing valuable metals by pressing at a surface pressure of 500 to 4000 kg / cm 2 and then accompanying the pressing. Secondly, the incineration ash treatment method is characterized in that the moisture is further reduced by heat generation and used as a smelting raw material. Second, the incineration ash containing moisture and containing valuable metals is treated with gold at a surface pressure of 500 to 4000 kg / cm 2 . A third method of treating incinerated ash is characterized in that pressure molding is performed in a mold for a predetermined time to perform dehydration, followed by dehydration, and further reducing moisture by heat generated by the pressurization to obtain a smelting raw material. In addition, incinerated ash containing oil and valuable metals is pressure-molded at a surface pressure of 500 to 4000 kg / cm 2 to deoil , and then the oil content is further reduced by the heat generated by the pressurization to obtain a smelting raw material. the processing method of incineration ash, characterized in that, 4, by performing pressure molding for a predetermined time pressure maintained in the mold incinerated ash containing valuable metals include oil at a surface pressure 500~4000kg / cm 2 deoiled, followed by heating due to the pressurizing the processing method of incineration ash, characterized by a smelting raw material further reduce the oil content, the fifth, ash according to any one the incineration ash is first to fourth is for recycling smelting raw material Sixth, the incineration ash treatment method according to any one of the first to fifth, wherein the incineration ash has a particle diameter of 1 μm to 300 mm, and seventh, the smelting raw material is melt smelting The processing method of the incineration ash in any one of the 1st-6th which is the raw material charged into the solution of a process is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The raw material for converter supply, the bulk specific gravity of which is 50% or less of the true specific gravity, and the raw material in the form of powder and shredder dust is supplied as it is to a receiving hopper for pressure molding. When a lump having a size of 50% or more of the cavity diameter in the mold is included, the lump is removed in advance through a screen. The strip is cut to a length of 300 mm or less with a biaxial crusher or the like and then supplied to a receiving hopper of a press device.
[0013]
Hereinafter, description will be made with reference to a schematic cross-sectional view of the raw material forming press apparatus A according to the embodiment shown in FIG. The smelting raw material supplied to the receiving hopper 1 is supplied from the receiving hopper 1 to the supply hopper 2 from time to time, and is supplied into the sleeve 4 by a screw feeder 3 that is driven by a motor. Further, the smelting raw material supplied into the sleeve 4 is pushed into the cylindrical molding die 7 with a predetermined pressure by a piston 6 that is hydraulically driven by a hydraulic unit 5 and held in a pressurized state for a predetermined time. Then, after molding, the slide damper 8 attached to the molding die 7 is opened, the piston 6 is moved, and the molding raw material is discharged out of the molding die 7. The screw feeder 3 may be replaced with a plunger means.
The raw material of the method of the present invention is not limited to copper, such as copper, copper alloy, and copper compound, but is particularly suitable for copper.
[0014]
The type of raw material used in the present invention is a powder or a powdery raw material having a shape approximate to a powder, that is, granular, ash, powder, needle, shredder dust, strip, or thin plate, or It is a smelting raw material of a mixture of two or more selected from these (these may be collectively referred to as quasi-powder), more specifically, acicular metal, metal powder, copper wire, Raw materials such as incineration ash, incineration metal foil, lead frames, strips, etc. can be used, all of which are gold, silver, copper, and copper, copper containing any of the valuable metals such as platinum group metals such as palladium and platinum The main component is a simple substance or a mixture of an alloy or a copper compound. As the raw materials, many valuable metals such as gold, silver, copper, and platinum group metals are contained in the range of several ppm to 100%. The mixing is preferably performed by mixing a fine object such as powder or ash and an object including a large metal (10 mm or more) such as a needle metal or a lead frame. By doing so, it is possible to mix powdery and ash-like materials that are relatively poorly handled, that is, easy to scatter, and even if there are large changes in the quantity and quality at the time of collection, the smelting process Can be supplied to.
[0015]
The present invention can be applied to powdery raw materials composed of powder and quasi-powder having a particle size of about 1 μm to a size of about 300 mm.
For example, the needle-shaped metal is obtained by cutting a copper wire or the like used for electric wiring or the like to about 10 to 30 mm. Incineration ash is mainly incineration left after incineration of electronic substrates, including various electronic parts and substrate materials, and other household appliance waste from pulverized powders of 1 mm or less to several tens Up to a lump of mm is mixed. The incinerated metal foil is a metal foil that has been incinerated or cut, and has a thickness of about 0.1 mm. The lead frame is a punched scrap obtained by punching a metal part such as a connector, and is plated. The lead frame has a mixture of about 5 mm to 30 mm. The strip is made of a thin metal plate, has a thickness of 1 mm or less, and is often cut into strips or folded at random. Oil or the like may adhere to the surface. The cutting scrap is a metal cutting scrap generated in a metal cutting step or the like, and has a length of about 1 mm to 100 mm. Cutting oil may adhere.
[0016]
Most of the raw materials have an apparent specific gravity (bulk specific gravity) of 0.3 to 1.4 g / cm 3 and contain 2% or more of moisture. The moisture contained is preferably 30% or less. If the water content exceeds 30%, drying in advance may be advantageous in terms of safety and cost. When the raw material is in the form of powder or shredder dust and the bulk specific gravity is 50% or more of the true specific gravity calculated by the raw material component, the raw material component ratio, the coefficient, etc., the raw material may be used as it is.
[0017]
Each raw material can be pressure-molded alone, but can be used in combination depending on the metal content, oil content, water content, and the like. Brass, which is often found in cutting scraps, is difficult to form by pressure, but if mixed with incineration ash, lead frames, etc., formability is improved. Incinerated ash containing a large amount of oxide is difficult to maintain its shape after molding, and is therefore preferably mixed with a single metal such as a copper wire. In particular, the surface of the raw material should be rough and rough. This is because the raw materials are entangled with each other due to the irregularities during molding and the shape retention is good, and moisture and oil components flow out of the gaps between the irregularities, and the moisture and oil components in the raw materials are easily discharged.
[0018]
The shape of the molding die 7 is not particularly limited as long as the powdery raw material can be compressed, but a cylindrical shape is particularly preferable. If it is cylindrical, pressure is applied uniformly in the radial direction of the circular cross section, and moisture tends to escape. In addition, when it is put into the converter after molding, it can be prevented from being clogged by the raw material charging container, and can be prevented from clogging.
The size of the molding die 7 is determined by the equipment specifications of the subsequent process and the operation conditions of the process. The inner diameter is 30 to 200 mm, and the height is preferably 50 to 200 mm. Do not exceed the same magnification. This is to maintain the shape of the compacted raw material after molding and to easily remove moisture and oil. From the viewpoint of drainage of moisture and management of subsequent processes, those having an inner diameter of 80 to 150 mm are particularly preferable.
The material of the molding die 7 can be selected in consideration of strength, chemical stability, cost and the like.
[0019]
The raw material is compressed by a hydraulic press machine or the like using the molding die 7. The surface pressure is practically 500 kg / cm 2 or more and 4000 kg / cm 2 or less, and 800 to 3000 kg / cm 2 is most suitable for the treatment of the raw materials.
If it is less than 500 kg / cm 2 , the moldability is inferior and the dehydrating property is particularly insufficient. A high-pressure press exceeding 4000 kg / cm 2 is unnecessary, and the effect of pressure molding is saturated, which is disadvantageous from the viewpoint of economy.
As the press mechanism, a hydraulic press is particularly preferable from the viewpoint of pressure control, and it is easy to set a holding pressure and a time during press pressurization, and is suitable for compression of a powdery raw material.
[0020]
It is more preferable to screen with a screen or the like in advance so that a lump of 50% or more of the inner diameter of the mold does not enter so as not to stagnate in the receiving hopper 1 and in the vicinity of the inlet of the molding mold 7. The raw material is cut out by a screw feeder 3 with a predetermined amount of weight or volume, and the raw material is charged into the molding die 7.
[0021]
At the time of molding, the pressure is gradually increased from the initial pressure at the start of molding to the final pressure at the end of molding, and the pressure of the molding machine is maintained as it is for several seconds (1 to 30 seconds) from the end of molding. It may be 1 to 3 seconds depending on the raw material. Then, the pressure is released and the molding ends. At the time of this molding, water, oil, etc. in the raw material are dehydrated and deoiled out of the mold. The reason why the pressure is maintained as it is from the end of the molding is that it can remove moisture and the like, and increase the residual stress in the molded raw material.
[0022]
When the molding material is removed from the mold and left after the press molding, the molding material generates heat energy by the internal frictional heat based on the compressive residual stress and generates heat. In other words, residual stress is generated by pressurization in the press, and this residual stress is reduced and eliminated somewhat rapidly after the pressure is maintained, but the temperature of the forming raw material rises slightly gently at the beginning of this residual stress elimination process, Decreases after heating.
Water and oil are further reduced by evaporation due to the temperature rise of the forming raw material. Although the standing time after taking out the mold corresponds to the operation status, it is sufficient that it is 30 minutes or more and 12 hours at room temperature. The moisture of the forming raw material is 5% or less immediately after pressing, and further 3% or less after standing. Oil content is reduced and it can be used as a raw material for converters.
[0023]
The bulk specific gravity of the forming raw material is 60% or more of the true specific gravity, and there is no scattering of raw materials during storage, transportation, and charging, and continuous charging can be performed without problems even during converter blowing.
In addition, although the effect about the raw material containing a water | moisture content and an oil component was demonstrated above, this invention is not restricted to the processing method of the raw material containing a water | moisture content and an oil content, It is also with respect to the raw material which does not contain a water content and an oil content. It can be suitably applied.
[0024]
After completion of the pressure molding, the molding raw material discharged from the molding die 7 is stored in the raw material hopper 9 of the converter raw material charging device B shown in FIG. The molding raw material stored in the raw material hopper 9 is extracted in a timely manner, transported to the converter 11 by the conveyor 10, and charged into the converter work port 13 by the charge slider 12 in conjunction with the operation of the converter 11. . 14 is a converter hood. The charge slider 12 may be a charging means using a raw material charging container and a crane.
[0025]
In the operation of the converter, it is preferable that the molding raw material is charged during the coppermaking stage. In other words, the most efficient use of valuable metals such as gold, silver, copper, and platinum group in forming raw materials added with repetitive materials in the process, utilizing residual heat generated by oxidizing white river by air blowing during the copper making stage Can be recovered. Since most of the metal in the raw material is melted as it is in the crude copper in the converter when the converter is charged, the recovery efficiency is good. Crude copper is cast into an anode mold and used as an anode for electrolysis. Residual copper that has not been recovered by electrolysis is also used as a repetitive raw material, so the recovery rate of valuable metals can be said to be approximately 100%.
[0026]
The press-pressing in the raw material forming is only one step, and the drying step is not required. Therefore, the operation can be performed in conjunction with the converter operation, and the total workability is remarkably improved.
[0027]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, it cannot be overemphasized that the technical scope of this invention is not limited to description of an Example.
[0028]
[Example 1] As raw materials, incinerated ash having a particle size in the range of 1 µm to 1 mm was mixed, specific gravity was 0.8, and water was 10 wt%. Using this raw material, the target molding size was set to φ120 mm × height 50 to 80 mm, and this was supplied to the molding die 7 by the raw material molding press A shown in FIG.
The was charged into the molding die 7 material, the pressing pressure with each 800kg / cm 2, 1500kg / cm 2 and 2000 kg / cm 2, pressing time (cycle time to discharge from the raw material feeding) and 20 seconds, the pressure Molding was performed with a holding time of 2 seconds, and moldability was evaluated. The results are shown in Table 1.
Formability was good at any press pressure. When the press pressure was 1500 kg / cm 2 or more, the water content of the molding raw material after molding was 5% by weight.
[0029]
Similarly to Example 1, samples 2 to 13 were press-molded, and the results are shown in Table 1.
[0030]
[Table 1]
Figure 0004130952
[0031]
[Example 2] Sample No. 2 in which the raw material was stamped waste made of a mixture of short lead frame waste and metal foil. In the case of No. 12, sample no. In the case of 13, the change in specific gravity was observed when a press load of 1500 kg / cm 2 and 2000 kg / cm 2 was applied as in the case of Example 1. The results are shown in Table 2.
The specific gravity after pressing is the specific gravity per forming raw material, and the specific gravity of the raw material before pressing and the specific gravity of the forming raw material when loading the loading container after pressing are bulk specific gravity.
As a result, it was confirmed that the specific gravity of the forming raw material, particularly the apparent specific gravity, increased as shown in Table 2 at a load of 1500 kg / cm 2 or more, and the efficiency of storage, conveyance and converter charging was improved.
[0032]
[Table 2]
Figure 0004130952
[0033]
[Example 3] Sample No. whose raw material is mainly electronic substrate incineration ash. In the case of No. 3, as in the case of Example 2, 1500, 2000 kg / cm 2 of press molding was performed, and the state of moisture contained in the raw material was observed immediately after pressing and when the molding raw material was left for 24 hours. The results are shown in Table 3.
As a result, it was confirmed that moisture in the raw material was released by applying the above surface pressure. It was also confirmed that the moisture in the raw material was further reduced by heat generated during compression without applying heat from the outside.
[0034]
[Table 3]
Figure 0004130952
[0035]
[Example 4] The state of whether or not the molding raw material obtained in Example 3 was smoothly melted by charging it into the converter in operation. Moreover, it was investigated whether the sulfuric acid by-produced from the converter exhaust gas was colored. The results are shown in Table 4.
100 kg of the forming raw material was charged during blowing in the copper making phase of the converter. This input amount is calculated from the contents of gold and silver in the forming raw material, and is 20 ppm (wt) of gold, 1000 ppm (wt) of silver, and 30 wt% of copper. The charging was performed by the converter raw material charging apparatus B shown in FIG. There was no scattering of molding raw materials and mold loss at the time of charging.
As a result, when the raw material molded and dehydrated by the above method is charged during converter blowing, there is no steam explosion due to residual moisture, no scattering of raw materials during charging and blowing, and generation of black smoke There was not. In addition, the sulfuric acid produced using the exhaust gas at this time was not colored by oil, and it was confirmed that the molding raw material was suitable for the converter treatment.
[0036]
[Table 4]
Figure 0004130952
[0037]
【The invention's effect】
Regardless of the form and quality of the raw material, regardless of the presence or absence of moisture and binder, the raw material is formed by pressure-molding a powdery raw material for recycling at a relatively high pressure of 500 to 4000 kg / cm 2. It becomes possible to perform pressure molding. In addition, since the forming raw material according to the present invention has a dehydration effect due to compression and heat generation due to forming, even if it is a powdery raw material containing moisture, heating drying is not required, and the effect of reducing energy and residence time There is.
Therefore, the method of the present invention also has an effect of preventing raw material scattering during storage and transportation of raw materials and improving work efficiency. In addition, there is no risk of raw material scattering or steam explosion when charging the raw material to the converter, and there is no effect on sulfuric acid produced as a by-product. It is possible to improve the work efficiency of the converter, which can reduce the time.
Furthermore, the raw material processing method such as recycling according to the present invention is capable of continuous work, can be implemented by being incorporated in the converter operation, and can prevent loss of valuable metals contained in the raw material, and further in the converter operation. There is a remarkable effect that improvement in workability can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a raw material forming press apparatus in an example.
FIG. 2 is a schematic cross-sectional view of a converter raw material charging apparatus in an example.
[Explanation of symbols]
A Raw material forming press device B Converter raw material charging device 1 Receiving hopper 2 Feeding hopper 3 Screw feeder 4 Sleeve 5 Hydraulic unit 6 Piston 7 Molding die 8 Slide damper 9 Raw material hopper 10 Conveyor 11 Converter 12 Charger slider 13 Converter work port 14 Converter hood

Claims (7)

水分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2で加圧成形して脱水し、次いで該加圧に伴う発熱により水分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法。 Incinerated ash containing moisture and valuable metals is pressure-molded at a surface pressure of 500 to 4000 kg / cm 2 and dehydrated, and then the moisture is further reduced by the heat generated by the pressurization to produce a smelting raw material. Incineration ash treatment method. 水分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2金型内において所定時間圧力保持する加圧成形を行って脱水し、次いで該加圧に伴う発熱により水分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法。 The incinerated ash containing moisture and valuable metals is dehydrated by pressure molding that keeps the pressure in the mold for a predetermined time at a surface pressure of 500 to 4000 kg / cm 2 , and the moisture is further reduced by the heat generated by the pressurization. A method for treating incinerated ash , characterized in that it is made into a smelting raw material. 油分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2で加圧成形して脱油し、次いで該加圧に伴う発熱により油分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法。 Incineration ash containing oil and containing valuable metals is pressure-molded and deoiled at a surface pressure of 500 to 4000 kg / cm 2 , and then the oil content is further reduced by the heat generated by the pressurization to obtain a smelting raw material. A method for treating incinerated ash as a feature. 油分を含み有価金属を含有する焼却灰を面圧500〜4000kg/cm2金型内において所定時間圧力保持する加圧成形を行って脱油し、次いで該加圧に伴う発熱により油分をさらに低下させて製錬原料とすることを特徴とする焼却灰の処理方法。 The incinerated ash containing oil and valuable metals is deoiled by pressure molding in which a pressure of 500 to 4000 kg / cm 2 is maintained in the mold for a predetermined time , and then the oil is further removed by the heat generated by the pressurization. A method for treating incinerated ash , characterized in that it is reduced to a smelting raw material. 前記焼却灰がリサイクル用製錬原料である、請求項1〜4のいずれかに記載の焼却灰の処理方法。The processing method of the incineration ash in any one of Claims 1-4 whose said incineration ash is the smelting raw material for recycling. 前記焼却灰が粒径が1μm〜300mmである、請求項1〜5のいずれかに記載の焼却灰の処理方法。The incineration ash treatment method according to claim 1 , wherein the incineration ash has a particle size of 1 μm to 300 mm. 前記製錬原料が溶融製錬工程の溶体中へ装入される原料である、請求項1〜6のいずれかに記載の焼却灰の処理方法。The method for treating incinerated ash according to any one of claims 1 to 6, wherein the smelting raw material is a raw material charged into a solution in a melt smelting process.
JP2002073648A 2002-03-18 2002-03-18 Smelting raw material processing method Expired - Fee Related JP4130952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073648A JP4130952B2 (en) 2002-03-18 2002-03-18 Smelting raw material processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073648A JP4130952B2 (en) 2002-03-18 2002-03-18 Smelting raw material processing method

Publications (2)

Publication Number Publication Date
JP2003268456A JP2003268456A (en) 2003-09-25
JP4130952B2 true JP4130952B2 (en) 2008-08-13

Family

ID=29203257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073648A Expired - Fee Related JP4130952B2 (en) 2002-03-18 2002-03-18 Smelting raw material processing method

Country Status (1)

Country Link
JP (1) JP4130952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928833A (en) * 2009-06-24 2010-12-29 韩国生产技术研究院 Apparatus for recycling metal cutting chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699497B2 (en) * 2008-07-08 2011-06-08 Jx日鉱日石金属株式会社 Recycled raw material processing method
JP6737867B2 (en) * 2018-12-27 2020-08-12 田中貴金属工業株式会社 Metal plate material, plated plate material, plated plate material manufacturing method, and plated member manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928833A (en) * 2009-06-24 2010-12-29 韩国生产技术研究院 Apparatus for recycling metal cutting chip
CN101928833B (en) * 2009-06-24 2013-03-27 韩国生产技术研究院 Apparatus for recycling metal cutting chip

Also Published As

Publication number Publication date
JP2003268456A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
CA2398266C (en) Process for upgrading low rank carbonaceous material
JP4323477B2 (en) Method of processing scrap and / or sludge containing copper and noble metals
JP4750846B2 (en) Recycling method of zinc-containing converter dust
JP2000510911A (en) Method for agglomerating oil-containing steel rolling waste
Bizhanov et al. Blast furnace operation with 100% extruded briquettes charge
JP5090655B2 (en) Steelmaking dust recycling method
CN102019286B (en) Method for treating steel slag tailings subjected to magnetic separation
US20230203607A1 (en) Biomass Direct Reduced Iron
JP4130952B2 (en) Smelting raw material processing method
Bizhanov et al. Experience with the use of extrusion briquettes (brex) to make ferrosilicomanganese
JP2006274309A (en) Method for treating nickel plating sludge
RU2506325C2 (en) Method for producing extrusion-type briquette (breks) for metal melting
JP4595065B2 (en) Processing method by solidification of copper concentrate and solidified copper concentrate
JP4522336B2 (en) Recycling method of shredder dust and raw material for steelmaking
RU2476609C2 (en) Compacted metallurgical product, manufacturing method of compacted metallurgical product and use of compacted metallurgical product
AU781853B2 (en) Process for upgrading low rank carbonaceous material
RU2230806C1 (en) Method of processing 0f nickel-bearing converter slags of nickel combine
WO2018218115A1 (en) System and method for briquetting cyclone dust from decoating systems
JP3984379B2 (en) Preprocessing method for metal processing waste
JP2006225679A (en) Solidified product of steelmaking dust and method for producing the same
JPH11269564A (en) Treatment of aluminum turnings
AU766356B2 (en) Process for upgrading low rank carbonaceous material
RU2504588C2 (en) Extrusion-type briquette (breks)-component of charge for melting of metal in electric furnaces
JP5861453B2 (en) Agglomeration method and recycling method of shredder dust
JP3233755B2 (en) Sinter containing iron scrap

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees