JP4128821B2 - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP4128821B2
JP4128821B2 JP2002219503A JP2002219503A JP4128821B2 JP 4128821 B2 JP4128821 B2 JP 4128821B2 JP 2002219503 A JP2002219503 A JP 2002219503A JP 2002219503 A JP2002219503 A JP 2002219503A JP 4128821 B2 JP4128821 B2 JP 4128821B2
Authority
JP
Japan
Prior art keywords
transmission
reception
vibration element
array
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002219503A
Other languages
Japanese (ja)
Other versions
JP2004057460A (en
Inventor
亮一 酒井
正徳 国田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2002219503A priority Critical patent/JP4128821B2/en
Publication of JP2004057460A publication Critical patent/JP2004057460A/en
Application granted granted Critical
Publication of JP4128821B2 publication Critical patent/JP4128821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続波ドプラモードを有する超音波診断装置に係り、特に電子走査方向およびエレベーション方向に整列した複数の振動素子からなるアレイ振動子を用いて連続波ドプラモードを実行する超音波診断装置に関する。
【0002】
【従来の技術】
超音波診断装置においては、複数の超音波振動素子からなるアレイ振動子から対象組織に対し超音波を送信し、その反射波を受信する。
【0003】
一般的に用いられるアレイ振動子は、1Dアレイ振動子と呼ばれ、複数の振動素子が1列に整列して配置されている。そして個々の振動素子に対して送受信制御が行われる。これにより、超音波ビームが形成されて、振動素子の配列方向に超音波ビームが電子走査される。
【0004】
これに対し、複数の振動素子を振動素子列として電子走査方向に1列だけ配置するだけでなく、電子走査方向に直交する方向、すなわちエレベーション方向にも複数列配置したいわゆる1.5Dアレイ振動子、1.75Dアレイ振動子が注目されている。
【0005】
1.5Dアレイ振動子は、エレベーション方向について、ビームを偏向させることはできないが、ビームパターンを調整できる。また、1.75Dアレイ振動子は、エレベーション方向に超音波ビームを偏向させることもできる。以下、1.5Dアレイ振動子と1.75Dアレイ振動子については、1.5Dアレイ振動子を代表させて説明する。
【0006】
【発明が解決しようとする課題】
ところで、1.5Dアレイ振動子を用いて連続波ドプラモードを実行して良好な計測精度を得る方法が望まれる。すなわち、連続波ドプラモードにおいては、複数の振動素子を送信素子グループと受信グループとに区分する必要があるが、仮に、1.5Dアレイ振動子において単純に電子走査方向において左右に分割すると、当該電子走査方向について十分な送信開口および受信開口を得ることができない。電子走査方向において送信開口および受信開口が十分でないと、超音波ビームが絞りにくく広がりがちになることから、ビームの方位分解能が劣化し、感度が低下する。
【0007】
本発明の目的は、連続波ドプラモードにおいて、電子走査方向における送信開口および受信開口を十分確保できる超音波診断装置を提供することである。本発明の他の目的は、超音波ビームの方位分解能を向上させることができる超音波診断装置を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る超音波診断装置は、連続波ドプラモードを有する超音波診断装置において、超音波ビームが電子走査される方向である電子走査方向および電子走査方向に直交するエレベーション方向に整列した複数の振動素子からなるアレイ振動子と、前記複数の振動素子の動作を制御する送受信制御部と、を備え、前記連続波ドプラモードにおいて、前記アレイ振動子上に、前記電子走査方向に整列した少なくとも1つの送信振動素子群と、前記電子走査方向に整列した少なくとも1つの受信振動素子群とが前記エレベーション方向において互いに異なる位置に設定される。
【0009】
この構成により、1.5Dアレイ振動子および1.75Dアレイ振動子において、送信振動素子群と受信振動素子群とがエレベーション方向において異なる位置に配置されるので、電子走査方向における送信開口と受信開口の設定にあたっては、お互いに干渉せず、その意味において送信開口および受信開口を十分確保できる。また、超音波ビームの方位分解能を向上させることができる。
【0010】
また、前記各送信振動素子群は、前記電子走査方向に整列した複数の振動素子の全部によって構成される送信振動素子列であり、かつ前記各受信振動素子群は、前記電子走査方向に整列した複数の振動素子の全部によって構成される受信振動素子列である。
【0011】
この構成により、1.5Dアレイ振動子および1.75Dアレイ振動子において、振動素子列単位で送信振動素子列と受信振動素子列が設定され、1.5Dアレイ振動子の電子走査方向の長さいっぱいに送信開口および受信開口を広げることが可能になる。電子走査方向に整列した複数の振動素子の全部とは、送受信制御にとって実質的に全部であれば足り、ダミー素子等が含まれていても構わない。
【0012】
また、前記アレイ振動子は、前記各送信振動素子列ごとおよび前記各受信振動素子列ごとに分割された複数のグランド電極を備えることが好ましい。この構成により、各信号間のクロストークを抑制することができる。
【0013】
また、前記送信振動素子列と、前記受信振動素子列とが前記エレベーション方向に交互に設定されることが好ましい。
【0014】
【発明の実施の形態】
以下に図面を用いて本発明に係る実施の形態について詳細に説明する。図1は1.5Dアレイ振動子を用いる超音波診断装置40のブロック図である。以下の説明では連続波ドプラモードの場合について主に説明し、Bモードの場合については後述する。
【0015】
図1において、探触子41は、超音波の送波およびエコーの受波を行う超音波探触子で、例えば被検者の体表面上に当接して用いられる。探触子41内には電子走査方向とエレベーション方向に整列した複数の振動素子43からなるアレイ振動子42が設けられる。そのアレイ振動子42を利用して超音波ビームが形成され、その超音波ビームが電子走査される。その電子走査方式としては、例えば電子リニア走査や電子セクタ走査を用いることができる。
【0016】
アレイ振動子42は、電子走査方向に例えば128個の振動素子が整列して配置してそれぞれが振動素子列を形成する。振動素子列はエレベーション方向に例えば3列配置される。もちろん、128個以外の振動素子数あるいは3列以上の列数であってもよい。
【0017】
スイッチングマトリクス44は、後述する制御部52の制御の下で、アレイ振動子42の各振動素子43と、送信回路48の各チャネルまたは受信回路50の各チャネルとの間の接続関係を切換えるスイッチ回路である。この接続関係の切換えは、連続波ドプラモードとBモードとの切換えに応じて行われる。また、それぞれのモードにおける開口制御においても、接続関係の切換えが行われる場合もある。
【0018】
図2に連続波ドプラモードの場合における接続関係を示す。1.5Dアレイ振動子43は、各振動素子43の駆動電極側から見た様子で示した。図に示すように、中央列の振動素子列を構成する各振動素子43は、送信回路48に接続される。また、中央列の両側の各振動素子列を構成する各振動素子43は、振動素子列が異なっても同じ受信回路50に接続される。
【0019】
すなわち、中央列の振動素子列は、その電子走査方向に配列された全部、たとえば上記の例で128個の振動素子が送信に用いられる送信振動素子列72として設定される。また、中央列の両側の各振動素子列は、その電子走査方向に配列された全部の振動素子が受信に用いられる受信振動素子列74,76として設定される。全部の振動素子とは、送受信制御にとって実質的に全部であれば足り、ダミー素子等が含まれていても構わない。その場合には、ダミー素子については送信用あるいは受信用に用いられない。
【0020】
送受信部46は、送信回路48と受信回路50とを備え、後述する送受信制御回路54の制御の下で、超音波の送受信により連続波ドプラ計測用の超音波ビームを形成し受信信号を出力する回路である。より詳しくは、送信回路48は、送信振動素子列72の各振動素子43ごとに遅延された送信信号を供給する回路で、いわゆる送信ビームフォーマとしての機能を有する。受信回路50は、受信振動素子列74,76の各振動素子43からのエコー信号をプリアンプにより増幅し、直交検波回路において参照信号を用いて各チャネル間の信号の位相差を調整する処理を行い、受信信号として信号処理部56に出力する回路で、いわゆる受信ビームフォーマとしての機能を有する。
【0021】
信号処理部56は、並列に接続されたBモード信号処理回路58とドプラ信号処理回路60を備える。ドプラ信号処理回路60は、A/D変換器、FFT演算器等から構成され、ドプラ計測用の超音波ビームの受信信号に含まれるドプラ情報の周波数スペクトラムを解析する回路である。信号処理の結果は表示処理部62に出力される。
【0022】
表示処理部62は、ドプラ信号処理回路60の出力に対し必要な処理を行ってドプラ波形画像等を形成する回路で、いわゆるディジタルスキャンコンバータ(DSC)や各種の画像処理回路によって構成することができる。形成されたドプラ波形画像は、表示器64に出力される。
【0023】
入力部66は、後述の制御部52と接続され、ユーザにより、超音波診断装置40の機能の選択や必要なデータの入力が行われるスイッチ、キーボード、トラックボール等である。例えば、ユーザは、選択スイッチ等を用い、機能として連続波ドプラモードまたはBモードを選択できる。
【0024】
制御部52は、超音波診断装置40の各構成と接続され、それぞれの制御を行うコントローラで、例えば送受信制御回路54は、基準クロックに基づいて上記の送受信部46を制御する機能を有する。また、例えば入力部66からの選択、あるいは自動的な選択により、連続波ドプラモードとBモードとの間の機能の変更に応じ、スイッチングマトリクス44による各振動素子と送受信部46との間の接続関係の切換えを制御する。
【0025】
上記のように、1.5Dアレイ振動子42は、連続波ドプラモードにおいて、中央列の振動素子列が送信振動素子列72として設定され、送信回路の数が許す限りその電子走査方向に配列された全部の振動素子が送信に用いられる。すなわち、送信回路の数が送信振動素子列を構成する振動素子の数より多いときは全部の振動素子が送信に用いられ、少ないときは送信回路の数が許す限りの数の振動素子が送信に用いられる。また、中央列の両側の各振動素子列が受信振動素子列74,76として設定され、受信回路の数が許す限りその電子走査方向に配列された全部の振動素子が受信に用いられる。すなわち、受信回路の数が受信振動素子列を構成する振動素子の数より多いときは全部の振動素子が受信に用いられ、少ないときは受信回路の数の許す限りの数の振動素子が受信に用いられる。したがって、振動素子列単位で送信振動素子列と受信振動素子列が設定され、1.5Dアレイ振動子の電子走査方向に送信回路の数の許す限り送信開口を広げ、受信回路の数の許す限り受信開口を広げることが可能になり、超音波ビームの方位分解能のよい、感度の高いドプラ情報を得ることができる。
【0026】
ここで、超音波診断装置40のBモードの場合について説明する。Bモードに機能が切り替わると、制御部52の制御の下でスイッチングマトリクス44により、各振動素子43が送信時には送信回路48に、受信時には受信回路50に接続される。ここで中央列の振動素子列を構成する各振動素子は、中央列対応の送信回路および受信回路に接続され、中央列の両側の各振動素子列を構成する各振動素子は、中央列対応とは別の送信回路および受信回路に接続される。
【0027】
そして、送受信部46は、超音波の送受信により断層画像用の超音波ビームを形成し受信信号を出力する。この際、中央列対応の送信回路および受信回路による送受信制御と、中央列の両側列対応の送信回路および受信回路による送受信制御とは、たとえばビームパターンを調整するように送信遅延制御および受信位相差制御が行われる。Bモード信号処理回路58は、入力された受信信号の包絡振幅検波、対数圧縮等の処理を行い、その出力は表示処理部62において座標変換やデータ補間等の処理が行われてBモード断層画像が形成される。形成されたBモード断層画像は表示器64に出力される。
【0028】
図3は、実施の形態に係る1.5Dアレイ振動子42のグランド電極78の配置を説明する図である。1.5Dアレイ振動子42はグランド電極側から見た様子で示してある。図に示すように、各グランド電極78は、各振動素子列ごとに分割され、中央列の送信振動素子列に対応するグランド電極はGND1に接続され、中央列の両側列の各受信振動素子列に対応する各グランド電極はGND1と異なるGND2に接続される。この構成により、連続波ドプラモードにおいて信号間のクロストークを抑えることができる。
【0029】
図4は、他の実施の形態における1.5Dアレイ振動子42を示す図である。1.5Dアレイ振動子42は、図2と同様に、各振動素子43の駆動電極側から見た様子で示してある。この実施の形態の1.5Dアレイ振動子42において、中央列の両側列の各振動素子列は、図2と同様、電子走査方向に整列した全部の振動素子を受信に用いる受信振動素子列74,76であるが、中央列の振動素子列73は図2の場合と異なっている。すなわち、中央列の振動素子列73は、電子走査方向に整列した各振動素子のうち、中央領域80の各振動素子を送信に用い、電子走査方向に沿って中央領域80の両側の領域の他の各振動素子は無効素子として送信にも受信にも用いない。すなわち、中央領域80に整列した各振動素子を送信振動素子群81として用いている。
【0030】
この構成においても、送信振動素子群81と、受信振動素子列74,76とはエレベーション方向において異なる位置に配置されるので、電子走査方向における送信開口と受信開口の設定にあたっては、お互いに干渉せず、その意味において送信開口および受信開口を十分確保できる。また、超音波ビームの方位分解能を向上させることができる。
【0031】
また、図4において、無効素子として説明した素子を、無効素子でなく、補助的に受信用の振動素子として用いてもよい。この場合においても、送信振動素子群81と、受信振動素子列74,76とは、電子走査方向における送信開口と受信開口の設定にあたっては、お互いに干渉せず、その意味において送信開口および受信開口を十分確保できる。
【0032】
送信振動素子群81の占める中央領域80の広さは、アレイ振動子42においてグレーティングローブが悪影響を及ぼさない限度で設定することができる。すなわち、グレーティングローブが悪影響を及ぼさない限度で、電子走査方向に配列した複数の振動素子を、送信用と受信用に振り分けて設定することもできる。また、送信振動素子群81の占める領域は、中央領域に限られず、左右いずれかに偏位した領域であってもよい。
【0033】
図5は、他の実施の形態で、1.75Dアレイ振動子82を用いる場合の各振動素子の設定関係を説明する図である。1.75Dアレイ振動子82は、エレベーション方向に5列の振動素子列を有する例を示し、図は、各振動素子の駆動電極側から見た様子で示してある。図に示すように、各振動素子列は、一列おきにそれぞれ送信回路48と受信回路50に交互に接続される。すなわち、振動素子列単位で送信振動素子列84,86と受信振動素子列88,90,92とが交互に設定され、送信振動素子列を構成する振動素子43の全部が送信に用いられ、受信振動素子列を構成する振動素子43の全部が受信に用いられる。したがって、送信開口および受信開口の大きさは、1.75Dアレイ振動子82の電子走査方向の長さいっぱいに渡り広く取れる。
【0034】
なお、送信回路の数が送信振動素子列を構成する振動素子数より少ない場合には送信回路の数が許す限りの数の振動素子が送信に用いられ、受信回路の数が受信振動素子列を構成する振動素子数より少ない場合には受信回路の数が許す限りの数の振動素子が受信に用いられる。また、グレーティングローブが悪影響を及ぼさない限度で、電子走査方向に配列した複数の振動素子を、送信用と受信用に振り分けて設定することもできる。
【0035】
図5に示す交互配置設定の他、例えば送信振動素子列を2列続けて配置し、次に受信振動素子列を1列あるいは2列配置する等の設定を行うこともできる。また、エレベーション方向に5列以外の数の振動素子列を配置した1.75Dアレイ振動子を用いることもできる。また、送信振動素子列の列数と、受信振動素子列の列数を同数にすることもできる。
【0036】
1.75Dアレイ振動子のグランド電極の配置も、図3で説明したと同様に、各振動素子列ごとにグランド電極を分割し、各送信振動素子列に対応する各グランド電極をそれぞれGND1に接続し、各受信振動素子列に対応する各グランド電極をGND1と異なるGND2に接続することができる。
【0037】
【発明の効果】
本発明に係る超音波診断装置によれば、連続波ドプラモードにおいて、電子走査方向における送信開口および受信開口を十分確保することができる。
【図面の簡単な説明】
【図1】 本発明に係る実施の形態における超音波診断装置のブロック図である。
【図2】 実施の形態において、連続波ドプラモードにおける1.5Dアレイ振動子の送信振動素子列と受信振動素子列の設定関係を説明する図である。
【図3】 実施の形態に係る1.5Dアレイ振動子のグランド電極の配置を説明する図である。
【図4】 他の実施の形態に係る1.5Dアレイ振動子の送信振動素子列と受信振動素子列の設定関係を説明する図である。
【図5】 実施の形態において、連続波ドプラモードにおける1.75Dアレイ振動子の送信振動素子列と受信振動素子列の設定関係を説明する図である。
【符号の説明】
40 超音波診断装置、41 探触子、42 1.5Dアレイ振動子、43 振動素子、44 スイッチングマトリクス、48 送信回路、50 受信回路、52 制御部、54 送受信制御回路(送受信制御部)、60 ドプラ信号処理回路、72,84,86 送信振動素子列、74,76,88,90,92 受信振動素子列、78 グランド電極、81 送信振動素子群、82 1.75Dアレイ振動子。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic diagnostic apparatus having a continuous wave Doppler mode, and in particular, an ultrasonic diagnosis that executes a continuous wave Doppler mode using an array transducer including a plurality of vibration elements aligned in an electronic scanning direction and an elevation direction. Relates to the device.
[0002]
[Prior art]
In the ultrasonic diagnostic apparatus, an ultrasonic wave is transmitted from an array transducer including a plurality of ultrasonic vibration elements to a target tissue, and a reflected wave thereof is received.
[0003]
A generally used array transducer is called a 1D array transducer, and a plurality of transducer elements are arranged in a line. Transmission / reception control is performed for each vibration element. Thereby, an ultrasonic beam is formed, and the ultrasonic beam is electronically scanned in the arrangement direction of the vibration elements.
[0004]
In contrast to this, a so-called 1.5D array vibration in which a plurality of vibration elements are arranged not only as one vibration element array in the electronic scanning direction but also in a direction orthogonal to the electronic scanning direction, that is, in the elevation direction. The child, 1.75D array transducer, has attracted attention.
[0005]
Although the 1.5D array transducer cannot deflect the beam in the elevation direction, it can adjust the beam pattern. The 1.75D array transducer can also deflect the ultrasonic beam in the elevation direction. Hereinafter, the 1.5D array transducer and the 1.75D array transducer will be described using the 1.5D array transducer as a representative.
[0006]
[Problems to be solved by the invention]
By the way, a method for obtaining a good measurement accuracy by executing a continuous wave Doppler mode using a 1.5D array transducer is desired. That is, in the continuous wave Doppler mode, it is necessary to divide a plurality of vibration elements into a transmission element group and a reception group. However, if the 1.5D array transducer is simply divided into left and right in the electronic scanning direction, A sufficient transmission aperture and reception aperture cannot be obtained in the electronic scanning direction. If the transmission aperture and the reception aperture are not sufficient in the electronic scanning direction, the ultrasonic beam tends to be difficult to narrow and spread, so that the azimuth resolution of the beam is deteriorated and the sensitivity is lowered.
[0007]
An object of the present invention is to provide an ultrasonic diagnostic apparatus capable of sufficiently securing a transmission aperture and a reception aperture in the electronic scanning direction in the continuous wave Doppler mode. Another object of the present invention is to provide an ultrasonic diagnostic apparatus capable of improving the azimuth resolution of an ultrasonic beam.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an ultrasonic diagnostic apparatus according to the present invention is an ultrasonic diagnostic apparatus having a continuous wave Doppler mode, which is orthogonal to an electronic scanning direction and an electronic scanning direction, which are directions in which an ultrasonic beam is electronically scanned. An array transducer composed of a plurality of transducer elements aligned in the elevation direction, and a transmission / reception controller that controls operations of the plurality of transducer elements, and in the continuous wave Doppler mode, on the array transducer, at least one transmission transducer element group aligned in electronic scanning direction, the electronic scanning aligned in a direction and at least one receiving transducer element group is Ru is set in different positions in the elevation direction.
[0009]
With this configuration, in the 1.5D array transducer and the 1.75D array transducer, the transmission vibration element group and the reception vibration element group are arranged at different positions in the elevation direction, so that the transmission aperture and reception in the electronic scanning direction are arranged. In setting the aperture, the transmission aperture and the reception aperture can be sufficiently secured without interfering with each other. In addition, the azimuth resolution of the ultrasonic beam can be improved.
[0010]
Further, each of the transmission vibration element groups is a transmission vibration element array including all of a plurality of vibration elements aligned in the electronic scanning direction, and each of the reception vibration element groups is aligned in the electronic scanning direction. Oh Ru by the receiving vibrating element array composed of all of the plurality of transducer elements.
[0011]
With this configuration, in the 1.5D array vibrator and the 1.75D array vibrator, the transmission vibration element row and the reception vibration element row are set for each vibration element row, and the length of the 1.5D array vibrator in the electronic scanning direction is set. It becomes possible to widen the transmission aperture and the reception aperture. All of the plurality of vibration elements aligned in the electronic scanning direction may be substantially all for transmission / reception control, and may include dummy elements or the like.
[0012]
In addition, it is preferable that the array transducer includes a plurality of ground electrodes divided for each transmission vibration element array and for each reception vibration element array. With this configuration, crosstalk between signals can be suppressed.
[0013]
Moreover, it is preferable that the transmission vibration element array and the reception vibration element array are alternately set in the elevation direction.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus 40 using a 1.5D array transducer. In the following description, the case of the continuous wave Doppler mode will be mainly described, and the case of the B mode will be described later.
[0015]
In FIG. 1, a probe 41 is an ultrasonic probe that transmits ultrasonic waves and receives echoes, and is used, for example, in contact with the body surface of a subject. In the probe 41, an array transducer 42 composed of a plurality of vibration elements 43 aligned in the electronic scanning direction and the elevation direction is provided. An ultrasonic beam is formed using the array transducer 42, and the ultrasonic beam is electronically scanned. As the electronic scanning method, for example, electronic linear scanning or electronic sector scanning can be used.
[0016]
In the array transducer 42, for example, 128 vibrating elements are arranged in the electronic scanning direction and each form a vibrating element array. For example, three rows of vibration element rows are arranged in the elevation direction. Of course, the number of vibration elements other than 128 or the number of columns of 3 or more may be used.
[0017]
The switching matrix 44 is a switch circuit that switches a connection relationship between each vibration element 43 of the array vibrator 42 and each channel of the transmission circuit 48 or each channel of the reception circuit 50 under the control of the control unit 52 described later. It is. The switching of the connection relationship is performed according to switching between the continuous wave Doppler mode and the B mode. Also, connection control may be switched in opening control in each mode.
[0018]
FIG. 2 shows the connection relationship in the case of continuous wave Doppler mode. The 1.5D array transducer 43 is shown as viewed from the drive electrode side of each transducer element 43. As shown in the figure, each vibration element 43 constituting the center vibration element array is connected to a transmission circuit 48. In addition, each vibration element 43 constituting each vibration element array on both sides of the central array is connected to the same receiving circuit 50 even if the vibration element arrays are different.
[0019]
That is, the center vibration element array is set as a transmission vibration element array 72 in which all of the vibration elements arranged in the electronic scanning direction, for example, 128 vibration elements in the above example are used for transmission. In addition, the respective vibration element rows on both sides of the central row are set as reception vibration element rows 74 and 76 in which all the vibration elements arranged in the electronic scanning direction are used for reception. All the vibration elements are sufficient if they are substantially all for transmission / reception control, and may include dummy elements or the like. In that case, the dummy element is not used for transmission or reception.
[0020]
The transmission / reception unit 46 includes a transmission circuit 48 and a reception circuit 50. Under the control of a transmission / reception control circuit 54 described later, the transmission / reception unit 46 forms an ultrasonic beam for continuous wave Doppler measurement and outputs a reception signal. Circuit. More specifically, the transmission circuit 48 is a circuit that supplies a delayed transmission signal for each vibration element 43 of the transmission vibration element array 72, and has a function as a so-called transmission beam former. The reception circuit 50 amplifies echo signals from the respective vibration elements 43 of the reception vibration element arrays 74 and 76 by a preamplifier, and performs a process of adjusting a phase difference of signals between the respective channels using a reference signal in the quadrature detection circuit. A circuit that outputs a received signal to the signal processing unit 56 and has a function as a so-called reception beamformer.
[0021]
The signal processing unit 56 includes a B-mode signal processing circuit 58 and a Doppler signal processing circuit 60 connected in parallel. The Doppler signal processing circuit 60 is composed of an A / D converter, an FFT calculator, and the like, and is a circuit that analyzes the frequency spectrum of Doppler information included in the received signal of the ultrasonic beam for Doppler measurement. The result of the signal processing is output to the display processing unit 62.
[0022]
The display processing unit 62 is a circuit that performs necessary processing on the output of the Doppler signal processing circuit 60 to form a Doppler waveform image or the like, and can be configured by a so-called digital scan converter (DSC) or various image processing circuits. . The formed Doppler waveform image is output to the display 64.
[0023]
The input unit 66 is connected to a control unit 52 described later, and is a switch, a keyboard, a trackball, or the like on which a user selects a function of the ultrasonic diagnostic apparatus 40 and inputs necessary data. For example, the user can select a continuous wave Doppler mode or a B mode as a function using a selection switch or the like.
[0024]
The control unit 52 is a controller that is connected to each component of the ultrasonic diagnostic apparatus 40 and performs control thereof. For example, the transmission / reception control circuit 54 has a function of controlling the transmission / reception unit 46 based on a reference clock. Further, the connection between each transducer element and the transmission / reception unit 46 by the switching matrix 44 according to a change in function between the continuous wave Doppler mode and the B mode, for example, by selection from the input unit 66 or automatic selection. Control relationship switching.
[0025]
As described above, in the continuous wave Doppler mode, the 1.5D array transducer 42 is arranged in the electronic scanning direction as long as the center vibration element array is set as the transmission vibration element array 72 and the number of transmission circuits is allowed. All the vibration elements are used for transmission. That is, when the number of transmission circuits is larger than the number of vibration elements constituting the transmission vibration element array, all vibration elements are used for transmission, and when the number is small, as many vibration elements as the number of transmission circuits allow are used for transmission. Used. Further, the vibration element rows on both sides of the central row are set as reception vibration element rows 74 and 76, and all the vibration elements arranged in the electronic scanning direction are used for reception as long as the number of reception circuits allows. That is, when the number of receiving circuits is larger than the number of vibrating elements constituting the receiving vibrating element array, all vibrating elements are used for reception, and when the number is small, as many vibrating elements as the number of receiving circuits allow are received. Used. Therefore, the transmission vibration element array and the reception vibration element array are set in units of vibration element arrays, the transmission aperture is widened in the electronic scanning direction of the 1.5D array transducer as much as the number of transmission circuits allows, and as long as the number of reception circuits allows. It is possible to widen the reception aperture, and it is possible to obtain highly sensitive Doppler information with good azimuth resolution of the ultrasonic beam.
[0026]
Here, the case of the B mode of the ultrasonic diagnostic apparatus 40 will be described. When the function is switched to the B mode, each vibration element 43 is connected to the transmission circuit 48 at the time of transmission and to the reception circuit 50 at the time of reception by the switching matrix 44 under the control of the control unit 52. Here, each vibration element constituting the vibration element row in the central row is connected to the transmission circuit and reception circuit corresponding to the central row, and each vibration element constituting each vibration device row on both sides of the central row is associated with the central row. Are connected to separate transmitter and receiver circuits.
[0027]
The transmitter / receiver 46 forms an ultrasonic beam for tomographic images by transmitting / receiving ultrasonic waves and outputs a reception signal. At this time, the transmission / reception control by the transmission circuit and reception circuit corresponding to the central column and the transmission / reception control by the transmission circuit and reception circuit corresponding to both side columns of the central column are, for example, transmission delay control and reception phase difference so as to adjust the beam pattern. Control is performed. The B-mode signal processing circuit 58 performs processing such as envelope amplitude detection and logarithmic compression of the input received signal, and the output is subjected to processing such as coordinate conversion and data interpolation in the display processing unit 62, so that a B-mode tomographic image is obtained. Is formed. The formed B-mode tomographic image is output to the display 64.
[0028]
FIG. 3 is a diagram for explaining the arrangement of the ground electrodes 78 of the 1.5D array transducer 42 according to the embodiment. The 1.5D array transducer 42 is shown as seen from the ground electrode side. As shown in the figure, each ground electrode 78 is divided for each vibration element row, and the ground electrode corresponding to the transmission vibration element row in the center row is connected to GND 1, and each reception vibration element row in both side rows of the center row. Each ground electrode corresponding to is connected to GND2 different from GND1. With this configuration, crosstalk between signals can be suppressed in the continuous wave Doppler mode.
[0029]
FIG. 4 is a diagram showing a 1.5D array transducer 42 according to another embodiment. The 1.5D array transducer 42 is shown as viewed from the drive electrode side of each vibration element 43 as in FIG. In the 1.5D array transducer 42 of this embodiment, each vibration element array on both side columns of the central column is a reception vibration element array 74 that uses all the vibration elements aligned in the electronic scanning direction for reception as in FIG. , 76, but the vibration element row 73 in the center row is different from the case of FIG. That is, the vibrating element row 73 in the central row uses the vibrating elements in the central region 80 among the vibrating elements aligned in the electronic scanning direction for transmission, and other regions on both sides of the central region 80 along the electronic scanning direction. Each of the vibrating elements is not used for transmission or reception as an invalid element. That is, each vibration element aligned in the central region 80 is used as the transmission vibration element group 81.
[0030]
Also in this configuration, since the transmission vibration element group 81 and the reception vibration element rows 74 and 76 are arranged at different positions in the elevation direction, the transmission aperture and the reception aperture in the electronic scanning direction interfere with each other. In that sense, the transmission aperture and the reception aperture can be sufficiently secured. In addition, the azimuth resolution of the ultrasonic beam can be improved.
[0031]
In addition, the element described as the invalid element in FIG. 4 may be used as an auxiliary receiving vibration element instead of the invalid element. Also in this case, the transmission vibration element group 81 and the reception vibration element rows 74 and 76 do not interfere with each other in setting the transmission aperture and the reception aperture in the electronic scanning direction, and in that sense, the transmission aperture and the reception aperture Can be secured sufficiently.
[0032]
The width of the central region 80 occupied by the transmitting vibration element group 81 can be set as long as the grating lobe does not adversely affect the array transducer 42. That is, as long as the grating lobe does not adversely affect, a plurality of vibration elements arranged in the electronic scanning direction can be set separately for transmission and reception. Further, the region occupied by the transmission vibration element group 81 is not limited to the central region, and may be a region that is shifted to the left or right.
[0033]
FIG. 5 is a diagram for explaining the setting relationship of each vibration element when the 1.75D array transducer 82 is used in another embodiment. The 1.75D array transducer 82 shows an example having five rows of vibration elements in the elevation direction, and the figure is shown as seen from the drive electrode side of each vibration element. As shown in the figure, each vibration element array is alternately connected to the transmission circuit 48 and the reception circuit 50 every other line. That is, the transmission vibration element rows 84 and 86 and the reception vibration element rows 88, 90, and 92 are alternately set for each vibration element row, and all of the vibration elements 43 constituting the transmission vibration element row are used for transmission. All of the vibration elements 43 constituting the vibration element array are used for reception. Therefore, the size of the transmission aperture and the reception aperture can be widened over the entire length of the 1.75D array transducer 82 in the electronic scanning direction.
[0034]
When the number of transmitting circuits is smaller than the number of vibrating elements constituting the transmitting vibrating element array, as many vibrating elements as the number of transmitting circuits allow are used for transmission, and the number of receiving circuits is equal to the receiving vibrating element array. If the number is less than the number of vibration elements to be configured, the number of vibration elements as many as the number of reception circuits allows is used for reception. In addition, a plurality of vibration elements arranged in the electronic scanning direction can be distributed and set for transmission and reception as long as the grating lobe does not adversely affect.
[0035]
In addition to the alternating arrangement setting shown in FIG. 5, for example, it is possible to perform settings such as arranging two transmission vibration element rows in succession and then arranging one or two reception vibration element rows. Also, a 1.75D array transducer in which a number of vibration element rows other than five rows are arranged in the elevation direction can be used. Further, the number of transmission vibration element rows and the number of reception vibration element rows can be the same.
[0036]
Similarly to the arrangement of the ground electrode of the 1.75D array transducer, as described with reference to FIG. 3, the ground electrode is divided for each transducer element row, and each ground electrode corresponding to each transmission transducer element row is connected to GND 1. Then, each ground electrode corresponding to each receiving vibration element array can be connected to GND 2 different from GND 1.
[0037]
【The invention's effect】
According to the ultrasonic diagnostic apparatus of the present invention, it is possible to sufficiently secure the transmission aperture and the reception aperture in the electronic scanning direction in the continuous wave Doppler mode.
[Brief description of the drawings]
FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining a setting relationship between a transmission vibration element array and a reception vibration element array of a 1.5D array transducer in continuous wave Doppler mode in the embodiment.
FIG. 3 is a diagram illustrating the arrangement of ground electrodes of the 1.5D array transducer according to the embodiment.
FIG. 4 is a diagram illustrating a setting relationship between a transmission vibration element array and a reception vibration element array of a 1.5D array transducer according to another embodiment.
FIG. 5 is a diagram illustrating a setting relationship between a transmission vibration element array and a reception vibration element array of a 1.75D array transducer in continuous wave Doppler mode in the embodiment.
[Explanation of symbols]
40 Ultrasonic Diagnostic Device, 41 Probe, 42 1.5D Array Vibrator, 43 Vibrating Element, 44 Switching Matrix, 48 Transmitting Circuit, 50 Receiving Circuit, 52 Control Unit, 54 Transmission / Reception Control Circuit (Transmission / Reception Control Unit), 60 Doppler signal processing circuit, 72, 84, 86 transmission vibration element array, 74, 76, 88, 90, 92 reception vibration element array, 78 ground electrode, 81 transmission vibration element group, 82 1.75D array transducer.

Claims (3)

連続波ドプラモードを有する超音波診断装置において、
超音波ビームが電子走査される方向である電子走査方向および電子走査方向に直交するエレベーション方向に整列した複数の振動素子からなるアレイ振動子と、前記複数の振動素子の動作を制御する送受信制御部と、
を備え、
前記連続波ドプラモードにおいて、前記アレイ振動子上に、前記電子走査方向に整列した少なくとも1つの送信振動素子群と、前記電子走査方向に整列した少なくとも1つの受信振動素子群とが前記エレベーション方向において互いに異なる位置に設定され
さらに、
前記各送信振動素子群は、前記電子走査方向に整列した複数の振動素子の全部によって構成される送信振動素子列であり、かつ前記各受信振動素子群は、前記電子走査方向に整列した複数の振動素子の全部によって構成される受信振動素子列であることを特徴とする超音波診断装置。
In an ultrasonic diagnostic apparatus having a continuous wave Doppler mode,
An array transducer composed of a plurality of vibration elements aligned in an electronic scanning direction in which an ultrasonic beam is electronically scanned and an elevation direction orthogonal to the electronic scanning direction, and transmission / reception control for controlling operations of the plurality of vibration elements And
With
In the continuous wave Doppler mode, at least one transmission vibration element group aligned in the electronic scanning direction and at least one reception vibration element group aligned in the electronic scanning direction on the array transducer are in the elevation direction. It is set to different positions in,
further,
Each of the transmission vibration element groups is a transmission vibration element array configured by all of a plurality of vibration elements aligned in the electronic scanning direction, and each of the reception vibration element groups includes a plurality of alignment elements in the electronic scanning direction. ultrasonic diagnostic apparatus according to claim Oh Rukoto in configured receiving vibrating element array by the whole of the vibrating element.
請求項1に記載の超音波診断装置において、
前記アレイ振動子は、前記各送信振動素子列ごとおよび前記各受信振動素子列ごとに分割された複数のグランド電極を備えることを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 1,
The array transducer, ultrasound diagnostic apparatus according to claim Rukoto comprising a plurality of ground electrodes divided the each transmission vibrating element row and per each received vibration element array.
請求項に記載の超音波診断装置において、
前記送信振動素子列と、前記受信振動素子列とが前記エレベーション方向に交互に設定されることを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 1 ,
The transmission and vibrating element row, the receiving vibrating element array and an ultrasonic diagnostic apparatus according to claim Rukoto set alternately to the elevation direction.
JP2002219503A 2002-07-29 2002-07-29 Ultrasonic diagnostic equipment Expired - Fee Related JP4128821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219503A JP4128821B2 (en) 2002-07-29 2002-07-29 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219503A JP4128821B2 (en) 2002-07-29 2002-07-29 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2004057460A JP2004057460A (en) 2004-02-26
JP4128821B2 true JP4128821B2 (en) 2008-07-30

Family

ID=31940387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219503A Expired - Fee Related JP4128821B2 (en) 2002-07-29 2002-07-29 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4128821B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516340B2 (en) * 2004-03-30 2010-08-04 アロカ株式会社 Ultrasonic diagnostic equipment
JP4426478B2 (en) 2005-02-18 2010-03-03 アロカ株式会社 Ultrasonic diagnostic equipment
US8128563B2 (en) * 2007-10-16 2012-03-06 General Electric Company Method and apparatus for reducing size of ultrasound transducer cable
US8508103B2 (en) * 2009-03-23 2013-08-13 Sonavation, Inc. Piezoelectric identification device and applications thereof
US9085012B2 (en) 2009-05-25 2015-07-21 Hitachi Medical Corporation Ultrasonic transducer and ultrasonic diagnostic apparatus provided with same
JP5574936B2 (en) 2010-12-07 2014-08-20 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic probe and ultrasonic diagnostic apparatus
JP5751851B2 (en) * 2011-02-01 2015-07-22 株式会社東芝 Ultrasonic diagnostic equipment
JP6102284B2 (en) * 2013-01-29 2017-03-29 セイコーエプソン株式会社 Ultrasonic measuring device, ultrasonic head unit, ultrasonic probe, and ultrasonic imaging device
WO2015068080A1 (en) * 2013-11-11 2015-05-14 Koninklijke Philips N.V. Robust ultrasound transducer probes having protected integrated circuit interconnects
JP6597063B2 (en) * 2015-08-31 2019-10-30 セイコーエプソン株式会社 Ultrasonic device, ultrasonic module, and ultrasonic measuring instrument
JP2017046811A (en) * 2015-08-31 2017-03-09 セイコーエプソン株式会社 Ultrasonic device, ultrasonic module, and ultrasonic measuring apparatus
JP7024550B2 (en) 2018-03-28 2022-02-24 セイコーエプソン株式会社 Ultrasonic sensor and ultrasonic device
JP7024549B2 (en) 2018-03-28 2022-02-24 セイコーエプソン株式会社 Ultrasonic sensor and ultrasonic device

Also Published As

Publication number Publication date
JP2004057460A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
EP2237070B1 (en) Dual mode ultrasound system
US6174286B1 (en) Medical diagnostic ultrasound method and system for element switching
US5460180A (en) Connection arrangement and method of operation of a 2D array for phase aberration correction
EP3380863B1 (en) Ultrasound systems with microbeamformers for different transducer arrays
US20100022883A1 (en) Ultrasonic diagnostic apparatus
JP4128821B2 (en) Ultrasonic diagnostic equipment
JP2000217822A (en) Apparatus and method for multiplexing transducer
JP4610719B2 (en) Ultrasound imaging device
JPH11221215A (en) Ultrasonic imaging system and method of actuating transducer array thereof
EP2929839B1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5892745B2 (en) Ultrasonic diagnostic equipment
US5517995A (en) 2D array for phase aberration correction
JP2005168667A (en) Ultrasonic diagnostic device and its driving method
JP7401462B2 (en) Ultrasonic imaging with sparse sampling and related devices, systems and methods
KR100633968B1 (en) Ultrasonic diagnostic apparatus and driving method therefor
JP4314062B2 (en) Ultrasonic diagnostic equipment
JP3180958B2 (en) Ultrasound diagnostic equipment
JPH05192337A (en) Ultrasonic diagnostic device
JP3413229B2 (en) Ultrasound imaging device
JP3244489B2 (en) Ultrasound diagnostic equipment
JPS6340974Y2 (en)
JP2006192031A (en) Ultrasonic image diagnostic device
JP4610781B2 (en) Ultrasonic beam adjustment method and apparatus, and ultrasonic diagnostic apparatus
JP3838922B2 (en) Ultrasonic diagnostic equipment
JP2763140B2 (en) Ultrasound diagnostic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees