JP4128547B2 - Optical branching element and optical transceiver for bidirectional optical communication - Google Patents

Optical branching element and optical transceiver for bidirectional optical communication Download PDF

Info

Publication number
JP4128547B2
JP4128547B2 JP2004163595A JP2004163595A JP4128547B2 JP 4128547 B2 JP4128547 B2 JP 4128547B2 JP 2004163595 A JP2004163595 A JP 2004163595A JP 2004163595 A JP2004163595 A JP 2004163595A JP 4128547 B2 JP4128547 B2 JP 4128547B2
Authority
JP
Japan
Prior art keywords
light
optical
axis
transmission
optical branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004163595A
Other languages
Japanese (ja)
Other versions
JP2005345629A (en
Inventor
啓治 峯
浩志 中川
丈司 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP2004163595A priority Critical patent/JP4128547B2/en
Publication of JP2005345629A publication Critical patent/JP2005345629A/en
Application granted granted Critical
Publication of JP4128547B2 publication Critical patent/JP4128547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

この発明は1本の光ファイバを介して光の送受信を行う双方向光通信に用いる光学分岐素子及びその光学分岐素子を用いて構成される光送受信器に関する。   The present invention relates to an optical branch element used for bidirectional optical communication in which light is transmitted and received through a single optical fiber, and an optical transceiver configured using the optical branch element.

図15はこの種の用途に用いる光学分岐素子の従来構成例を、光ファイバ及び発光素子、受光素子と共に示したものであり、この例では光学分岐素子10は透明なブロック状をなし、そのブロックを構成する基体11は断面形状が五角形をなすものとされている。
基体11の第1の面11aとそれぞれ隣接する第2の面11b及び第3の面11cは、第1の面11aとそれぞれ直角をなすものとされて互いに対向し、五角形の残る第4の面11d及び第5の面11eは内側にへこんだ面とされてV字を形成するものとされる。
第1の面11a及び第2の面11bには送信光集光用のレンズ12,13がそれぞれ一体形成され、さらに受信光集光用のレンズ14,15が第1の面11a及び第3の面11cにそれぞれ一体形成されている。なお、第1の面11aに位置する二つのレンズ12,14は共に一部が切り欠かれ、それら切り欠かれた部分が隣接結合された構造となっている。
FIG. 15 shows an example of a conventional configuration of an optical branching element used for this type of application, together with an optical fiber, a light emitting element, and a light receiving element. In this example, the optical branching element 10 has a transparent block shape, and the block The base 11 constituting the cross-sectional shape is a pentagon.
The second surface 11b and the third surface 11c, which are adjacent to the first surface 11a of the base 11, respectively, are perpendicular to the first surface 11a and face each other, and the remaining fourth pentagonal surface 11d and the 5th surface 11e are made into the surface dented inward, and shall be V-shaped.
Transmitting light condensing lenses 12 and 13 are integrally formed on the first surface 11a and the second surface 11b, respectively, and receiving light condensing lenses 14 and 15 are formed on the first surface 11a and the third surface 11b. Each is formed integrally with the surface 11c. The two lenses 12 and 14 located on the first surface 11a are both partially cut out, and the cut-out portions are adjacently coupled.

光ファイバ21はその端面が面11aに位置するレンズ12,14に近接対向されて配置される。発光素子22は面11bに位置するレンズ13と対向配置され、受光素子23は面11cに位置するレンズ15と対向配置される。受光素子22と発光素子23とは平行対向されて配置されている。
受光素子22及び発光素子23はこの例では共にリードフレーム上に搭載されて透明樹脂により樹脂封止された構造となっており、図15中、24はリードフレームを示し、25は封止樹脂を示す。発光素子22は例えば発光ダイオード(LED)やレーザダイオード(LD)とされ、受光素子23は例えばフォトダイオード(PD)とされる。
The optical fiber 21 is disposed so that its end surface is close to and opposed to the lenses 12 and 14 located on the surface 11a. The light emitting element 22 is disposed opposite to the lens 13 located on the surface 11b, and the light receiving element 23 is disposed opposite to the lens 15 located on the surface 11c. The light receiving element 22 and the light emitting element 23 are arranged to face each other in parallel.
In this example, the light receiving element 22 and the light emitting element 23 are both mounted on a lead frame and sealed with resin by a transparent resin. In FIG. 15, 24 indicates a lead frame, and 25 indicates a sealing resin. Show. The light emitting element 22 is, for example, a light emitting diode (LED) or a laser diode (LD), and the light receiving element 23 is, for example, a photodiode (PD).

図15中、31は送信経路、32は受信経路を示し、発光素子22から出射された送信光はレンズ13によって集光されて基体11内に入射し、面11dで反射されて面11aに向い、レンズ12で集光されて光ファイバ21の端面に結合される。一方、光ファイバ21の端面から出射された受信光はレンズ14で集光されて基体11内に入射し、面11eで反射されて面11cに向い、レンズ15で集光されて受光素子23に結合される。
このように、この例では光学分岐素子10は発光素子22、受光素子23及び光ファイバ21端面の3者と対向配置され、この光学分岐素子10を通して光の送受信が行われるものとなっている。なお、この例のように発光素子22と受光素子23とを光学分岐素子10に対して対向配置する構成は、発光素子22と受光素子23とが離れているため、電気的なアイソレーションを取りやすく、また光送受信器の小型化も図りやすいものとなっている(例えば、特許文献1参照)。
特開2003−337264号公報
In FIG. 15, reference numeral 31 denotes a transmission path, and reference numeral 32 denotes a reception path. Transmission light emitted from the light emitting element 22 is collected by the lens 13, enters the substrate 11, is reflected by the surface 11d, and faces the surface 11a. The light is condensed by the lens 12 and coupled to the end face of the optical fiber 21. On the other hand, the received light emitted from the end face of the optical fiber 21 is condensed by the lens 14 and enters the substrate 11, is reflected by the surface 11 e, faces the surface 11 c, is collected by the lens 15, and is collected by the light receiving element 23. Combined.
As described above, in this example, the optical branching element 10 is disposed to face the three members of the light emitting element 22, the light receiving element 23, and the end face of the optical fiber 21, and light is transmitted and received through the optical branching element 10. Note that the configuration in which the light emitting element 22 and the light receiving element 23 are opposed to the optical branching element 10 as in this example is electrically isolated because the light emitting element 22 and the light receiving element 23 are separated from each other. It is easy to reduce the size of the optical transceiver (see, for example, Patent Document 1).
JP 2003-337264 A

ところで、このように1本の光ファイバを用いて光の送受信を行う双方向光通信においては、送受共用する経路が存在するため、送信光が自局の受信系へ混入(混信)し、受光素子に入射するクロストークが発生する。このストロークは性能上、大きな問題であり、クロストークの低減は重要な課題となっている。
図16は図15に示した光学分岐素子10を用いて構成された一対の通信系の構成及び各種光経路を例示したものであり、ここではポート1の送信系1から送信された送信光がポート2の受信系2に受信される場合を例に、各種光経路を示している。なお、送信系とは発光素子、偏向系(反射面、屈折面など)、レンズ等よりなる構成を言い、受信系とは受光素子、偏向系(反射面、屈折面など)、レンズ等よりなる構成を言う。また、開口面とは光送受信器(光学分岐素子)において光ファイバと対向する面を言う。図15中、点線枠26,27は送信系及び受信系を示す。以下、図16を参照して各経路について説明する。
By the way, in bidirectional optical communication in which light is transmitted and received using a single optical fiber in this way, there is a path that is shared between transmission and reception, so that transmitted light is mixed (interference) in the receiving system of the local station and received light. Crosstalk incident on the element occurs. This stroke is a serious problem in terms of performance, and reducing crosstalk is an important issue.
FIG. 16 illustrates a configuration of a pair of communication systems configured using the optical branching element 10 illustrated in FIG. 15 and various optical paths. Here, transmission light transmitted from the transmission system 1 of the port 1 is transmitted. Various optical paths are shown by way of example in which the signal is received by the receiving system 2 of the port 2. The transmission system refers to a configuration including a light emitting element, a deflection system (reflection surface, refraction surface, etc.), a lens, and the like. A reception system includes a light receiving element, deflection system (reflection surface, refraction surface, etc.), a lens, and the like. Say the composition. Moreover, an opening surface means the surface which opposes an optical fiber in an optical transmitter / receiver (optical branching element). In FIG. 15, dotted line frames 26 and 27 indicate a transmission system and a reception system. Hereinafter, each route will be described with reference to FIG.

実線で示した経路[1]は送信系1より送信された送信光の正規経路である。
二点鎖線で示した経路[2]は送信光が送信系2へ混入し、ロスや遠端クロストーク、送信系2の送信信号へのノイズ混入の原因となる経路である。
数字〈1〉〜〈7〉を付し、破線の矢印を記入した箇所は送信系1より送信された送信光のうち、自局の受信系1に混入し、受信系1の受信信号のS/N低下の原因となる光(クロストーク光)の主な発生箇所であり、〈1〉〜〈7〉はそれぞれ
〈1〉:送信系2各面(発光素子面、リードフレーム、レンズ面など)における反射
〈2〉:受信系2各面(受光素子面、リードフレーム、レンズ面など)における反射
〈3〉:ポート2開口面における反射
〈4〉:光ファイバ遠端(相手(ポート2)側のファイバ端面)の反射
〈5〉:光ファイバ近端(自局(ポート1)側のファイバ端面)の反射
〈6〉:ポート1開口面における反射
〈7〉:隙間からの混入
を表している。なお、ポート2側で発生するクロストーク(〈1〉〜〈4〉及びその他迷光)全体をポート1の遠端クロストークと呼び、ポート1側で発生するクロストーク(〈5〉〜〈7〉及びその他迷光)全体をポート1の近端クロストークと呼んでおり、送信光が自局の受信系1に混入するクロストーク(矢印[3]で示す)はこれら近端クロストークと遠端クロストークの和となる。
A route [1] indicated by a solid line is a normal route of the transmission light transmitted from the transmission system 1.
A path [2] indicated by a two-dot chain line is a path in which transmission light is mixed into the transmission system 2 and causes loss, far-end crosstalk, and noise mixing in the transmission signal of the transmission system 2.
The locations marked with numerals <1> to <7> and filled with broken arrows are mixed in the receiving system 1 of the own station out of the transmitted light transmitted from the transmitting system 1, and the S of the received signal of the receiving system 1 <1> to <7> are each <1>: each surface of the transmission system 2 (light emitting element surface, lead frame, lens surface, etc.) <2>: Reflection on each surface of the receiving system 2 (light receiving element surface, lead frame, lens surface, etc.) <3>: Reflection on the opening surface of the port 2 <4>: Far end of the optical fiber (partner (port 2)) <5>: Reflection at the near end of the optical fiber (fiber end face on the local station (port 1) side) <6>: Reflection at the opening of the port 1 <7>: Representation of contamination from the gap Yes. Note that the entire crosstalk (<1> to <4> and other stray light) generated on the port 2 side is called the far-end crosstalk of the port 1, and the crosstalk generated on the port 1 side (<5> to <7>). And other stray light) is called near-end crosstalk of port 1, and crosstalk (indicated by arrow [3]) in which transmitted light is mixed into the receiving system 1 of the local station is near-end crosstalk and far-end crosstalk. It becomes the sum of talk.

この発明はこの図16に示した各種光経路において、特に〈1〉,〈5〉,〈6〉の低減を目的とするものであり、以下、この点について、さらに詳述する。
図17は図15に示した光学分岐素子10の基本形状(基体11)を示したものであり、光ファイバ及び発光素子、受光素子と対向する各側面11a〜11cには図15に示したように集光用のレンズ12〜15が付加されるのが一般的であるが、以下の説明図においてはこれらレンズの図示を省略する。また、レンズの図示は省略するが、レンズを備えた面として、以下においては面11a〜11cを開口面、発光素子対向面、受光素子対向面と称し、面11d,11eを送信側反射面、受信側反射面と称する。なお、光ファイバの光軸方向をZ軸、Z軸と直交し、発光素子対向面11bと受光素子対向面11cの対向する方向をX軸、それらX軸及びZ軸と直交する方向をY軸と定義する。
The present invention aims to reduce <1>, <5>, and <6> in the various optical paths shown in FIG. 16, and this point will be described in further detail below.
FIG. 17 shows the basic shape (base 11) of the optical branching element 10 shown in FIG. 15. The side faces 11a to 11c facing the optical fiber, the light emitting element, and the light receiving element are as shown in FIG. In general, condensing lenses 12 to 15 are added to the lens, but illustration of these lenses is omitted in the following explanatory diagrams. Although illustration of the lens is omitted, as surfaces provided with the lens, in the following, the surfaces 11a to 11c are referred to as an opening surface, a light emitting element facing surface, and a light receiving element facing surface, and the surfaces 11d and 11e are referred to as transmitting side reflecting surfaces, This is referred to as a receiving side reflection surface. The optical axis direction of the optical fiber is the Z axis, perpendicular to the Z axis, the direction in which the light emitting element facing surface 11b and the light receiving element facing surface 11c are opposed is the X axis, and the direction perpendicular to the X axis and the Z axis is the Y axis. It is defined as

図18は上述した従来例における光ファイバ21、送信系26、受信系27と開口面11a、送信側反射面11d、受信側反射面11eの位置関係を模式的に示したものであり、矢印32,42は送信経路及び受信経路の主方向をそれぞれ示し、矢印52は開口面11a付近における送信光反射経路の主方向を示す。開口面11a付近における送信光反射は光ファイバ21の端面での反射と開口面11aでの反射とが存在するが、図18では光ファイバ21の端面で発生する反射経路の主方向をそれらを代表して示している。なお、点Qは発光素子22の発光中心を示し、点RはX軸と平行な送信経路主方向32と送信側反射面11dとの交点を示す。また、点Pは送信経路主方向32の光ファイバ21端面への入射点を示す。   FIG. 18 schematically shows the positional relationship among the optical fiber 21, the transmission system 26, the reception system 27, the aperture surface 11a, the transmission-side reflection surface 11d, and the reception-side reflection surface 11e in the above-described conventional example. , 42 indicate main directions of the transmission path and the reception path, respectively, and an arrow 52 indicates the main direction of the transmission light reflection path in the vicinity of the opening surface 11a. The transmission light reflection in the vicinity of the opening surface 11a includes reflection on the end surface of the optical fiber 21 and reflection on the opening surface 11a. In FIG. 18, the main directions of the reflection path generated on the end surface of the optical fiber 21 are representative of them. As shown. The point Q indicates the light emission center of the light emitting element 22, and the point R indicates the intersection of the transmission path main direction 32 parallel to the X axis and the transmission side reflection surface 11d. Point P indicates an incident point on the end face of the optical fiber 21 in the transmission path main direction 32.

一方、図19(1)は光ファイバ21端面から出射された受信光40の経路を示したものであり、図19(2)は発光素子から出射された送信光30の経路及びその送信光30の開口面11a付近における反射光(送信光反射光)50の経路を示したものである。図19中、28は発光素子22の発光面位置を示し、29は受光素子23の受光面位置を示す。開口面11a付近における送信光反射は光ファイバ21の端面での反射と開口面11aでの反射とが存在するが、図19では図18と同様、光ファイバ21の端面で発生する反射経路の主方向をそれらを代表して示している。なお、図19では理想的なコリメート光を用いて模式的に示しているが、発光面積が大きい発光ダイオード(LED)やNAの大きい大口径光ファイバ等を用いる場合、十分コリメートされず、図示した主光線の周囲に軸外光線が広く分布している場合が多い。そのため、図ではクロストークが受光面に侵入していない状態となっていても、実際にはいくらかの軸外光線が入ることとなる。   On the other hand, FIG. 19A shows the path of the received light 40 emitted from the end face of the optical fiber 21, and FIG. 19B shows the path of the transmitted light 30 emitted from the light emitting element and the transmitted light 30. The path of the reflected light (transmitted light reflected light) 50 in the vicinity of the opening surface 11a is shown. In FIG. 19, 28 indicates a light emitting surface position of the light emitting element 22, and 29 indicates a light receiving surface position of the light receiving element 23. Transmission light reflection in the vicinity of the opening surface 11a includes reflection at the end surface of the optical fiber 21 and reflection at the opening surface 11a. In FIG. 19, the main reflection path generated at the end surface of the optical fiber 21 is the same as in FIG. Directions are shown on behalf of them. In addition, in FIG. 19, it has shown typically using ideal collimated light, but when using a light emitting diode (LED) with a large light emission area, a large-diameter optical fiber with a large NA, etc., it is not sufficiently collimated and illustrated. In many cases, off-axis rays are widely distributed around the principal ray. Therefore, in the figure, some off-axis rays actually enter even if the crosstalk does not enter the light receiving surface.

従来の光学分岐素子10においては、図18に示したように送信側反射面11d及び受信側反射面11eは共に開口面11aと平行な平面(XY平面)がY軸回りにだけ、回転されて傾斜された面となっており、よって効率の点から従来においては光ファイバ21及び受/発光素子23,22の受/発光中心は概略同一のXZ平面上に配置されており、このような配置により開口面11a付近における送信光反射経路主方向52は受信経路主方向42と近接してしまうため、受信経路に送信光反射光50が混入し、クロストーク(図16における〈5〉,〈6〉)となる可能性が極めて高かった。   In the conventional optical branching element 10, as shown in FIG. 18, the transmission-side reflection surface 11d and the reception-side reflection surface 11e are both rotated by a plane parallel to the opening surface 11a (XY plane) only around the Y axis. In view of efficiency, the optical fiber 21 and the light receiving / emitting centers of the light receiving / emitting elements 23 and 22 are conventionally arranged on substantially the same XZ plane from the viewpoint of efficiency. As a result, the transmission light reflection path main direction 52 in the vicinity of the aperture surface 11a is close to the reception path main direction 42, so that the transmission light reflection light 50 is mixed into the reception path and crosstalk (<5>, <6 in FIG. 16). >) Was very likely.

開口面11a付近の送信光反射光50がクロストークとならないようにするためには、開口面11a付近の送信光反射光50を受信経路から十分に離さなければならない。このため、例えば図20に示したように、送信側反射面11dのY軸回りの傾斜角を変えたり、発光面位置28をZ軸方向にずらすといったことが考えられるが、この場合、開口面11a付近の送信光反射光50が図20(2)に示したように受信側反射面11eを介さずに直接受光素子へ混入してしまうリスクが増大し、よってこのような方法では送信光反射光50によるクロストークを低減することは困難となっていた。   In order to prevent the transmitted light reflected light 50 in the vicinity of the aperture surface 11a from causing crosstalk, the transmitted light reflected light 50 in the vicinity of the aperture surface 11a must be sufficiently separated from the reception path. For this reason, for example, as shown in FIG. 20, it is possible to change the inclination angle around the Y-axis of the transmission-side reflecting surface 11d or to shift the light emitting surface position 28 in the Z-axis direction. As shown in FIG. 20 (2), there is an increased risk that the transmitted light reflected light 50 in the vicinity of 11a is mixed directly into the light receiving element without passing through the receiving-side reflective surface 11e. It has been difficult to reduce crosstalk due to the light 50.

加えて、光学分岐素子10の各側面(11a〜11e)は鉛直面(ここではXZ平面と垂直な面)とされており、この場合、開口面11a付近の送信光反射光50の主光線方向は高次反射に至っても光ファイバ21及び受/発光素子23,22の受/発光中心が位置するXZ平面と同一のXZ平面上に存在するため、迷光が受光素子に混入する可能性が高かった。
さらに、発光素子22から出射される送信光光束の最大強度部(光束の中心部)の方向は素子正面方向が一般的であるため、送信効率より発光素子22の正面方向を送信経路主方向32として配置しており、この配置により発光素子22において反射した受信光40が光ファイバ21に再結合し、相手側のクロストーク(図16における〈1〉)となることが問題となっていた。
In addition, each side surface (11a to 11e) of the optical branching element 10 is a vertical surface (here, a surface perpendicular to the XZ plane). In this case, the principal ray direction of the transmitted light reflected light 50 in the vicinity of the aperture surface 11a. Is present on the same XZ plane as the XZ plane on which the receiving / emitting centers of the optical fiber 21 and the receiving / emitting elements 23 and 22 are located even when high-order reflection is reached, stray light is likely to be mixed into the receiving element. It was.
Further, the direction of the maximum intensity portion (the central portion of the light beam) of the transmission light beam emitted from the light emitting element 22 is generally the element front direction, and therefore the front direction of the light emitting element 22 is determined from the transmission efficiency in the main direction 32 of the transmission path. In this arrangement, the received light 40 reflected by the light emitting element 22 is recombined with the optical fiber 21 and becomes crosstalk (<1> in FIG. 16) on the other side.

なお、図16における〈1〉のクロストーク対策として、特許文献1には送信経路主方向32を発光素子22の正面方向からずらすといった構成が記載されているが、このような方法は効率を犠牲にするものとなっていた。
この発明はこのような状況を鑑みてなされたものであり、効率を損うことなく、開口面付近における送信光反射が受信経路に混入することによるクロストークを大幅に低減し、かつ送信経路へ侵入した受信光の反射が再び光ファイバに結合することを大幅に低減できるようにした双方向光通信用光学分岐素子及びそれを用いた光送受信器を提供するものである。
As a countermeasure against <1> crosstalk in FIG. 16, Patent Document 1 describes a configuration in which the transmission path main direction 32 is shifted from the front direction of the light emitting element 22, but such a method sacrifices efficiency. It was supposed to be.
The present invention has been made in view of such a situation. Crosstalk due to transmission light reflection in the vicinity of the aperture surface being mixed into the reception path is greatly reduced without impairing efficiency, and the transmission path is also improved. It is an object of the present invention to provide an optical branching element for bidirectional optical communication, and an optical transceiver using the same, which can greatly reduce the reflection of invading received light again from being coupled to an optical fiber.

この発明によれば、一本の光ファイバを介して送受信を行う双方向光通信に用いる光学分岐素子は、光ファイバの端面と対向される開口面と、その開口面とほぼ直角をなして隣接し、発光素子と対向される発光素子対向面と、その発光素子対向面と対向する側において開口面とほぼ直角をなして隣接し、受光素子と対向される受光素子対向面と、発光素子対向面から入射される送信光を開口面に向って反射する送信側反射面と、開口面から入射される受信光を受光素子対向面に向って反射する受信側反射面とを具備し、光ファイバの光軸方向をZ軸、そのZ軸と直交し、かつ発光素子対向面と受光素子対向面の対向する方向をX軸、それらX軸及びZ軸と直交する方向をY軸とした時、送信側反射面は開口面と平行な平面がY軸回りに回転されて傾斜され、さらにX軸回りに回転されて傾斜された面とされ、受信側反射面は開口面と平行な平面がY軸回りに送信側反射面と反対方向に回転されて傾斜された面とされる。   According to the present invention, an optical branching element used for bidirectional optical communication that transmits and receives via a single optical fiber is adjacent to an opening surface that faces the end surface of the optical fiber and substantially perpendicular to the opening surface. And a light-emitting element facing surface that faces the light-emitting element, and a light-receiving element facing surface that is adjacent to the light-receiving element and is adjacent to the opening surface on the side facing the light-emitting element facing surface. A transmission side reflection surface that reflects transmission light incident from the surface toward the aperture surface, and a reception side reflection surface that reflects reception light incident from the aperture surface toward the light receiving element facing surface; When the Z axis is the Z axis, the X axis is the direction in which the light emitting element facing surface and the light receiving element facing surface are opposed, and the direction perpendicular to the X axis and the Z axis is the Y axis, The transmission side reflective surface is rotated about the Y axis in a plane parallel to the aperture surface. The receiving-side reflecting surface is a surface that is inclined by rotating a plane parallel to the aperture surface in the opposite direction to the transmitting-side reflecting surface about the Y-axis. It is said.

さらに、この発明によれば、光送受信器は上記光学分岐素子と、光軸方向がX軸方向とされて上記発光素子対向面に対向配置された発光素子と、光軸方向がX軸方向とされて上記受光素子対向面に対向配置された受光素子とよりなるものとされる。   Furthermore, according to this invention, the optical transceiver includes the optical branch element, a light emitting element whose optical axis direction is the X axis direction and disposed opposite to the light emitting element facing surface, and the optical axis direction is the X axis direction. And a light receiving element disposed opposite to the light receiving element facing surface.

この発明による光学分岐素子によれば、開口面付近における送信光反射経路主方向と受信経路主方向とを大きく離すことができ、よって開口面付近における送信光反射が受信経路に混入することによるクロストークを大幅に低減することができる。
また、送信経路に侵入した受信光は発光素子付近へ導かれず、他の方向へ逃がすことができるため、例えば発光素子面で反射した受信光が再び光ファイバに結合することによるクロストーク(遠端クロストーク)も大幅に低減することができる。
なお、このように受信光が発光素子付近に導かれないため、発光素子の正面方向を送信経路主方向として配置することができ、よって効率を損うこともない。
According to the optical branching element of the present invention, the main direction of the transmission light reflection path and the main direction of the reception path in the vicinity of the aperture surface can be greatly separated, so that the crossing due to the transmission light reflection in the vicinity of the aperture surface entering the reception path. Talk can be greatly reduced.
In addition, since the received light that has entered the transmission path is not guided to the vicinity of the light emitting element and can be released in other directions, for example, the crosstalk (far end) due to the received light reflected on the light emitting element surface being coupled to the optical fiber again. Crosstalk) can also be greatly reduced.
Since the received light is not guided to the vicinity of the light emitting element in this way, the front direction of the light emitting element can be arranged as the main direction of the transmission path, and thus efficiency is not impaired.

加えて、クロストーク対策として、例えば遮光板や偏光板等の新たな部品を用いるものでないため、その点で部品点数は増加せず、安価に構成することができる。   In addition, as a countermeasure against crosstalk, new components such as a light shielding plate and a polarizing plate are not used, and therefore, the number of components does not increase and can be configured at low cost.

この発明の実施形態を図面を参照して実施例により説明する。
図1はこの発明による光学分岐素子の第1の実施例を示したものであり、この例では光学分岐素子10−1は光ファイバの端面と対向される開口面11aと、その開口面11aと直角をなして隣接し、発光素子と対向される発光素子対向面11bと、発光素子対向面11bと対向する側において開口面11aと直角をなして隣接し、受光素子と対向される受光素子対向面11cと、発光素子対向面11bから入射される送信光を開口面11aに向って反射する送信側反射面11d−1と、開口面11aから入射される受信光を受光素子対向面11cに向って反射する受信側反射面11e−1とを具備するものとされる。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of an optical branching element according to the present invention. In this example, the optical branching element 10-1 includes an opening surface 11a facing the end face of the optical fiber, and its opening surface 11a. A light emitting element facing surface 11b that is adjacent to form a right angle and is opposed to the light emitting element, and a light receiving element facing that is adjacent to the opening surface 11a at a right angle on the side facing the light emitting element facing surface 11b and is opposed to the light receiving element. The surface 11c, the transmission-side reflection surface 11d-1 that reflects the transmission light incident from the light emitting element facing surface 11b toward the opening surface 11a, and the reception light that enters from the opening surface 11a toward the light receiving element facing surface 11c. And a receiving-side reflecting surface 11e-1 that reflects the light.

光学分岐素子10−1は透明なブロック状をなし、図示を省略しているが、図15に示した従来の光学分岐素子10と同様、送信光集光用のレンズ12,13を開口面11a及び発光素子対向面11bに備え、受信光集光用のレンズ14,15を開口面11a及び受光素子対向面11cに備えたものとされる。
図1中に示したX,Y,Z3軸は図17におけるX,Y,Z3軸と同様に定義され、即ち光ファイバの光軸方向がZ軸、Z軸と直交し、発光素子対向面11bと受光素子対向面11cの対向する方向がX軸、それらX軸及びZ軸と直交する方向がY軸とされる。
Although the optical branching element 10-1 has a transparent block shape and is not shown in the drawing, the transmission light condensing lenses 12 and 13 are arranged on the aperture surface 11a as in the conventional optical branching element 10 shown in FIG. In addition, the lens 14 and 15 for condensing received light are provided on the opening surface 11a and the light receiving element facing surface 11c.
The X, Y, and Z3 axes shown in FIG. 1 are defined in the same manner as the X, Y, and Z3 axes in FIG. 17, that is, the optical axis direction of the optical fiber is orthogonal to the Z and Z axes, and the light emitting element facing surface 11b. The direction in which the light receiving element facing surface 11c faces is the X axis, and the direction orthogonal to the X axis and the Z axis is the Y axis.

この例では送信側反射面11d−1は開口面11aと平行な平面(XY平面)がY軸回りに回転されて傾斜され、さらにX軸回りにも回転されて傾斜された面となっており、一方受信側反射面11e−1は開口面11aと平行な平面(XY平面)がY軸回りに送信側反射面11d−1と反対方向に回転されて傾斜され、さらにX軸回りに送信側反射面11d−1と同じ方向に回転されて傾斜された面となっている。なお、送信側反射面11d−1と受信側反射面11e−1とは一辺が一致されており、その一辺(谷線)を挟んで隣接されて断面V字形状をなすものとされている。   In this example, the transmission-side reflecting surface 11d-1 is a surface that is inclined by rotating a plane parallel to the opening surface 11a (XY plane) around the Y axis and further rotating around the X axis. On the other hand, the receiving-side reflecting surface 11e-1 is inclined such that a plane (XY plane) parallel to the opening surface 11a is rotated around the Y axis in the direction opposite to the transmitting-side reflecting surface 11d-1, and further on the transmitting side around the X axis. The surface is rotated and inclined in the same direction as the reflecting surface 11d-1. Note that the transmission-side reflection surface 11d-1 and the reception-side reflection surface 11e-1 have one side that is adjacent to each other across the one side (valley line) and has a V-shaped cross section.

図2はこの光学分岐素子10−1を光ファイバ及び受/発光素子の3者と対向配置した状態の光ファイバ21、送信系26、受信系27と開口面11a、送信側反射面11d−1、受信用反射面11e−1の位置関係を図18と同様に模式的に示したものであり、図3は光ファイバ21端面から出射された受信光40の経路及び発光素子から出射された送信光30の経路、その送信光30の開口面11a付近における反射光(送信光反射光)50の経路を図19と同様に示したものである。
この例では送信側反射面11d−1及び受信側反射面11e−1は共にY軸回りだけでなく、X軸回りにも回転されて傾斜されているため、光ファイバ21及び受/発光素子23,22の受/発光中心は従来例のように同一XZ平面上に配置されず、Y方向にずれて配置される。即ち、発光素子22の発光中心Qは送信側反射面11d−1と垂直かつX軸と平行であって光ファイバ21端面と交差する平面S上に配置され、発光素子22の正面方向はX方向とされる。
FIG. 2 shows the optical fiber 21, the transmission system 26, the reception system 27, the opening surface 11a, and the transmission-side reflection surface 11d-1 in a state where the optical branching element 10-1 is disposed opposite to the optical fiber and the light receiving / emitting element. FIG. 3 schematically shows the positional relationship of the reception reflecting surface 11e-1 as in FIG. 18, and FIG. 3 shows the path of the received light 40 emitted from the end face of the optical fiber 21 and the transmission emitted from the light emitting element. The path of the light 30 and the path of the reflected light (transmitted light reflected light) 50 in the vicinity of the opening surface 11a of the transmitted light 30 are shown in the same manner as in FIG.
In this example, both the transmission-side reflection surface 11d-1 and the reception-side reflection surface 11e-1 are rotated and inclined not only about the Y axis but also about the X axis. , 22 are not arranged on the same XZ plane as in the conventional example, but are shifted in the Y direction. That is, the light emission center Q of the light emitting element 22 is arranged on a plane S that is perpendicular to the transmission-side reflecting surface 11d-1 and parallel to the X axis and intersects the end face of the optical fiber 21, and the front direction of the light emitting element 22 is the X direction. It is said.

上記のように配置された発光素子22から出射された送信光30の経路は図3(2)に示したようになり、光ファイバ21に結合される。一方、光ファイバ21から出射された受信光40の経路は図3(1)に示したようになり、この受信経路主光線上に受光素子23の受光中心が配置される。
開口面11a付近における送信光反射光50の経路は図3(2)に示したようになり、受光面位置29との間のギャップはY方向のギャップg1Y及びZ方向のギャップg1Z共、従来例に対し、大幅に増加するものとなる。なお、図3(1)に示したように送信系に入る受信光40の経路と発光面位置28との間のY方向のギャップg2Yも従来例に対し、大幅に増加するものとなる。
The path of the transmission light 30 emitted from the light emitting element 22 arranged as described above is as shown in FIG. 3B and is coupled to the optical fiber 21. On the other hand, the path of the received light 40 emitted from the optical fiber 21 is as shown in FIG. 3 (1), and the light receiving center of the light receiving element 23 is disposed on this received path principal ray.
The path of the transmitted light reflected light 50 in the vicinity of the aperture surface 11a is as shown in FIG. 3B, and the gap between the light receiving surface position 29 and the gap g 1Y in the Y direction and the gap g 1Z in the Z direction are as follows. This is a significant increase over the conventional example. As shown in FIG. 3A, the gap g 2Y in the Y direction between the path of the received light 40 entering the transmission system and the light emitting surface position 28 is also greatly increased compared to the conventional example.

このように、この例によれば、送信側反射面11d−1をX軸回りに回転させて傾斜させた面とすることにより、開口面11a付近における送信光反射経路主方向52はY方向成分を含むものとなり、これにより送信光反射経路主方向52と受信経路主方向42とを大きく離すことができる。また、このように送信光反射経路主方向52を受信経路主方向42から大きく離しても、図20(2)に示した従来検討例のように送信光反射経路主方向52は受信側反射面11eを介さずに受光素子に直接入射する方向に向かうものとはならない。   As described above, according to this example, the transmission-side reflection path main direction 52 in the vicinity of the opening surface 11a is the Y-direction component by rotating the transmission-side reflection surface 11d-1 around the X axis to be inclined. Thus, the transmission light reflection path main direction 52 and the reception path main direction 42 can be largely separated. Even if the transmission light reflection path main direction 52 is greatly separated from the reception path main direction 42 as described above, the transmission light reflection path main direction 52 is not reflected on the reception side reflection surface as in the conventional study example shown in FIG. It does not go in the direction of direct incidence to the light receiving element without passing through 11e.

加えて、送信光反射光50の高次反射はX軸回りに傾斜した送信側反射面11d−1及び受信側反射面11e−1の存在により同一平面上に留まらないものとなり、よってこれらの点から開口面11a付近における送信光反射が受信経路に混入することによるクロストーク(図16における〈5〉,〈6〉)を大幅に低減することができる。
さらに、送信系に侵入した受信光40は図3(1)に示したように発光面付近へ導かれず、つまり他の方向へ逃がすことができるため、発光素子正面方向を送信経路主方向32として配置しても発光素子22において反射した受信光40が光ファイバ21に再び結合することによるクロストーク(図16における〈1〉)を大幅に低減することができる。
In addition, the higher-order reflection of the transmission light reflected light 50 does not stay on the same plane due to the presence of the transmission-side reflection surface 11d-1 and the reception-side reflection surface 11e-1 inclined about the X axis. Crosstalk (<5> and <6> in FIG. 16) due to the transmission light reflection in the vicinity of the aperture surface 11a from entering the reception path can be greatly reduced.
Furthermore, since the received light 40 that has entered the transmission system is not guided to the vicinity of the light emitting surface as shown in FIG. 3A, that is, can escape to other directions, the front direction of the light emitting element is set as the main direction 32 of the transmission path. Even if it is arranged, crosstalk (<1> in FIG. 16) due to re-coupling of the received light 40 reflected by the light emitting element 22 to the optical fiber 21 can be greatly reduced.

上述した実施例では光学分岐素子10−1はその送信側反射面11d−1及び受信側反射面11e−1が共にX軸回りに回転されて傾斜された面とされているが、例えば送信側反射面のみをX軸回りに回転させて傾斜させた面としてもよい。
図4はこのような構成を有する光学分岐素子の第2の実施例を示したものであり、この例では光学分岐素子10−2の送信側反射面11d−2は開口面11aと平行な平面(XY平面)がY軸回りに回転されて傾斜され、さらにX軸回りに回転されて傾斜された面となっており、これに対し受信側反射面11e−2は開口面11aと平行な平面(XY平面)がY軸回りにのみ送信側反射面11d−2と反対方向に回転されて傾斜された面となっている。
In the above-described embodiment, the optical branching element 10-1 has a transmission-side reflection surface 11d-1 and a reception-side reflection surface 11e-1 that are both inclined about the X axis. Only the reflective surface may be a surface inclined by rotating around the X axis.
FIG. 4 shows a second embodiment of the optical branching element having such a configuration. In this example, the transmission-side reflecting surface 11d-2 of the optical branching element 10-2 is a plane parallel to the opening surface 11a. (XY plane) is a surface that is rotated and tilted about the Y axis, and is further rotated and tilted about the X axis. On the other hand, the reception-side reflecting surface 11e-2 is a plane parallel to the opening surface 11a. The (XY plane) is a surface inclined only in the direction opposite to the transmission-side reflecting surface 11d-2 around the Y axis.

図5及び6は図2及び3と同様、この光学分岐素子10−2を用いる場合の光ファイバ21、送信系26、受信系27と開口面11a、送信側反射面11d−2、受信側反射面11e−2の位置関係及び受信光40、送信光30、送信光反射光50の各経路をそれぞれ示したものであり、この例においても図6に示したようにギャップg1Y,g2Yは増加し、送信光反射経路主方向52と受信経路主方向42とを大きく離すことができ、また送信系に侵入した受信光40が発光面付近へ導かれないようにすることができ、よって図1に示した光学分岐素子10−1を用いる場合と同様の効果を得ることができる。 5 and 6 are similar to FIGS. 2 and 3, the optical fiber 21, the transmission system 26, the reception system 27 and the aperture surface 11a, the transmission-side reflection surface 11d-2, and the reception-side reflection when the optical branching element 10-2 is used. The positional relationship of the surface 11e-2 and the paths of the received light 40, the transmitted light 30, and the transmitted light reflected light 50 are respectively shown. In this example, the gaps g 1Y and g 2Y are as shown in FIG. The transmission light reflection path main direction 52 and the reception path main direction 42 can be greatly separated, and the reception light 40 that has entered the transmission system can be prevented from being guided to the vicinity of the light emitting surface. The effect similar to the case where the optical branching element 10-1 shown in 1 is used can be obtained.

次に、この発明による光学分岐素子の第3の実施例について説明する。上述した光学分岐素子10−1及び10−2では図3及び6に示したように、いずれも発光素子22と受光素子23の位置関係がY方向において段違いとなることから、実装時に位置決めの工夫が必要となったり、Y方向の実装スペースが問題となる可能性があるものとなっていたが、図7に示した光学分岐素子10−3はこのような問題を解消することができるものとなっている。
この例では送信側反射面11d−3は開口面11aと平行な平面(XY平面)がY軸回りに回転されて傾斜され、さらにX軸回りに回転されて傾斜された面となっており、一方受信側反射面11e−3は開口面11aと平行な平面(XY平面)がY軸回りに送信側反射面11d−3と反対方向に回転されて傾斜され、さらにX軸回りにも送信側反射面11d−3と反対方向に回転されて傾斜された面となっている。つまり、図1に示した光学分岐素子10−1と異なり、送信側反射面11d−3と受信側反射面11e−3とはX軸回りにおいて互い違いの向きとなっている。
Next explained is a third embodiment of the optical branching element according to the invention. In the optical branching elements 10-1 and 10-2 described above, as shown in FIGS. 3 and 6, the positional relationship between the light emitting element 22 and the light receiving element 23 is different in the Y direction. However, the optical branch element 10-3 shown in FIG. 7 can solve such a problem. It has become.
In this example, the transmission-side reflecting surface 11d-3 is a surface that is inclined by rotating a plane parallel to the opening surface 11a (XY plane) around the Y axis, and further rotating around the X axis. On the other hand, the receiving-side reflecting surface 11e-3 is inclined such that a plane parallel to the opening surface 11a (XY plane) is rotated around the Y axis in the opposite direction to the transmitting-side reflecting surface 11d-3, and further on the transmitting side around the X axis. The surface is inclined by being rotated in the opposite direction to the reflecting surface 11d-3. That is, unlike the optical branching element 10-1 shown in FIG. 1, the transmission-side reflection surface 11d-3 and the reception-side reflection surface 11e-3 are alternately oriented around the X axis.

図8及び9はこの光学分岐素子10−3を用いる場合の光ファイバ21、送信系26、受信系27と開口面11a、送信側反射面11d−3、受信側反射面11e−3の位置関係及び受信光40、送信光30、送信光反射光50の各経路を図2及び3と同様に示したものであり、この例では図9に示したように発光素子22と受光素子23のY方向の高さ位置を揃えることができ、よって実装時の位置決めが容易となり、実装上の不便さを解消することができる。さらに、構成全体の、つまり光送受信器の低背化を実現することができる。   8 and 9 show the positional relationship among the optical fiber 21, the transmission system 26, the reception system 27, the aperture surface 11a, the transmission-side reflection surface 11d-3, and the reception-side reflection surface 11e-3 when this optical branching element 10-3 is used. The paths of the received light 40, the transmitted light 30, and the transmitted light reflected light 50 are shown in the same manner as in FIGS. 2 and 3. In this example, the Y of the light emitting element 22 and the light receiving element 23 as shown in FIG. The height position in the direction can be aligned, so that positioning during mounting is facilitated, and inconvenience in mounting can be eliminated. Furthermore, the overall configuration, that is, the reduction in the height of the optical transceiver can be realized.

なお、この例においても図9に示したようにギャップg1Y,g2Yは増加し、送信光反射経路主方向52と受信経路主方向42とを大きく離すことができ、また送信系に侵入した受信光40が発光面付近へ導かれないようにすることができ、よって図1に示した光学分岐素子10−1と同様の効果を得ることができる。
図10はこの発明による光学分岐素子の第4の実施例を示したものであり、この例では送信側反射面11d−4と受信側反射面11e−4とは図7に示した光学分岐素子10−3と同様、X軸回りにおいて互い違いの向きとなっており、さらに送信側反射面11d−4のY方向上半部が削除され、その部分に受信側反射面11e−4が延長形成されたものとなっている。
Also in this example, as shown in FIG. 9, the gaps g 1Y and g 2Y are increased, the transmission light reflection path main direction 52 and the reception path main direction 42 can be greatly separated, and the transmission system has been penetrated. The reception light 40 can be prevented from being guided to the vicinity of the light emitting surface, and thus the same effect as the optical branching element 10-1 shown in FIG. 1 can be obtained.
FIG. 10 shows a fourth embodiment of the optical branching element according to the present invention. In this example, the transmitting-side reflecting surface 11d-4 and the receiving-side reflecting surface 11e-4 are the optical branching elements shown in FIG. Similar to 10-3, the directions are staggered around the X-axis, and the upper half of the Y-direction of the transmitting-side reflecting surface 11d-4 is deleted, and the receiving-side reflecting surface 11e-4 is formed to extend to that portion. It has become.

図11はこの光学分岐素子10−4を用いる場合の受信光40及び送信光30、送信光反射光50の各経路を示したものであり、この例でも光学分岐素子10−3と同様、発光素子22と受光素子23のY方向の高さ位置を揃えることができる。また、送信光反射光50と受光面位置29とのギャップg1Yを大きく確保することができ、さらにこの例では受信光40が送信系へ侵入しないものとすることができる。
ところで、前述の例えば図7に示した光学分岐素子10−3では図中、二点鎖線16で囲んだ部分において、送信側反射面11d−3と受信側反射面11e−3とを接続するZ軸に平行な接続面17と送信側反射面11d−3との間及び受信側反射面11e−3との間にそれぞれ鋭角的な凹部が存在し、このような鋭角凹部の存在は光学分岐素子10−3を樹脂成形で作製する場合に、その金型の作製を困難としていた。また、その部分の金型強度が弱くなるため、樹脂成形品の品質が安定しないおそれがあった。
FIG. 11 shows each path of the received light 40, the transmitted light 30, and the transmitted light reflected light 50 when this optical branching element 10-4 is used. In this example as well, the light emission is similar to the optical branching element 10-3. The height positions of the element 22 and the light receiving element 23 in the Y direction can be aligned. In addition, a large gap g 1Y between the transmitted light reflected light 50 and the light receiving surface position 29 can be secured, and in this example, the received light 40 can be prevented from entering the transmission system.
By the way, in the optical branching element 10-3 shown in FIG. 7, for example, Z that connects the transmission-side reflection surface 11d-3 and the reception-side reflection surface 11e-3 in the portion surrounded by the two-dot chain line 16 in the drawing. There are acute concave portions between the connecting surface 17 parallel to the axis and the transmission side reflection surface 11d-3 and between the reception side reflection surface 11e-3, and the existence of such acute angle concave portions is an optical branching element. When producing 10-3 by resin molding, it was difficult to produce the mold. In addition, since the mold strength at that portion is weakened, the quality of the resin molded product may not be stable.

図12に示した光学分岐素子10−5はこの点を改良したものであり、この例では鋭角凹部の谷底が切り取られた形状とされ、つまり接続面17と送信側反射面11d−5及び受信側反射面11e−5との間にそれぞれX軸と平行な幅狭の面18a,18bが設けられたものとなっている。
このような面18a,18bを設けることにより、金型の作製が容易となり、金型の低コスト化及び品質の安定化を図ることができる。
一方、図13に示した光学分岐素子10−6は送信側反射面11d−6と受信側反射面11e−6とがX軸回りに互いに逆向きに回転されて傾斜されている構成において、上記のような鋭角凹部が存在しないようにY方向において上半部に受信側反射面11e−6が位置し、下半部に送信側反射面11d−6が位置するようにし、つまり両反射面11d−6,11e−6を分割する境界線の向きをX軸方向としたものであり、このような構成を採用することもできる。なお、この例では二点鎖線19で囲んだ部分は鈍角をなすものとなる。
The optical branching element 10-5 shown in FIG. 12 is obtained by improving this point. In this example, the valley of the acute concave portion is cut off, that is, the connection surface 17, the transmission side reflection surface 11d-5, and the reception side. Narrow surfaces 18a and 18b parallel to the X-axis are provided between the side reflection surface 11e-5 and the side reflection surface 11e-5.
By providing such surfaces 18a and 18b, it becomes easy to manufacture the mold, and it is possible to reduce the cost and stabilize the quality of the mold.
On the other hand, the optical branching element 10-6 shown in FIG. 13 has a configuration in which the transmission-side reflection surface 11d-6 and the reception-side reflection surface 11e-6 are inclined by rotating in opposite directions around the X axis. In the Y direction, the receiving-side reflecting surface 11e-6 is positioned in the upper half and the transmitting-side reflecting surface 11d-6 is positioned in the lower half so that there is no such an acute-angle recess as in FIG. The direction of the boundary line dividing −6, 11e-6 is the X-axis direction, and such a configuration can also be adopted. In this example, the portion surrounded by the two-dot chain line 19 forms an obtuse angle.

図14はこの発明による光学分岐素子と発光素子22と受光素子23とよりなる光送受信器が組み込まれている一芯の光コネクタ61の構成の一例を示したものであり、この例では図1に示した光学分岐素子10−1が組み込まれたものとなっている。図14中、62は光ファイバプラグが挿入されるスリーブを示す。   FIG. 14 shows an example of the configuration of a single-core optical connector 61 in which an optical transceiver comprising an optical branching element, a light emitting element 22 and a light receiving element 23 according to the present invention is incorporated. In this example, FIG. The optical branching element 10-1 shown in FIG. In FIG. 14, 62 indicates a sleeve into which the optical fiber plug is inserted.

請求項2の発明による光学分岐素子の一実施例を示す図、Aは平面図、Bは正面図、Cは右側面図、Dは斜視図。The figure which shows one Example of the optical branching element by invention of Claim 2, A is a top view, B is a front view, C is a right view, D is a perspective view. 図1に示した光学分岐素子と光ファイバ、送信系、受信系の位置関係を示す模式図、Aは平面図、Bは側面図。The schematic diagram which shows the positional relationship of the optical branching element shown in FIG. 1, an optical fiber, a transmission system, and a receiving system, A is a top view, B is a side view. (1)は図1に示した光学分岐素子における受信光の経路を示す図、(2)はその光学分岐素子における送信光及び送信光反射光の経路を示す図、Aは背面図、Bは平面図。(1) is a diagram showing a path of received light in the optical branching element shown in FIG. 1, (2) is a diagram showing a path of transmitted light and reflected light in the optical branching element, A is a rear view, and B is Plan view. 請求項1の発明による光学分岐素子の一実施例を示す図、Aは平面図、Bは正面図、Cは右側面図、Dは斜視図。The figure which shows one Example of the optical branching element by invention of Claim 1, A is a top view, B is a front view, C is a right view, D is a perspective view. 図4に示した光学分岐素子と光ファイバ、送信系、受信系の位置関係を示す模式図、Aは平面図、Bは側面図。The schematic diagram which shows the positional relationship of the optical branching element shown in FIG. 4, an optical fiber, a transmission system, and a receiving system, A is a top view, B is a side view. (1)は図4に示した光学分岐素子における受信光の経路を示す図、(2)はその光学分岐素子における送信光及び送信光反射光の経路を示す図、Aは背面図、Bは平面図。(1) is a diagram showing a path of received light in the optical branch element shown in FIG. 4, (2) is a diagram showing paths of transmitted light and transmitted light reflected in the optical branch element, A is a rear view, B is Plan view. 請求項3の発明による光学分岐素子の一実施例を示す図、Aは平面図、Bは正面図、Cは右側面図、Dは斜視図。The figure which shows one Example of the optical branching element by invention of Claim 3, A is a top view, B is a front view, C is a right view, D is a perspective view. 図7に示した光学分岐素子と光ファイバ、送信系、受信系の位置関係を示す模式図、Aは平面図、Bは側面図。The schematic diagram which shows the positional relationship of the optical branching element shown in FIG. 7, an optical fiber, a transmission system, and a receiving system, A is a top view, B is a side view. (1)は図7に示した光学分岐素子における受信光の経路を示す図、(2)はその光学分岐素子における送信光及び送信光反射光の経路を示す図、Aは背面図、Bは平面図。(1) is a diagram showing a path of received light in the optical branching element shown in FIG. 7, (2) is a diagram showing paths of transmitted light and transmitted light reflected in the optical branching element, A is a rear view, and B is Plan view. 請求項3の発明による光学分岐素子の変形実施例を示す図、Aは平面図、Bは左側面図、Cは正面図、Dは右側面図、Eは斜視図。The figure which shows the modification Example of the optical branching element by invention of Claim 3, A is a top view, B is a left view, C is a front view, D is a right view, E is a perspective view. (1)は図10に示した光学分岐素子における受信光の経路を示す図、(2)はその光学分岐素子における送信光及び送信光反射光の経路を示す図、Aは背面図、Bは平面図。(1) is a diagram showing a path of received light in the optical branching element shown in FIG. 10, (2) is a diagram showing paths of transmitted light and transmitted light reflected in the optical branching element, A is a rear view, and B is Plan view. 請求項5の発明による光学分岐素子の一実施例を示す図、Aは平面図、Bは正面図、Cは右側面図、Dは斜視図。The figure which shows one Example of the optical branching element by invention of Claim 5, A is a top view, B is a front view, C is a right view, D is a perspective view. 請求項3の発明による光学分岐素子の変形実施例を示す図、Aは平面図、Bは正面図、Cは右側面図、Dは斜視図。The figure which shows the modification Example of the optical branching element by invention of Claim 3, A is a top view, B is a front view, C is a right view, D is a perspective view. 図1に示した光学分岐素子が光コネクタに組み込まれた状態を示す図。The figure which shows the state in which the optical branching element shown in FIG. 1 was integrated in the optical connector. 光学分岐素子の従来構成例及びその光学分岐素子を通して光の送受信が行われる様子を示す図。The figure which shows a mode that the transmission / reception of light is performed through the example of a conventional structure of an optical branch element, and the optical branch element. 双方向光通信の一対の通信系の構成及び各種光経路を説明するための図。The figure for demonstrating a structure and various optical path | route of a pair of communication system of bidirectional | two-way optical communication. 図15に示した光学分岐素子の基本形状を示す図、Aは平面図、Bは正面図、Cは右側面図、Dは斜視図。The figure which shows the basic shape of the optical branching element shown in FIG. 15, A is a top view, B is a front view, C is a right view, D is a perspective view. 図17に示した光学分岐素子と光ファイバ、送信系、受信系の位置関係を示す模式図、Aは平面図、Bは側面図。The schematic diagram which shows the positional relationship of the optical branching element shown in FIG. 17, an optical fiber, a transmission system, and a receiving system, A is a top view, B is a side view. (1)は図17に示した光学分岐素子における受信光の経路を示す図、(2)はその光学分岐素子における送信光及び送信光反射光の経路を示す図、Aは背面図、Bは平面図。(1) is a diagram showing a path of received light in the optical branching element shown in FIG. 17, (2) is a diagram showing paths of transmission light and reflected light in the optical branching element, A is a rear view, and B is Plan view. (1)は図17に示した光学分岐素子に対し、送信側反射面の角度及び発光素子の位置を変えた場合の受信光の経路を示す平面図、(2)はその場合の送信光及び送信光反射光の経路を示す平面図。(1) is a plan view showing the path of the received light when the angle of the transmission side reflection surface and the position of the light emitting element are changed with respect to the optical branching element shown in FIG. 17, and (2) is the transmission light in that case and The top view which shows the path | route of transmission light reflected light.

Claims (6)

一本の光ファイバを介して送受信を行う双方向光通信に用いる光学分岐素子であって、
上記光ファイバの端面と対向される開口面と、
その開口面とほぼ直角をなして隣接し、発光素子と対向される発光素子対向面と、
その発光素子対向面と対向する側において上記開口面とほぼ直角をなして隣接し、受光素子と対向される受光素子対向面と、
上記発光素子対向面から入射される送信光を上記開口面に向って反射する送信側反射面と、
上記開口面から入射される受信光を上記受光素子対向面に向って反射する受信側反射面とを具備し、
上記光ファイバの光軸方向をZ軸、そのZ軸と直交し、かつ上記発光素子対向面と受光素子対向面の対向する方向をX軸、それらX軸及びZ軸と直交する方向をY軸とした時、上記送信側反射面は上記開口面と平行な平面がY軸回りに回転されて傾斜され、さらにX軸回りに回転されて傾斜された面とされ、
上記受信側反射面は上記開口面と平行な平面がY軸回りに上記送信側反射面と反対方向に回転されて傾斜された面とされていることを特徴とする双方向光通信用光学分岐素子。
An optical branching element used for bidirectional optical communication that transmits and receives via a single optical fiber,
An opening face facing the end face of the optical fiber;
A light emitting element facing surface that is adjacent to and substantially perpendicular to the opening surface and is opposed to the light emitting element;
A light receiving element facing surface which is adjacent to the light emitting element facing surface and is substantially perpendicular to the opening surface and facing the light receiving element;
A transmission-side reflection surface that reflects the transmission light incident from the light-emitting element facing surface toward the opening surface;
A reception-side reflection surface that reflects the reception light incident from the opening surface toward the light-receiving element facing surface;
The optical axis direction of the optical fiber is the Z-axis, the light-emitting element facing surface and the light-receiving element facing surface are opposed to the X-axis, and the direction perpendicular to the X-axis and the Z-axis is the Y-axis. The transmission-side reflecting surface is a plane that is inclined by rotating a plane parallel to the opening surface around the Y axis, and further rotated around the X axis.
An optical branch for bidirectional optical communication, wherein the reception-side reflection surface is a surface inclined in a direction parallel to the opening surface around the Y axis in the direction opposite to the transmission-side reflection surface. element.
請求項1記載の双方向光通信用光学分岐素子において、
上記受信側反射面がさらにX軸回りに上記送信側反射面と同じ方向に回転されて傾斜されていることを特徴とする双方向光通信用光学分岐素子。
In the optical branching element for bidirectional optical communication according to claim 1,
An optical branching element for bidirectional optical communication, wherein the receiving-side reflecting surface is further rotated and tilted around the X axis in the same direction as the transmitting-side reflecting surface.
請求項1記載の双方向光通信用光学分岐素子において、
上記受信側反射面がさらにX軸回りに上記送信側反射面と反対方向に回転されて傾斜されていることを特徴とする双方向光通信用光学分岐素子。
In the optical branching element for bidirectional optical communication according to claim 1,
An optical branching element for bidirectional optical communication, wherein the receiving-side reflecting surface is further rotated and tilted about the X axis in the direction opposite to the transmitting-side reflecting surface.
請求項2記載の双方向光通信用光学分岐素子において、
上記送信側反射面と受信側反射面とは一辺が一致され、その一辺を挟んで隣接されていることを特徴とする双方向光通信用光学分岐素子。
In the optical branching element for bidirectional optical communication according to claim 2,
An optical branching element for bidirectional optical communication, characterized in that one side of the transmitting-side reflecting surface and the receiving-side reflecting surface coincide with each other and are adjacent to each other across the one side.
請求項1乃至3記載のいずれかの双方向光通信用光学分岐素子において、
上記送信側反射面と受信側反射面とはZ軸に平行な接続面を介して接続され、
その接続面と送信側反射面、受信側反射面との間に構成される鋭角凹部はその谷底が切り取られた形状とされていることを特徴とする双方向光通信用光学分岐素子。
The optical branch element for bidirectional optical communication according to any one of claims 1 to 3,
The transmission side reflection surface and the reception side reflection surface are connected via a connection surface parallel to the Z-axis,
An optical branching element for bidirectional optical communication, wherein an acute-angle recess formed between the connection surface, the transmission-side reflection surface, and the reception-side reflection surface has a valley bottom.
請求項1乃至5記載のいずれかの双方向光通信用光学分岐素子と、
光軸方向がX軸方向とされて上記発光素子対向面に対向配置された発光素子と、
光軸方向がX軸方向とされて上記受光素子対向面に対向配置された受光素子とよりなることを特徴とする光送受信器。
An optical branching element for bidirectional optical communication according to any one of claims 1 to 5,
A light emitting element having an optical axis direction as an X axis direction and disposed opposite to the light emitting element facing surface;
An optical transceiver comprising: a light receiving element disposed so as to face the light receiving element facing surface with an optical axis direction as an X axis direction.
JP2004163595A 2004-06-01 2004-06-01 Optical branching element and optical transceiver for bidirectional optical communication Expired - Fee Related JP4128547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163595A JP4128547B2 (en) 2004-06-01 2004-06-01 Optical branching element and optical transceiver for bidirectional optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163595A JP4128547B2 (en) 2004-06-01 2004-06-01 Optical branching element and optical transceiver for bidirectional optical communication

Publications (2)

Publication Number Publication Date
JP2005345629A JP2005345629A (en) 2005-12-15
JP4128547B2 true JP4128547B2 (en) 2008-07-30

Family

ID=35498090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163595A Expired - Fee Related JP4128547B2 (en) 2004-06-01 2004-06-01 Optical branching element and optical transceiver for bidirectional optical communication

Country Status (1)

Country Link
JP (1) JP4128547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977594B2 (en) * 2007-12-20 2012-07-18 矢崎総業株式会社 Single-core bidirectional optical communication module

Also Published As

Publication number Publication date
JP2005345629A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US6694074B2 (en) Transmission and reception configuration for bi-directional optical data transmission
US6328484B1 (en) Fiber optic lens system for coupling fibers to surface mounted devices
US7260328B2 (en) Optoelectronic assembly for multiplexing and/or demultiplexing optical signals
JP3787107B2 (en) Bidirectional optical communication optical component and optical transceiver
US20090016678A1 (en) Optical module
JP4977594B2 (en) Single-core bidirectional optical communication module
EP1296169B1 (en) Bidirectional optical transmission device
EP0938007B1 (en) LD/PD module and LED/PD module
US7565043B2 (en) Optical module
US6854897B2 (en) Ferrule part and optical communications module
TWI272783B (en) Optical part for two-way optical communication
JP4128547B2 (en) Optical branching element and optical transceiver for bidirectional optical communication
JP7197435B2 (en) Optical receptacles and optical modules
JP3925134B2 (en) Optical transceiver
JP4017577B2 (en) Optical parts for bidirectional optical communication
CN1217214C (en) Optical component, light receiving-transmitting device using same, and other optical device
US20230021871A1 (en) Planar bidirectional optical coupler for wavelength division multiplexing
CN113759473B (en) Transmitting-receiving optical assembly, electronic equipment and optical communication system
CN210465769U (en) Optical module with at least two lasers
JP2004226430A (en) Optical device and optical apparatus using same optical device
US20210181439A1 (en) Optical receptacle, optical module, and optical transmitter
JP2021157059A (en) Optical receptacle and optical module
JP2017161578A (en) Optical receptacle and optical module
US20060110094A1 (en) Bidirectional electro-optical device for coupling light-signals into and out of a waveguide
CN115079347B (en) Light emitting and receiving component and optical path coupling method for light emitting and receiving component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees