JP4130103B2 - Cylindrical inner surface imaging device - Google Patents

Cylindrical inner surface imaging device Download PDF

Info

Publication number
JP4130103B2
JP4130103B2 JP2002226268A JP2002226268A JP4130103B2 JP 4130103 B2 JP4130103 B2 JP 4130103B2 JP 2002226268 A JP2002226268 A JP 2002226268A JP 2002226268 A JP2002226268 A JP 2002226268A JP 4130103 B2 JP4130103 B2 JP 4130103B2
Authority
JP
Japan
Prior art keywords
narrow
inspected
imaging device
reflector
vertical thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226268A
Other languages
Japanese (ja)
Other versions
JP2004069371A (en
Inventor
英夫 丹羽
理 鈴木
知成 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002226268A priority Critical patent/JP4130103B2/en
Publication of JP2004069371A publication Critical patent/JP2004069371A/en
Application granted granted Critical
Publication of JP4130103B2 publication Critical patent/JP4130103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は鋳造したシリンダブロックボア等の小径筒体内面を検査するための画像を得る筒体内面撮影装置に関するものである。
【0002】
【従来の技術】
従来、鋳造したシリンダブロックボア等の小径筒体内面の欠陥検査は、図6に示されるように、被検査体内に照明灯50と小型のCCDカメラ51を挿入して被検査体内面を直接撮影するか、被検査体内に挿入した鏡に映った内面像を外部に配置させたCCDカメラで撮影するのが一般的であった。被検査体内に照明灯50と小型のCCDカメラ51を挿入する場合、被検査体がCCDカメラ51と照明灯50とを挿入できるだけの大きさでなければ撮影できないという問題があった。また被検査体がシリンダブロックボアの場合、被測定部位はボア円弧面であるため内面を均一な明るさに照明することが極めて難しく、鏡を被検査体内に挿入して撮影しても欠陥の解析を正確に行なえるだけのきれいな画像を得ることが難しかった。このような照明斑のある画像を基にして解析を行なうと照明斑等を欠陥と誤判定する恐れがたぶんにあった。さらに傾斜させた鏡を被検査体内に挿入してボア内面の円弧面方向を広範囲に撮影しようとする場合、鏡の横幅を大きくしなければならないが、傾斜させた鏡の横幅を大きくすると縦幅を小さくしなければボア内に挿入することができなかった。ところが鏡の縦幅を小さくするとボアのストローク方向の撮影範囲が狭くなるため上下位置を変えながら何度も撮影を行なわねばならず撮影に多くの時間がかかるというという問題があった。
【0003】
またこのような画像解析を行なうCCDカメラは1000×1000ピクセルが一般的である。このようなCCDカメラで例えば20mm範囲を撮影できるものとした場合、被検査体の内径がφ70mmでは内周は約220mmとなるので、11枚の画像を撮影しなければならない。このためCCDカメラを一定角度(20mm)分づつ移動させて撮影を行なわねばならず、手間と時間がかかるという問題があった。しかも11枚の画像の明るさが均一にならないため、画像を繋ぎ合わせようとすると画像の継ぎ目が際立って良質な連続画像を得ることができず正確な画像解析ができないという問題があった。そこで撮影枚数と継ぎ目を少なくするために大きな画角を有する焦点距離の短いレンズを用いることも考えられるが、曲面である被検査体内面を広範囲に均一な照明にすることはさらに難しくきれいな画像を得ることはできなかった。しかも筒体内面に光沢があると均一な照明を行なうことは不可能に近かった。さらに分割して撮影を行なう場合、撮像装置または被検査体を正確な角度で回転させねばならず回転駆動機構が複雑で高価なものになるという問題もあった。
【0004】
【発明が解決しようとする課題】
本発明は大きな縦幅を有する継ぎ目のない良質な筒状撮影画像を得ることができる筒体内面撮影装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前述の目的を達成するため本発明は、被検査体の外方に撮像素子を1次元ラインセンサとした撮像装置を配置し、被検査体内面の縦細領域を1次元ラインセンサに屈折投影する細幅反射鏡を、その上下端の角部が被検査体の前後内面に近接するよう傾斜配置させて撮像装置の先端に取り付け、また1次元ラインセンサに投影される被検査体の縦細領域を照明する傾斜配置される細幅反射鏡の上下寸法より若干大きい上下寸法を有する細幅照明灯を被検査体内面の前記縦細領域と等距離で近接配置して撮像装置の先端に取り付け、さらに被検査体の中心軸線と縦細領域の中心線とを結ぶ面の両側、即ち被検査体内面に対して入射角と反射角の関係に前記細幅反射鏡と細幅照明灯とを配置して縦細領域を直接照明する反射光を直接細幅反射鏡に入射されるようにし、また縦細領域の被検査体像を1次元ラインセンサに連続的に入力するよう細幅反射鏡と細幅照明灯とを回転させる駆動装置を設けた筒体内面撮影装置を請求項1の発明とし、請求項1の発明において、駆動装置に昇降機構が組み込まれる筒体内面撮影装置を請求項2の発明とし、請求項1または2の発明において、細幅照明灯が多数のLEDを縦に配設させた筒体内面撮影装置を請求項3の発明とするものである。
【0006】
【発明の実施の形態】
次に、本発明の好ましい実施の形態を図に基づいて説明する。
本発明は撮像装置8と撮像装置8の先端に取り付けられ細幅反射鏡12と細幅照明灯13を回転させて連続的に撮影を行なえるようにする駆動装置5とからなるものである。
図1中、1は装置本体であり、該装置本体1はガイドレール2aを敷設したベッド2と、該ベッド2の一側方部に立設される支柱3と、前記ベッド2のガイドレール2aにガイドされて移動自在とした被検査体(シリンダブロックボアのような比較的小径のもの)を受け台4aを介して載せるスライダ4と、前記支柱3に取付けられる撮像装置8の回転と昇降を行う駆動装置5とからなる。該駆動装置5は昇降機構6と回転機構7とを組み合わせたものである。そして、被検査体を載置したスライダ4を移動させることにより被検査体の複数あるボアの中心に撮像装置8の中心を位置合わせできるものとしている。駆動装置5の昇降機構6と回転機構7により撮像装置8は回転および昇降が行なわれ、該撮像装置8の回転および昇降により撮像装置8の先端に取り付けられる細幅反射鏡12と細幅照明灯13とは回転および昇降がされるものである。
【0007】
駆動装置5の昇降機構6を作動させることにより撮像装置8の先端に取り付けた撮像装置8より小さい細幅反射鏡12と細幅照明灯13は被検査体内の撮影位置に挿入することができる。また、細幅反射鏡12は被検査体内面の縦細領域を1次元ラインセンサに屈折投影するもので、細幅反射鏡12が写し出す上下範囲より大きい深さを有する被検査体は、被検査体内に挿入した撮像装置8を上昇又は下降させることにより、被検査体の深さ全体を撮影することが可能となる。さらに、細幅照明灯13は細幅反射鏡12により屈折投影される被検査体の縦細領域を照明するもので、傾斜配置される細幅反射鏡12の上下寸法より若干大きい上下寸法を有するものである。また細幅反射鏡12により屈折投影される縦細領域は駆動装置5の回転機構7により撮像装置8を360°回転させつつ撮影することにより被検査体の内周面全体が撮影されるものとしている。
【0008】
前記撮像装置8を図3、4に基づいてさらに詳細に説明すれば、被検査体の外方に配置される撮像装置8はレンズ8aと1次元ラインセンサの撮像素子を有するディジタルカメラ11を略逆U字状のフレーム10に取り付けたものである。また、撮像装置8の先端に取り付けられる前記撮影ヘッド9には被検査体内面の縦細領域を上方のディジタルカメラ11に屈折投影する細幅反射鏡12と、細幅反射鏡12に写し出される縦細領域付近を照明する細幅照明灯13とが設けられている。
【0009】
前記撮影ヘッド9を図3、4に基づいて詳細に説明すれば、撮影ヘッド9は略逆U字状のフレーム10の先端開口縁に取り付けられて垂設される屈曲部付の取付金具15に細幅反射鏡12を挟持固定するとともに、該取付金具15の屈曲部に基端を固定した逆L字状のステイ14に細幅照明灯13を取り付けたもので、細幅反射鏡12は被検査体の中心軸を含む平面上にその上下端の角部が被検査体の前後内面に近接するように傾斜配置させたもので、傾斜角度は被検査体内面像を上方に投影するよう45°の傾斜をもって配置されている。また細幅反射鏡12は真空蒸着により表面を鏡面としたものである。これは鏡面を保護するためにガラスの裏面に形成するとガラスの表面で反射する像と鏡面で反射する像とができて二重像となることを防止するためである。さらに細幅反射鏡12は細幅照明灯13に均一な明るさで照明された縦細領域を屈折投影するものとしている。細幅反射鏡12を幅約4mmの縦長のものとしたのはディジタルカメラ11の撮像素子が5000の画素を一列に配設した1次元ラインセンサで、画素1個分の像を投影できればよいからであり、このようにすることにより細幅反射鏡12の上下端の角部を被検査体の前後内面に近接させることができる。これにより細幅反射鏡12による被検査体内面の上下投影領域は最大となり、撮像装置8による撮影領域も最大となり最も効率のよい撮影が行なえるものとなる。
【0010】
細幅反射鏡12の両側に配置される細幅照明灯13は多数のLED(Light Emitting Diode)を縦一列に縦設したものであり、45°傾斜させた細幅反射鏡12の上下寸法(高さ)より若干大きい上下寸法を有するものとしている。これは上下で光量不足が生じることがないように余裕をもたせるためである。また細幅照明灯13は被検査体内面の縦細領域と等距離で近接配置されるものとして被検査体内面の縦細領域全体を均一な明るさで照明できるようにしている。さらに細幅照明灯13をLEDとしたのは消費電力が少ないうえに堅牢で取り扱いが容易なためである。
【0011】
また、前記した撮像装置8の回転機構7は、図1、2に示されるように、モータ20とモータ20の出力軸に取り付けられたウオームホイール21と該ウオームホイール21に噛合するウオームギア22と回転軸23とからなるものである。24は回動角度検出機構であり、該回動角度検出機構24は回転軸23に取り付けられた円板25と該円板25に取り付けられた位置センサ26とからなるもので、回動角度検出機構24により撮像装置8の回転始点が決められる。この回転機構7をコンピュータにより制御すれば、計測操作を自動化することができる。
【0012】
27はベッド2の水平調整自在な脚、28は昇降機構6を昇降動させる手動ハンドルである。昇降機構6は好ましい実施の形態では手動ハンドル28を回動させて昇降動させるものとしているがコンピュータにより制御されるモータにより駆動してもよく、このようにすれば計測操作を自動化ができることとなる。29は撮像装置8の昇降量を計測する測長器であり、コンピュータにより昇降を自動化する際には測長器のデータをコンピュータに入力してモータの制御を行なうものとする。
【0013】
このように構成されたものは、先ず、駆動装置5の昇降機構6を操作して撮像装置8の細幅反射鏡12と細幅照明灯13が被検査体(シリンダブロック)と干渉しない位置まで上昇させるとともに、被検査体のスライダ4を撮像装置8の側方に移動させる。そして、移動させた側方でスライダ4の受け台4aにシリンダブロックを載置する。被検査体を受け台4aに載置後、シリンダブロックの検査すべき最初のボア(筒体)の上部開口から撮影ヘッド9に取り付けられた細幅反射鏡12と細幅照明灯13がシリンダブロックのボア内に挿入できる位置までスライダ4を移動させる。
【0014】
次に、駆動装置5の昇降機構6の手動ハンドル28を手動で回して細幅反射鏡12と細幅照明灯13をシリンダブロックのボア内に侵入させる。このときの下降量は筒体の下端縁が撮影されるように位置させるものとしている。このようにして細幅反射鏡12と細幅照明灯13の下降位置が決まったら、細幅照明灯13を点灯させるとともに撮像装置8のディジタルカメラ11を起動させ、さらに駆動装置5の回転機構7を駆動し、撮像装置8を一定速度で360°回転させる。
【0015】
このときシリンダブロックのボア内面像は撮影ヘッド9の細幅反射鏡12により90°上方に屈折されレンズ8aを介してディジタルカメラ11の1次元ラインセンサに反射投影されているので、シリンダブロックのボア全内周面が撮影されることとなる。1次元ラインセンサに投影された像は順次にメモリに連続的に取り込んでゆけばよい。
【0016】
そして、このようにしてシリンダブロックのボア全内周面を撮影した画像に基づいて解析を行なって鋳造されたシリンダブロックのボア内に巣などの欠陥がないかを検査するものである。
【0017】
また、撮影面の光沢度が極めて高くても細幅反射鏡12と細幅照明灯13とは図5に示されるように、被検査体に対して入射角と反射角の関係に配置されているので、均一で斑のない撮影画像を得ることができる。
【0018】
また、前記好ましい実施の形態では、細幅照明灯13をLEDよりなるものとしているが、液晶の光源に用いるバックライト等の極細の蛍光管やEL(Electro Luminescence)等を用いてもよいことは勿論である。
【0019】
【発明の効果】
本発明は前記説明により明らかなように、被検査体の外方に撮像素子を1次元ラインセンサとした撮像装置を配置し、被検査体内面の縦細領域を1次元ラインセンサに屈折投影する細幅反射鏡を、その上下端の角部が被検査体の前後内面に近接するよう傾斜配置させて撮像装置の先端に取り付け、また1次元ラインセンサに投影される被検査体の縦細領域を照明する傾斜配置される細幅反射鏡の上下寸法より若干大きい上下寸法を有する細幅照明灯を被検査体内面の前記縦細領域と等距離で近接配置して撮像装置の先端に取り付け、さらに縦細領域の被検査体像を1次元ラインセンサに連続的に入力するよう細幅反射鏡と細幅照明灯とを回転させる駆動装置を設けたものとしたから、細幅反射鏡により1次元ラインセンサに入力される被検査体の縦細領域の狭い範囲を照明するだけでよいため被撮影面を均一な明るさで照明することができることとなる。また細幅反射鏡をその上下端の角部が被検査体の前後内面に近接するよう傾斜配置させたものとしているから、被検査体内面の上下投影領域が最大となるので、撮影範囲が最大となり被検査体内面全体を短時間で撮影することができ、検査効率を高めることができる。しかも細幅反射鏡と細幅照明灯を被検査体内で回転させて行なう連続撮影であるため、被検査体の全内周面を継ぎ目なく均一な明るさで撮影することができる。さらに連続撮影のため撮影時間を短縮でき処理時間を向上させることができる。また細幅反射鏡と細幅照明灯とが被検査体内面に対して入射角と反射角の関係に配置されるものとすることにより、被検査体が光沢のあるものであっても均一で斑のない照明を行なうことができる。請求項2のように、駆動装置に昇降機構が組み込まれるものとすることにより、細幅反射鏡と細幅照明灯を被検査体と干渉しない位置への移動や、被検査体内への挿入を簡単且つ素早く行なうことができる。また、請求項3のように、細幅照明灯が多数のLEDを縦に配設させたものとすることにより、小型で耐久性がよく、消費電力を極めて僅かなものとすることができる等種々の利点を有するものである。
従って、本発明は従来の問題点を解消した筒体内面撮影装置として業界の発展に寄与するところ大なものである。
【図面の簡単な説明】
【図1】 本発明の好ましい実施の形態を示す一部切欠側面図である。
【図2】 本発明の好ましい実施の形態を示す一部切欠正面図である。
【図3】 本発明の好ましい実施の形態の撮像装置を示す一部切欠側面図である。
【図4】 本発明の好ましい実施の形態の撮像装置を示す一部切欠正面図である。
【図5】 本発明の好ましい実施の形態の撮影状態を示す一部切欠平面図である。
【図6】 従来の撮影装置の概略説明図である。
【符号の説明】
5 駆動装置
6 昇降機構
8 撮像装置
12 細幅反射鏡
13 細幅照明灯
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical inner surface photographing apparatus that obtains an image for inspecting the inner surface of a small diameter cylindrical body such as a cast cylinder block bore.
[0002]
[Prior art]
Conventionally, inspecting defects on the inner surface of a small-diameter cylindrical body such as a cast cylinder block bore, as shown in FIG. 6, an illuminating lamp 50 and a small CCD camera 51 are inserted into the object to be inspected to directly photograph the inner surface of the object to be inspected. Or, it was common to take an internal image reflected in a mirror inserted into the body to be inspected with a CCD camera arranged outside. When the illuminating lamp 50 and the small CCD camera 51 are inserted into the body to be inspected, there has been a problem that the subject cannot be photographed unless the CCD camera 51 and the illuminating lamp 50 are large enough to be inserted. In addition, when the object to be inspected is a cylinder block bore, it is extremely difficult to illuminate the inner surface to a uniform brightness because the measurement site is a bore arc surface. It was difficult to obtain a clean image that could be analyzed accurately. When analysis is performed based on such an image having illumination spots, there is a possibility that the illumination spots etc. are erroneously determined as defects. In addition, when a tilted mirror is inserted into the body to be inspected and the arc surface direction of the bore is to be imaged over a wide range, the width of the mirror must be increased. It was not possible to insert it into the bore unless it was made smaller. However, if the vertical length of the mirror is reduced, the shooting range in the stroke direction of the bore is narrowed, so that there is a problem that it takes a lot of time to shoot while having to shoot several times while changing the vertical position.
[0003]
A CCD camera that performs such image analysis generally has 1000 × 1000 pixels. When such a CCD camera can capture a range of 20 mm, for example, when the inner diameter of the object to be inspected is φ70 mm, the inner circumference is about 220 mm, so 11 images must be captured. For this reason, it is necessary to move the CCD camera by a certain angle (20 mm) for shooting, and there is a problem that it takes time and effort. In addition, since the brightness of the 11 images is not uniform, there is a problem that when connecting the images, the seam of the images is conspicuous and a high-quality continuous image cannot be obtained, and accurate image analysis cannot be performed. In order to reduce the number of shots and joints, it is possible to use a lens with a large angle of view and a short focal length. Couldn't get. Moreover, it is almost impossible to perform uniform illumination when the inner surface of the cylinder is glossy. Further, when taking an image by dividing, there is a problem that the image pickup apparatus or the object to be inspected must be rotated at an accurate angle, and the rotation drive mechanism becomes complicated and expensive.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a cylindrical inner surface photographing apparatus capable of obtaining a seamless tubular photographed image having a large vertical width.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention arranges an imaging device having an imaging element as a one-dimensional line sensor outside the object to be inspected, and refracts and projects a vertical thin area on the inner surface of the object to be inspected onto the one-dimensional line sensor. The narrow reflector is attached to the tip of the imaging device so that the corners of the upper and lower ends are close to the front and rear inner surfaces of the object to be inspected, and the vertical thin region of the object to be inspected is projected onto the one-dimensional line sensor. A narrow illuminating lamp having a vertical dimension slightly larger than the vertical dimension of the slenderly arranged narrow reflector that illuminates the object is attached to the front end of the imaging device by being arranged close to the vertical thin area on the inner surface of the object to be inspected, Further, the narrow reflector and the narrow illumination lamp are arranged on both sides of the surface connecting the central axis of the object to be inspected and the center line of the vertical thin region, that is, the incident angle and the reflection angle with respect to the inner surface of the object to be inspected. The reflected light that directly illuminates the vertical thin area enters the narrow reflector directly. And a cylindrical inner surface photographing apparatus provided with a driving device for rotating a narrow reflector and a narrow illumination lamp so that an inspected object image of a vertical thin region is continuously input to a one-dimensional line sensor. In the invention of claim 1, in the invention of claim 1, the cylindrical inner surface imaging device in which the elevating mechanism is incorporated in the drive device is the invention of claim 2, and in the invention of claim 1 or 2, there are many narrow illumination lamps The cylindrical inner surface photographing apparatus in which the LEDs are arranged vertically is defined as the invention of claim 3.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the drawings.
The present invention comprises an image pickup device 8 and a drive device 5 attached to the tip of the image pickup device 8 so as to continuously take pictures by rotating the narrow reflector 12 and the narrow illumination lamp 13.
In FIG. 1, reference numeral 1 denotes an apparatus main body. The apparatus main body 1 includes a bed 2 on which a guide rail 2 a is laid, a column 3 erected on one side of the bed 2, and a guide rail 2 a of the bed 2. Rotating and raising / lowering of the slider 4 to be inspected (moving relatively small diameter like a cylinder block bore) through a receiving base 4a and the imaging device 8 attached to the column 3 And a driving device 5 to be performed. The driving device 5 is a combination of a lifting mechanism 6 and a rotating mechanism 7. The center of the imaging device 8 can be aligned with the center of a plurality of bores of the inspection object by moving the slider 4 on which the inspection object is placed. The imaging device 8 is rotated and lifted by the lifting mechanism 6 and the rotating mechanism 7 of the driving device 5, and the narrow reflector 12 and the narrow illumination lamp attached to the tip of the imaging device 8 by the rotation and lifting of the imaging device 8. 13 is rotated and raised / lowered.
[0007]
By operating the elevating mechanism 6 of the driving device 5, the narrow reflector 12 and the narrow illumination lamp 13 smaller than the imaging device 8 attached to the tip of the imaging device 8 can be inserted into the imaging position in the subject. Further, the narrow reflector 12 refracts and projects a vertical thin area on the inner surface of the object to be inspected onto a one-dimensional line sensor. An object to be inspected having a depth larger than the upper and lower range projected by the narrow reflector 12 is to be inspected. By raising or lowering the imaging device 8 inserted into the body, the entire depth of the object to be inspected can be imaged. Furthermore, narrow illumination lamp 13 is intended to illuminate a vertical fine region of the device under test which is a refractive projection by narrow reflecting mirror 12 has a vertical dimension slightly greater than the vertical dimension of the narrow reflecting mirror 12 is arranged obliquely Is. In addition, it is assumed that the entire vertical inner surface of the object to be inspected is photographed by photographing the vertical thin region refracted and projected by the narrow reflector 12 while rotating the imaging device 8 by 360 ° by the rotation mechanism 7 of the driving device 5. Yes.
[0008]
The imaging device 8 will be described in more detail with reference to FIGS. 3 and 4. The imaging device 8 arranged outside the object to be inspected is a digital camera 11 having a lens 8a and an image sensor of a one-dimensional line sensor. It is attached to the inverted U-shaped frame 10. The imaging head 9 attached to the tip of the imaging device 8 has a narrow reflecting mirror 12 that refracts and projects a vertical thin area of the inner surface of the object to be inspected onto the upper digital camera 11, and a vertical mirror imaged on the narrow reflecting mirror 12. A narrow illumination lamp 13 for illuminating the vicinity of the narrow area is provided.
[0009]
The photographing head 9 will be described in detail with reference to FIGS. 3 and 4. The photographing head 9 is attached to a mounting bracket 15 with a bent portion that is attached to a tip opening edge of a substantially inverted U-shaped frame 10 and is suspended. The narrow reflector 12 is sandwiched and fixed, and a narrow illumination lamp 13 is attached to an inverted L-shaped stay 14 whose base end is fixed to the bent portion of the mounting bracket 15. Inclined and arranged so that the corners of the upper and lower ends are close to the front and rear inner surfaces of the inspection object on a plane including the central axis of the inspection object, and the inclination angle projects the inner surface image of the inspection object 45 upward. It is arranged with an inclination of °. The narrow reflector 12 has a mirror-finished surface by vacuum deposition. This is to prevent the formation of a double image by forming an image reflected on the glass surface and an image reflected on the mirror surface when formed on the back surface of the glass to protect the mirror surface. Further narrow reflecting mirror 12 is assumed to a refractive projection the vertical fine area illuminated by the uniform one brightness in the narrow lamp 13. The reason why the narrow reflector 12 is a vertically long one having a width of about 4 mm is that the image sensor of the digital camera 11 may be a one-dimensional line sensor in which 5000 pixels are arranged in a row, and an image for one pixel can be projected. In this way, the upper and lower corners of the narrow reflector 12 can be brought close to the front and rear inner surfaces of the object to be inspected. As a result, the vertical projection area on the inner surface of the object to be inspected by the narrow reflector 12 is maximized, and the imaging area by the imaging device 8 is also maximized so that the most efficient imaging can be performed.
[0010]
The narrow illumination lamps 13 arranged on both sides of the narrow reflector 12 are a plurality of LEDs (Light Emitting Diodes) vertically arranged in a vertical row, and the vertical dimension of the narrow reflector 12 tilted by 45 ° ( The vertical dimension is slightly larger than (height). This is to provide a margin so that a shortage of light quantity does not occur at the top and bottom. Further, the narrow illumination lamp 13 is arranged so as to be close to the vertical thin area on the inner surface of the inspection object at an equal distance so that the entire vertical thin area on the inner surface of the inspection object can be illuminated with uniform brightness. Further, the reason why the narrow illumination lamp 13 is an LED is that it consumes less power and is robust and easy to handle.
[0011]
As shown in FIGS. 1 and 2, the rotation mechanism 7 of the imaging device 8 rotates with the worm wheel 21 attached to the motor 20, the output shaft of the motor 20, and the worm gear 22 meshing with the worm wheel 21. It consists of a shaft 23. Reference numeral 24 denotes a rotation angle detection mechanism. The rotation angle detection mechanism 24 includes a disc 25 attached to the rotary shaft 23 and a position sensor 26 attached to the disc 25. The mechanism 24 determines the rotation start point of the imaging device 8. If this rotation mechanism 7 is controlled by a computer, the measurement operation can be automated.
[0012]
Reference numeral 27 denotes a horizontally adjustable leg of the bed 2 and 28 denotes a manual handle for moving the lifting mechanism 6 up and down. In the preferred embodiment, the elevating mechanism 6 is moved up and down by rotating the manual handle 28. However, the elevating mechanism 6 may be driven by a motor controlled by a computer. In this way, the measurement operation can be automated. . Reference numeral 29 denotes a length measuring device that measures the amount of lifting of the image pickup device 8. When the lifting and lowering is automated by a computer, the length measuring device data is input to the computer to control the motor.
[0013]
In the configuration as described above, first, the lifting mechanism 6 of the driving device 5 is operated to a position where the narrow reflector 12 and the narrow illumination lamp 13 of the imaging device 8 do not interfere with the object to be inspected (cylinder block). While being raised, the slider 4 of the object to be inspected is moved to the side of the imaging device 8. Then, the cylinder block is placed on the cradle 4a of the slider 4 on the side moved. After placing the object to be inspected on the cradle 4a, the narrow reflector 12 and the narrow illumination lamp 13 attached to the photographing head 9 from the upper opening of the first bore (cylinder) to be inspected of the cylinder block are the cylinder block. The slider 4 is moved to a position where it can be inserted into the bore.
[0014]
Next, the manual handle 28 of the elevating mechanism 6 of the driving device 5 is manually turned to allow the narrow reflector 12 and the narrow illumination lamp 13 to enter the bore of the cylinder block. The descending amount at this time is positioned so that the lower end edge of the cylinder is photographed. When the descending positions of the narrow reflector 12 and the narrow illumination lamp 13 are determined in this way, the narrow illumination lamp 13 is turned on, the digital camera 11 of the imaging device 8 is started, and the rotation mechanism 7 of the drive device 5 is further activated. And the imaging device 8 is rotated 360 ° at a constant speed.
[0015]
At this time, the bore inner surface image of the cylinder block is refracted 90 ° upward by the narrow reflector 12 of the imaging head 9 and reflected and projected onto the one-dimensional line sensor of the digital camera 11 through the lens 8a. The entire inner peripheral surface will be photographed. The image projected on the one-dimensional line sensor may be successively taken into the memory sequentially.
[0016]
Then, analysis is performed based on the image obtained by photographing the entire inner peripheral surface of the bore of the cylinder block in this way, and it is inspected whether there is a defect such as a nest in the bore of the cast cylinder block.
[0017]
Even if the glossiness of the photographing surface is extremely high, the narrow reflector 12 and the narrow illumination lamp 13 are arranged in a relationship between the incident angle and the reflection angle with respect to the object to be inspected, as shown in FIG. Therefore, a photographed image that is uniform and free from spots can be obtained.
[0018]
In the preferred embodiment, the narrow illumination lamp 13 is made of an LED. However, it is also possible to use an ultrafine fluorescent tube such as a backlight used for a liquid crystal light source, an EL (Electro Luminescence), or the like. Of course.
[0019]
【The invention's effect】
As is apparent from the above description, the present invention arranges an imaging device having an imaging device as a one-dimensional line sensor outside the object to be inspected, and refracts and projects a vertical thin area on the inner surface of the object to be inspected onto the one-dimensional line sensor. The narrow reflector is attached to the tip of the imaging device so that the corners of the upper and lower ends are close to the front and rear inner surfaces of the object to be inspected, and the vertical thin region of the object to be inspected is projected onto the one-dimensional line sensor. A narrow illuminating lamp having a vertical dimension slightly larger than the vertical dimension of the slenderly arranged narrow reflector that illuminates the object is attached to the front end of the imaging device by being arranged close to the vertical thin area on the inner surface of the object to be inspected, Further, since the driving device for rotating the narrow reflector and the narrow illumination lamp is provided so as to continuously input the inspected object image of the vertical thin region to the one-dimensional line sensor, the narrow reflector 1 Inspection to be input to the three-dimensional line sensor So that the of the subject to be imaged surface it is only necessary to illuminate a narrow range of vertical fine area can be illuminated with uniform brightness. In addition, the narrow reflector is inclined so that the upper and lower corners are close to the front and back inner surfaces of the object to be inspected. Thus, the entire inner surface of the object to be inspected can be imaged in a short time, and the inspection efficiency can be increased. In addition, since the continuous imaging is performed by rotating the narrow reflector and the narrow illumination lamp in the subject, the entire inner peripheral surface of the subject can be photographed seamlessly and uniformly. Furthermore, because of continuous shooting, the shooting time can be shortened and the processing time can be improved. In addition, the narrow reflector and the narrow illumination lamp are arranged in a relationship between the incident angle and the reflection angle with respect to the inner surface of the object to be inspected, so that even if the object to be inspected is glossy, it is uniform. Spotless lighting can be performed. According to the second aspect of the present invention, the elevating mechanism is incorporated in the driving device, so that the narrow reflector and the narrow illumination lamp can be moved to a position where they do not interfere with the object to be inspected and inserted into the object to be inspected. It can be done easily and quickly. Further, as described in claim 3, when the narrow-width illuminating lamp is provided with a large number of LEDs arranged vertically, it is small in size and has good durability, and power consumption can be extremely small. It has various advantages.
Accordingly, the present invention greatly contributes to the development of the industry as a cylindrical inner surface photographing apparatus that solves the conventional problems.
[Brief description of the drawings]
FIG. 1 is a partially cutaway side view showing a preferred embodiment of the present invention.
FIG. 2 is a partially cutaway front view showing a preferred embodiment of the present invention.
FIG. 3 is a partially cutaway side view showing an imaging apparatus according to a preferred embodiment of the present invention.
FIG. 4 is a partially cutaway front view showing an imaging apparatus according to a preferred embodiment of the present invention.
FIG. 5 is a partially cutaway plan view showing a photographing state of a preferred embodiment of the present invention.
FIG. 6 is a schematic explanatory diagram of a conventional photographing apparatus.
[Explanation of symbols]
5 Driving device 6 Elevating mechanism 8 Imaging device
12 Narrow reflector
13 Narrow illumination lamp

Claims (3)

被検査体の外方に撮像素子を1次元ラインセンサとした撮像装置を配置し、被検査体内面の縦細領域を1次元ラインセンサに屈折投影する細幅反射鏡を、その上下端の角部が被検査体の前後内面に近接するよう傾斜配置させて撮像装置の先端に取り付け、また1次元ラインセンサに投影される被検査体の縦細領域を照明する傾斜配置される細幅反射鏡の上下寸法より若干大きい上下寸法を有する細幅照明灯を被検査体内面の前記縦細領域と等距離で近接配置して撮像装置の先端に取り付け、さらに被検査体の中心軸線と縦細領域の中心線とを結ぶ面の両側、即ち被検査体内面に対して入射角と反射角の関係に前記細幅反射鏡と細幅照明灯とを配置して縦細領域を直接照明する反射光を直接細幅反射鏡に入射されるようにし、また縦細領域の被検査体像を1次元ラインセンサに連続的に入力するよう細幅反射鏡と細幅照明灯とを回転させる駆動装置を設けたことを特徴とする筒体内面撮影装置。An imaging device having an imaging device as a one-dimensional line sensor is disposed outside the object to be inspected, and a narrow reflector that refracts and projects a vertical thin region on the inner surface of the object to be inspected on the one-dimensional line sensor is provided at the upper and lower corners. A narrow-width reflecting mirror that is inclined and arranged to be close to the front and rear inner surfaces of the object to be inspected and attached to the tip of the imaging apparatus and that illuminates the vertical thin area of the object to be inspected projected onto the one-dimensional line sensor A narrow illuminating lamp having a vertical dimension slightly larger than the vertical dimension of the image sensor is arranged at the same distance from the vertical thin area on the inner surface of the object to be inspected and attached to the tip of the imaging device, and further the central axis and vertical thin area of the object to be inspected Reflected light that directly illuminates the vertical thin area by arranging the narrow reflector and the narrow illumination lamp in the relationship between the incident angle and the reflection angle with respect to both sides of the surface connecting the center line of the object, that is, the inner surface of the object to be inspected Is directly incident on the narrow reflector, and the vertical thin area is covered.査体 tubular body inside surface imaging apparatus characterized in that a driving device for rotating the narrow reflector and narrow illumination lamp to continuously inputted into a one-dimensional line sensor image. 駆動装置に昇降機構が組み込まれることを特徴とする請求項1に記載の筒体内面撮影装置。  The cylindrical inner surface imaging device according to claim 1, wherein an elevating mechanism is incorporated in the driving device. 細幅照明灯が多数のLEDを縦に配設させたものであることを特徴とする請求項1または2に記載の筒体内面撮影装置。  The cylindrical inner surface photographing apparatus according to claim 1 or 2, wherein the narrow illumination lamp has a number of LEDs arranged vertically.
JP2002226268A 2002-08-02 2002-08-02 Cylindrical inner surface imaging device Expired - Fee Related JP4130103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226268A JP4130103B2 (en) 2002-08-02 2002-08-02 Cylindrical inner surface imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226268A JP4130103B2 (en) 2002-08-02 2002-08-02 Cylindrical inner surface imaging device

Publications (2)

Publication Number Publication Date
JP2004069371A JP2004069371A (en) 2004-03-04
JP4130103B2 true JP4130103B2 (en) 2008-08-06

Family

ID=32013666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226268A Expired - Fee Related JP4130103B2 (en) 2002-08-02 2002-08-02 Cylindrical inner surface imaging device

Country Status (1)

Country Link
JP (1) JP4130103B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914500B2 (en) * 2003-02-12 2007-05-16 株式会社日立製作所 Defect inspection equipment
JP6152353B2 (en) * 2014-02-18 2017-06-21 株式会社神戸製鋼所 Inspection device
KR101751985B1 (en) * 2015-09-03 2017-06-30 한국기계연구원 Tube inspection system using optical device
CN115508369B (en) * 2022-11-24 2023-03-21 济南凯瑞特铸造有限公司 Engine cylinder block casting cylinder hole detection device

Also Published As

Publication number Publication date
JP2004069371A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP5323320B2 (en) Surface inspection device
US8878929B2 (en) Three dimensional shape measurement apparatus and method
KR101166828B1 (en) Apparatus for Testing flat panel display device and testing method thereof
TWI317422B (en)
JPH05160230A (en) Apparatus and method for inspecting bonding wire
TWI442016B (en) A light source for illumination and a pattern inspection device using it
WO2021129127A1 (en) Arched lighting device, imaging system having same, and imaging method
JP2969403B2 (en) Bonding wire inspection device
JP2981942B2 (en) Bonding wire inspection method
JP6310372B2 (en) Inspection device
JP4130103B2 (en) Cylindrical inner surface imaging device
JP2969402B2 (en) Bonding wire inspection device
JP3789761B2 (en) Gravure cylinder inspection device
KR20160121716A (en) Surface inspection apparatus based on hybrid illumination
JP2007334423A (en) Automatic photographing device
JP2007235490A (en) Automatic photographic apparatus
TWM514002U (en) Optical inspection device
JP2016065782A (en) Inspection device
JP3789097B2 (en) Peripheral inspection method and peripheral inspection apparatus for inspection object
CN211014053U (en) High-precision automatic object surface flaw image capturing device
KR20110026922A (en) Apparatus and method for inspecting defect of flat panel
JP2006078317A (en) Inspection method for body under inspection and its device
JP3481144B2 (en) Chamfer width measuring device
JP2004212353A (en) Optical inspection apparatus
JPH09318551A (en) Apparatus for picking up image of tubular inner surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees