JP4128364B2 - Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates - Google Patents

Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates Download PDF

Info

Publication number
JP4128364B2
JP4128364B2 JP2002023190A JP2002023190A JP4128364B2 JP 4128364 B2 JP4128364 B2 JP 4128364B2 JP 2002023190 A JP2002023190 A JP 2002023190A JP 2002023190 A JP2002023190 A JP 2002023190A JP 4128364 B2 JP4128364 B2 JP 4128364B2
Authority
JP
Japan
Prior art keywords
condensate
thermosetting resin
silane
resin
mechanical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002023190A
Other languages
Japanese (ja)
Other versions
JP2003221446A (en
Inventor
敦 杉崎
浩二 小泉
信生 幾田
哲史 栄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002023190A priority Critical patent/JP4128364B2/en
Publication of JP2003221446A publication Critical patent/JP2003221446A/en
Application granted granted Critical
Publication of JP4128364B2 publication Critical patent/JP4128364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂の機械特性を向上させる方法に関するものである。
【0002】
【従来の技術】
熱硬化性樹脂においては、硬化剤を加えて、硬化剤が液状樹脂と架橋反応をすることによって、強固な高分子成形品を得るものである。しかしながら、その特性は広範囲の実用に耐えるものではない。例えば、後述するように、フェノール樹脂では強固ではあるものの、単独では実用的に脆い面を有する。そこで、多くの熱硬化性樹脂ではガラス繊維を始めとする強化材料を共存させ、複合材料としてより強靭な機械的特性を得ることを目的にしている。あるいは、無機充填材を共存させ、増量、硬度や外観などを向上させている。
このような複合的材料では必ず異質材料間の界面が問題になる。すなわち、多くの場合、界面における材料的欠損を切欠として破断しやすくなり、ともすれば、材料力学特性は低下する場合もある。したがって、高分子材料を実用的に強固にするためには界面を意識しないナノコンポジットか、あるいは、異物材料間の界面においてより一層の一体性を持たせる必要がある。
【0003】
つぎに、フェノール樹脂を例に挙げて、その具体的例を記す。
フェノール樹脂成形材料は耐熱性、寸法安定性、成形性等に優れ、自動車、電気、電子等の基幹産業分野において長期にわたり使用されてきた。最近は、コストダウン及び軽量化等を目的に金属部品をガラス繊維等のフィラーで強化した高強度のフェノール樹脂成形品に置換する試みが、積極的に行われている。しかし、更に金属代替を進めるためには、従来のフェノール樹脂成形材料にはない高強度を有することがポイントとなってくる。高強度を達成するために、シラン剤処理したガラス繊維を用いる方法やシラン剤のインテグラルブレンド法及びこれらを組み合わせた方法が知られている。これまで、シラン剤はフィラーと樹脂の界面に作用すると考えられてきており、シラン剤のフェノール樹脂そのものの機械的特性に関する影響は知られていない。
マトリックス側のフェノール樹脂に原液状態のシラン剤を混合させるインテグラルブレンド法は、樹脂側にシラン剤を混入させるだけなので、ガラスとシラン剤の反応を期待するためにはより多くのシラン剤を必要とする。
【0004】
インテグラブレンド法は多量のシラン剤を必要とするにも関わらず、界面に有効に作用するシラン剤の割合は少ない。例えば、「複合材料と界面」(材料技術研究協会編集委員会編、1988年刊行)141-144頁、及び Silanes and Other Coupling Agents (1992年刊行)では、そのために「硬化は若干劣る」、「効果は若干劣るものの、簡便な方法である」と表記されている。しかし、工業的にはインテグラルブレンド法が複合材料特性を向上させることがある。現在の所、このような事例によって異なる理由や界面効果が発揮できる理由については不明なところが多い。
【0005】
今までのインテグラルブレンド法ではシラン剤原液のままで用いられることが多かった。シラン剤が原液のままで用いられた場合、従来から云われてきたように、シラン剤はシラン剤間同士が縮合することなく、樹脂中でシラン剤単量体として分散すると云える。したがって分散した一部のシラン剤が基質と反応するので、ほとんどのシラン剤は界面強化に寄与しない。むしろ、マトリックス樹脂の硬化反応を妨害するので、樹脂特性は劣ると云われることになる。
【0006】
【発明が解決しようとする課題】
本発明の目的は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂の機械特性を向上させる方法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、シランカップリング剤に水あるいは酸を含む水溶液を添加して生成した縮合体を、液状樹脂と混合して硬化させることにより、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂を含む熱硬化性樹脂の機械特性を向上させる方法である。
【0008】
【発明の実施の形態】
本発明はシラン剤の縮合体を積極的に活用することにより、フェノール樹脂を始めとする熱硬化性樹脂の機械強度を向上させる方法を提供する。すなわち、シラン剤が縮合体を形成する場合について考えてみると、次のように材料特性が向上しても不思議ではない。縮合体は縮合されたシラン剤の数だけ有機官能基をその分子に有するので、樹脂と反応し得る点として縮合体はその有機官能基数だけ存在することになる。すなわち、シラン剤縮合体分子は樹脂に対して二点以上で反応する架橋反応試薬として振る舞うと予測される。
【0009】
このような架橋効果は、熱硬化性樹脂の硬化剤と同じ作用である。したがって、適度な縮合度を有するシラン剤縮合体を樹脂に添加すれば、硬化剤と同様に樹脂の硬化特性を改善してより高い材料特性を示すことが期待される。
以上のような考えに基づき検討を行った結果、適度な縮合度を有するシラン剤縮合体を樹脂と複合化することにより、その樹脂の機械特性が向上することを見出し、本発明に至った。
フェノール樹脂として、フェノール類とホルムアルデヒド供給物質とを酸触媒の存在下で反応させて得られたノボラック型フェノール樹脂を用いたが、フェノール樹脂は特にこれに限定するものではない。フェノール樹脂と反応し得る有機官能基を有するシラン剤としてアミノ系シラン剤を用いたが、シラン剤は特にこれに限定するものではない。
【0010】
フェノール樹脂以外に、本発明によってその機械的特性を向上させる可能性を示す樹脂としてエポキシ樹脂、不飽和ポリエステル樹脂やビニールエステル樹脂が挙げられる。これらの樹脂の硬化過程においてシラン剤の有機官能基が硬化反応に寄与するか、または、硬化後に樹脂分子構造内に生成する官能基と強く相互作用するシラン剤が適したシラン剤縮合体として選ばれる。
したがって、本発明に用いられるシラン剤としては、従来公知のものが適宜使用できる。例えば、γ−アミノプロピルトリエトキシシラン、γ-フェニルアミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン等が挙げられる。これらシランカップリング剤のいずれかを1種類または2種類以上組み合わせて用いて良い。
【0011】
縮合体の調整にあたっては、上述したように、樹脂に適したシラン剤を少量の水と共存させ撹拌して異なる縮合状態にある縮合体を形成させることが望ましい。縮合体として、大きな分子量を有する縮合体を形成する必要はない。むしろ、分子量が10,000以下のオリゴマー状縮合体の方が効果的であり、その分子量分布は幅広い方が有効である。それ以外に生成したオリゴマー状の縮合体にはアルコキシシラン基あるいはシラノール基を有する方が望ましい。このようなオリゴマー状のシラン剤縮合体が有効である理由は、シラン剤縮合体間を結合するアルコキシシラン基やシラノール基によって、樹脂内においてもシラン剤縮合体間で結合を作り、結果的に極めて強固な架橋が樹脂分子鎖間に形成されやすくなるからである。このようなアルコキシシラン基やシラノール基の存在あるいはシラン剤間を結合するシロキサン基の分析は赤外吸収法によって簡単に行える。また、重合度はゲルパーミエーションクロマトグラフィ(GPC)やフィルドデスパージョン質量分析法(FD-MS)を用いれば評価される。これらの分析手法によってシラン剤縮合体の縮合状態を監視しながら調整を図ることができる。特に、赤外分光法はアルコキシ基、シラノール基およびシロキサン基を簡便に評価することができるので、縮合体調整には必要な分析方法である。
【0012】
このようにして調整したシラン剤縮合体は、樹脂硬化前に、樹脂に添加して均等混合したのち、型成形によって樹脂−シラン剤からなる成形品を得ることができる。この手法で添加したシラン剤縮合体は、樹脂内で、シロキサン結合によってシリカ類似の構造を示す。したがって、このシリカ類似粒子は、硬化後で、シリカゲルと同様に樹脂内で生成するので、X線回折を利用すれば、その粒子の大きさなどを知ることができる。
シラン剤縮合体の添加にあっては、樹脂単独だけでなく、樹脂−フィラーや樹脂−ガラス繊維を含む組成に添加しても問題がない。
【0013】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこの実施例によって限定されるものではない。
(1)原材料
シランカップリング剤にはγ-フェニルアミノプロピルトリメトキシシラン(以下、AnPSと略す)である信越シリコーン株式会社製のKBM-573と、アミノプロピルトリエトキシシラン(以下、APSと略す)である日本ユニカー株式会社製のA1100を用いた。
フェノール樹脂には、ノボラック型フェノール樹脂100重量部に対し、ヘキサメチレンテトラミンを15重量部予め予備混合した粉末状の樹脂を用いた。
【0014】
(2)APS及びAnPS縮合体の生成
APS及びAnPSには3つの無機官能基であるトリアルコキシシランが存在する。シラン剤の加水分解を行なうためにシラン剤分子1 molに対して3 molの水を加えて調整した。AnPSについては、0.1 M酢酸水溶液を水と同じ重量加えて調整した。調整したシラン剤と水の混合液は30℃の水浴中にて撹拌を行った。
【0015】
(3)シラン剤縮合体のGPC測定
所定の時間撹拌をしたAnPSをテトラヒドロフラン(THF)で希釈して測定試料とした。
分析装置としては株式会社島津製作所製のGPC装置を使用した。検出器は紫外吸収型検出器(UV-VIS)を使用した。カラムにはポリスチレンカラムである昭和電工株式会社製のKF-802とKF-803を直列に接続して使用した。このカラムの分離範囲はポリスチレン相対分子量で150から7×106であった。測定に用いた溶離液にはテトラヒドロフラン(THF)を用いた。測定は温度を40℃で流量を1.0 ml/minとして行なった。
【0016】
(4)シラン剤縮合体−フェノール樹脂の試験片の作製
ノボラック型フェノール樹脂とヘキサメチレンテトラミンに予備混練を施した粉末状のフェノール樹脂にAPS縮合体及びAnPS縮合体を混合した。粉末状のフェノール樹脂に対して縮合体を2.0w/w%の割合で添加した。この時、シラン剤によって若干凝集した粉体を粉砕して混ぜるためにジュースミキサー(株式会社テスコム製、TM74)を使用した。この凝集した粉体は成形性を悪くするためにその後、更に目開き150μmのふるいにかけて除いた。テフロン(登録商標)の型に混合した粉末を入れて、その後熱をかけながら圧縮成形を行い引張り試験片を得た。成形は試料面に176 kg/cm2の圧力をかけながら、180℃で5分間行なった。
【0017】
(5)フェノール樹脂の引張り試験
フェノール樹脂の引張試験は株式会社島津製作所製のオートグラフAGS-1000 Bを用いて行った。これに容量1000 kgfのロードセルを取り付けた。引張り試験片をチャックに取り付けて、測定を行なった。引張り試験は、試験速度を1.0 mm/min、つかみ具間距離を57 mmとして行なった。フェノール樹脂は製造日などによって樹脂特性が僅かながら変化する。そのため製造日の異なる場合はフェノール樹脂だけからなる試験片を作製して、その強度を基準とした。
【0018】
表1に実施例と比較例を示す。縮合度の異なるAPS縮合体−フェノール樹脂の引張り特性の変化を示す。比較例1に示すように、引張り強度改善率はフェノール樹脂に撹拌0時間、つまり原液状態のAPSを混合すると低下した。実施例1に示すように撹拌を24時間行なって生成した縮合体では向上した。しかし、比較例2に示すように撹拌時間を長くして100時間とすると、引張り強度改善率は低下した。一方、引張り弾性率は撹拌24時間のときに最も向上した。しかし、原液及び撹拌を100時間行なったAPSを混合すると、引張り弾性率の改善率は低下した。
以上の結果から、APSの縮合体は縮合状態を最適化して複合化することにより、フェノール樹脂の機械的特性を向上させることを見出した。
【0019】
【表1】

Figure 0004128364
【0020】
次にAnPS縮合体―フェノール樹脂の引張り特性を表2の実施例と比較例に示す。
AnPSにおいても撹拌を24時間行なった場合、引張り強度と弾性率を共に向上させることが分かった。このことから、AnPSの縮合体においても引張り特性を向上できたと云えた。しかし、APSと同様にAnPSにおいても縮合度を高くしすぎると逆に引張り特性を低下させることがわかった。
【0021】
【表2】
Figure 0004128364
【0022】
表1、表2の実施例、比較例に示したようにシラン剤縮合体―フェノール樹脂の力学的特性はシラン剤の縮合状態を最適化して複合化することにより力学的特性が向上する。表3にシラン剤(AnPS)の縮合度をGPCで調べた結果を示す。撹拌時間の増加に伴ってAnPSの数平均分子量、重量平均分子量は増加し、分子量分布の広がりMw/Mnの値は、大きくなる。ポリスチレン相対最大分子量についても、撹拌時間に伴い増加する。特に撹拌120時間のAnPSは溶出限界(溶出限界7×104)を超える程の縮合体を生成していた。撹拌120時間については溶出限界を超えた分子量の縮合体が検出されたが、検出された溶出時間からそのまま分子量を求め、表記した。
【0023】
以上の結果から、撹拌時間に伴ってAnPSは縮合度を増加させていることが分かった。撹拌24時間では分子量分布が広がり、ポリスチレン相対最大分子量が1000を超える程度の縮合体を生成していたことから、樹脂の力学的特性を向上させたのは縮合体を有するシラン剤であると云えた。しかしながら、AnPSの縮合度があまりにも大きくなると樹脂の力学的特性は低下すことが分かった。このことから樹脂の力学的特性を向上させるには適度な縮合度を有するシラン剤縮合体が必要であることが分かった。すなわち、この事実が本発明の、特定の攪拌時間をもつシラン剤とフェノール樹脂とを複合化することでフェノール樹脂の機械的特性を向上させることができる理由であると考えられる。
【0024】
【表3】
Figure 0004128364
【0025】
[実施例:赤外吸光法による縮合状態の評価]
実施例、比較例ではシランカップリング剤からその縮合体を作るために、少量の水を添加して撹拌をした。縮合体の縮合程度はこの撹拌時間によって定めた。しかしながら、実用的にシランカップリング剤縮合体を制御し、かつ、管理するためにはプロセス条件を定めるだけでは材料の信頼性に欠ける。実施例、比較例ではGPCを用いて、AnPSの縮合重合度を調べ、縮合度と材料特性の関係を求めた。しかし、APSのように塩基性の高いシラン剤ではしばしばGPCのカラムに吸着して、正常な分子量分布を知ることが困難な場合が多い。
【0026】
そこで、赤外分光法を、シラン剤の加水分解と脱水縮合に伴ってシラン剤の縮合体状態をモニタリングする方法として用いた。すなわち、加水分解と脱水縮合によってそれぞれもたらされるシラノール基とシロキサン基を赤外吸収特性帯から数量的に把握する方法である。本発明でシラン剤縮合体として求められる分子構造には、シロキサン結合による縮重合がオリゴマー程度まで進み、かつ、その縮合体にアルコキシ基およびシラノール基が残余して反応活性を有することが必要である。このために、得られた縮合体の赤外スペクトルにおいて、シロキサン結合由来の吸収帯とシラノール基由来の吸収帯の比を持って、縮合体の分子構造パラメータにした。その際、シロキサン基およびシラノール基の特性吸収帯はそれぞれ重なる所もあるので、それぞれの寄与が高い1130 cm-1付近の吸収帯(強度大、幅広い(波数範囲950 cm-1〜1180 cm-1))および920 cm-1付近の吸収帯(強度小、幅広い(端数範囲830 cm-1〜980 cm-1)を用いることにした。表4および表5にAPSおよびAnPSの赤外吸収帯から得られたそれらの強度を記す。これらの結果と表1の結果から判断して、この強度比が高くならないように、加水分解を進める必要があることが分かる。
【0027】
【表4】
Figure 0004128364
【0028】
【表5】
Figure 0004128364
【0029】
【発明の効果】
本発明に従えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂の機械特性を向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving the mechanical properties of thermosetting resins such as phenol resins, epoxy resins and unsaturated polyester resins.
[0002]
[Prior art]
In a thermosetting resin, a hardening agent is added and a hardening | curing agent carries out a crosslinking reaction with liquid resin, and obtains a strong polymer molded article. However, its characteristics do not withstand a wide range of practical applications. For example, as will be described later, although it is strong with a phenol resin, it alone has a brittle surface in practice. Therefore, many thermosetting resins aim to obtain stronger mechanical properties as a composite material by coexisting a reinforcing material such as glass fiber. Or the inorganic filler is made to coexist and the amount of increase, hardness, an external appearance, etc. are improved.
In such a composite material, an interface between different materials is always a problem. That is, in many cases, it becomes easy to fracture | rupture by making the material defect | deletion in an interface into a notch, and a material mechanical characteristic may fall. Therefore, in order to make the polymer material practically strong, it is necessary to have nanocomposites that are not conscious of the interface, or to have even greater integrity at the interface between the foreign material.
[0003]
Next, a phenol resin is taken as an example, and a specific example thereof is described.
Phenolic resin molding materials are excellent in heat resistance, dimensional stability, moldability, and the like, and have been used for a long time in key industries such as automobiles, electricity, and electronics. Recently, attempts have been actively made to replace metal parts with high-strength phenolic resin molded products reinforced with fillers such as glass fibers for the purpose of cost reduction and weight reduction. However, in order to further promote metal substitution, it is important to have high strength not found in conventional phenol resin molding materials. In order to achieve high strength, a method using glass fibers treated with a silane agent, an integral blend method of silane agents, and a method combining these are known. Until now, it has been considered that the silane agent acts on the interface between the filler and the resin, and the influence of the silane agent on the mechanical properties of the phenol resin itself is not known.
The integral blend method, in which the silane agent in the stock solution state is mixed with the phenol resin on the matrix side, only mixes the silane agent on the resin side, so more silane agents are required to expect the reaction between the glass and the silane agent. And
[0004]
Although the Integra Blend method requires a large amount of silane agent, the proportion of the silane agent that effectively acts on the interface is small. For example, “Composite materials and interfaces” (edited by the Society for Materials Technology Research, 1988), pages 141-144, and Silanes and Other Coupling Agents (published in 1992). Although the effect is slightly inferior, it is a simple method ". However, industrially, the integral blend method may improve the composite material properties. At present, there are a lot of unclear reasons why these cases are different and why the interface effect can be exhibited.
[0005]
In the conventional integral blend method, the silane agent stock solution is often used as it is. When the silane agent is used as it is, it can be said that the silane agent is dispersed as a silane agent monomer in the resin without condensation between the silane agents, as has been said. Therefore, since some dispersed silane agents react with the substrate, most silane agents do not contribute to interface strengthening. Rather, the resin characteristic is inferior because it interferes with the curing reaction of the matrix resin.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for improving the mechanical properties of thermosetting resins such as phenol resins, epoxy resins and unsaturated polyester resins.
[0007]
[Means for Solving the Problems]
The present invention is a thermoset containing a phenol resin, an epoxy resin, and an unsaturated polyester resin by mixing and curing a condensate formed by adding an aqueous solution containing water or an acid to a silane coupling agent. This is a method for improving the mechanical properties of the conductive resin.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method for improving the mechanical strength of thermosetting resins such as phenol resins by actively utilizing condensates of silane agents. In other words, considering the case where the silane agent forms a condensate, it is not surprising that the material characteristics are improved as follows. Since the condensate has organic functional groups in the molecule as many as the number of condensed silane agents, the condensate exists as many as the number of organic functional groups as a point capable of reacting with the resin. That is, the silane agent condensate molecule is expected to behave as a cross-linking reagent that reacts with the resin at two or more points.
[0009]
Such a cross-linking effect is the same action as the curing agent of the thermosetting resin. Therefore, if a silane agent condensate having an appropriate degree of condensation is added to the resin, it is expected that the curing characteristics of the resin will be improved and higher material characteristics will be exhibited as in the case of the curing agent.
As a result of studies based on the above idea, it has been found that the mechanical properties of the resin are improved by complexing the silane agent condensate having an appropriate degree of condensation with the resin, and the present invention has been achieved.
As the phenol resin, a novolac type phenol resin obtained by reacting a phenol with a formaldehyde supply substance in the presence of an acid catalyst was used, but the phenol resin is not particularly limited to this. An amino silane agent is used as a silane agent having an organic functional group capable of reacting with a phenol resin, but the silane agent is not particularly limited thereto.
[0010]
In addition to phenolic resins, examples of resins that have the potential to improve their mechanical properties according to the present invention include epoxy resins, unsaturated polyester resins, and vinyl ester resins. In the curing process of these resins, the silane agent that contributes to the curing reaction or the silane agent that strongly interacts with the functional group generated in the resin molecular structure after curing is selected as a suitable silane agent condensate. It is.
Therefore, conventionally known silane agents can be appropriately used as the silane agent used in the present invention. For example, γ-aminopropyltriethoxysilane, γ-phenylaminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane and the like. Any of these silane coupling agents may be used alone or in combination of two or more.
[0011]
In adjusting the condensate, as described above, it is desirable to form a condensate in a different condensed state by mixing a silane agent suitable for the resin with a small amount of water and stirring. It is not necessary to form a condensate having a large molecular weight as the condensate. Rather, an oligomeric condensate having a molecular weight of 10,000 or less is more effective, and a wider molecular weight distribution is more effective. The oligomeric condensate produced other than that preferably has an alkoxysilane group or a silanol group. The reason why such an oligomeric silane agent condensate is effective is that bonds between silane agent condensates are formed in the resin by alkoxysilane groups and silanol groups that bond between silane agent condensates. This is because extremely strong crosslinks are easily formed between resin molecular chains. Such an analysis of the presence of an alkoxysilane group or silanol group or a siloxane group bonding between silane agents can be easily performed by an infrared absorption method. The degree of polymerization can be evaluated using gel permeation chromatography (GPC) or filled dispersion mass spectrometry (FD-MS). Adjustments can be made while monitoring the condensation state of the silane agent condensate by these analytical techniques. In particular, infrared spectroscopy is an analysis method necessary for adjusting condensates because it can easily evaluate alkoxy groups, silanol groups, and siloxane groups.
[0012]
The silane agent condensate thus prepared can be added to the resin and mixed evenly before the resin is cured, and then a molded product made of the resin-silane agent can be obtained by molding. The silane agent condensate added by this method exhibits a silica-like structure in the resin due to the siloxane bond. Therefore, since the silica-like particles are produced in the resin after curing, like the silica gel, the size of the particles can be known by using X-ray diffraction.
In the addition of the silane agent condensate, there is no problem even if it is added not only to the resin alone but also to a composition containing resin-filler or resin-glass fiber.
[0013]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
(1) Raw material silane coupling agents include γ-phenylaminopropyltrimethoxysilane (hereinafter abbreviated as AnPS), KBM-573 manufactured by Shin-Etsu Silicone Co., Ltd., and aminopropyltriethoxysilane (hereinafter abbreviated as APS). A1100 manufactured by Nihon Unicar Co., Ltd. was used.
As the phenol resin, a powdery resin in which 15 parts by weight of hexamethylenetetramine was preliminarily mixed with 100 parts by weight of the novolak type phenol resin was used.
[0014]
(2) Formation of APS and AnPS condensates
APS and AnPS have three inorganic functional groups, trialkoxysilanes. In order to hydrolyze the silane agent, 3 mol of water was added to 1 mol of the silane agent molecule. For AnPS, 0.1 M acetic acid aqueous solution was added in the same weight as water to prepare. The prepared mixed liquid of silane agent and water was stirred in a 30 ° C. water bath.
[0015]
(3) GPC measurement of silane agent condensate AnPS stirred for a predetermined time was diluted with tetrahydrofuran (THF) to prepare a measurement sample.
A GPC apparatus manufactured by Shimadzu Corporation was used as the analysis apparatus. The detector used was an ultraviolet absorption detector (UV-VIS). As the column, polystyrene columns KF-802 and KF-803 manufactured by Showa Denko KK were connected in series. The separation range of this column was 150 to 7 × 10 6 in terms of polystyrene relative molecular weight. Tetrahydrofuran (THF) was used as the eluent used for the measurement. The measurement was performed at a temperature of 40 ° C. and a flow rate of 1.0 ml / min.
[0016]
(4) Preparation of test piece of silane agent condensate-phenol resin APS condensate and AnPS condensate were mixed with a powdery phenol resin obtained by pre-kneading novolac type phenol resin and hexamethylenetetramine. The condensate was added at a ratio of 2.0 w / w% to the powdery phenol resin. At this time, a juice mixer (TM74, manufactured by Tescom Co., Ltd.) was used to pulverize and mix the powder slightly agglomerated with the silane agent. The agglomerated powder was then removed through a sieve having an opening of 150 μm in order to deteriorate the moldability. The mixed powder was put into a Teflon (registered trademark) mold, and after that, compression molding was performed while applying heat to obtain a tensile test piece. Molding was performed at 180 ° C. for 5 minutes while applying a pressure of 176 kg / cm 2 to the sample surface.
[0017]
(5) Tensile test of phenolic resin A tensile test of phenolic resin was performed using Autograph AGS-1000 B manufactured by Shimadzu Corporation. A load cell with a capacity of 1000 kgf was attached to this. A tensile test piece was attached to the chuck for measurement. The tensile test was performed at a test speed of 1.0 mm / min and a distance between grips of 57 mm. Phenolic resin slightly changes in resin properties depending on the date of manufacture. Therefore, when the date of manufacture is different, a test piece made of only a phenol resin was prepared and the strength was used as a reference.
[0018]
Table 1 shows examples and comparative examples. The change of the tensile characteristic of APS condensate-phenol resin from which a condensation degree differs is shown. As shown in Comparative Example 1, the tensile strength improvement rate decreased when the phenol resin was mixed with 0 hours of stirring, that is, APS in the stock solution state. As shown in Example 1, the condensation product produced by stirring for 24 hours was improved. However, when the stirring time was increased to 100 hours as shown in Comparative Example 2, the tensile strength improvement rate decreased. On the other hand, the tensile modulus was most improved when stirring for 24 hours. However, when the stock solution and APS that had been stirred for 100 hours were mixed, the improvement rate of the tensile modulus decreased.
From the above results, it was found that the condensate of APS improves the mechanical properties of the phenolic resin by optimizing the condensation state and compositing.
[0019]
[Table 1]
Figure 0004128364
[0020]
Next, the tensile characteristics of the AnPS condensate-phenol resin are shown in the examples and comparative examples in Table 2.
It was also found that when AnPS was stirred for 24 hours, both tensile strength and elastic modulus were improved. From this, it can be said that the tensile properties could be improved even in the AnPS condensate. However, as with APS, it was found that tensile strength was degraded in AnPS if the degree of condensation was too high.
[0021]
[Table 2]
Figure 0004128364
[0022]
As shown in the Examples and Comparative Examples in Tables 1 and 2, the mechanical properties of the silane agent condensate-phenol resin are improved by optimizing the condensation state of the silane agent and combining them. Table 3 shows the results of examining the degree of condensation of the silane agent (AnPS) by GPC. As the stirring time increases, the number average molecular weight and weight average molecular weight of AnPS increase, and the molecular weight distribution spread Mw / Mn increases. The polystyrene relative maximum molecular weight also increases with stirring time. In particular, AnPS with stirring for 120 hours produced a condensate that exceeded the elution limit (elution limit 7 × 10 4 ). Condensates with a molecular weight exceeding the elution limit were detected for 120 hours of stirring, but the molecular weight was directly determined from the detected elution time and indicated.
[0023]
From the above results, it was found that AnPS increased the degree of condensation with stirring time. In 24 hours of stirring, the molecular weight distribution was broadened, and a condensate having a polystyrene relative maximum molecular weight exceeding 1000 was generated. Therefore, it was said that the silane agent having the condensate improved the mechanical properties of the resin. It was. However, it has been found that the mechanical properties of the resin decrease when the degree of condensation of AnPS becomes too large. From this, it was found that a silane agent condensate having an appropriate degree of condensation is necessary to improve the mechanical properties of the resin. That is, this fact is considered to be the reason why the mechanical properties of the phenol resin can be improved by combining the silane agent having a specific stirring time and the phenol resin of the present invention.
[0024]
[Table 3]
Figure 0004128364
[0025]
[Example: Evaluation of condensation state by infrared absorption method]
In Examples and Comparative Examples, a small amount of water was added and stirred to make the condensate from the silane coupling agent. The degree of condensation of the condensate was determined by this stirring time. However, in order to practically control and manage the silane coupling agent condensate, the reliability of the material is insufficient only by defining the process conditions. In Examples and Comparative Examples, GPC was used to examine the degree of condensation polymerization of AnPS, and the relationship between the degree of condensation and material properties was determined. However, a highly basic silane agent such as APS is often adsorbed on a GPC column, and it is often difficult to know the normal molecular weight distribution.
[0026]
Therefore, infrared spectroscopy was used as a method for monitoring the condensate state of the silane agent along with hydrolysis and dehydration condensation of the silane agent. That is, it is a method for quantitatively grasping silanol groups and siloxane groups respectively brought about by hydrolysis and dehydration condensation from the infrared absorption characteristic band. In the molecular structure required as a silane agent condensate in the present invention, it is necessary that polycondensation by a siloxane bond proceeds to the level of an oligomer, and the alkoxy group and silanol group remain in the condensate to have a reaction activity. . For this purpose, in the infrared spectrum of the obtained condensate, the ratio of the absorption band derived from the siloxane bond and the absorption band derived from the silanol group was used as the molecular structure parameter of the condensate. At that time, the characteristic absorption bands of siloxane group and silanol group overlap each other, so the absorption band around 1130 cm -1 (high intensity, wide (wave number range 950 cm -1 to 1180 cm -1) , where each contribution is high. )) And absorption bands near 920 cm −1 (low intensity, wide (fractional range 830 cm −1 to 980 cm −1 )). From the infrared absorption bands of APS and AnPS in Tables 4 and 5 The obtained strengths are described below, and it is understood from these results and the results in Table 1 that it is necessary to proceed with hydrolysis so that this strength ratio does not increase.
[0027]
[Table 4]
Figure 0004128364
[0028]
[Table 5]
Figure 0004128364
[0029]
【The invention's effect】
According to the present invention, the mechanical properties of thermosetting resins such as phenol resins, epoxy resins and unsaturated polyester resins can be improved.

Claims (5)

アミノ基と反応あるいは強い相互作用を示す官能基を有するフェノール樹脂アミノ基を有するシランカップリング剤のアルコキシシラン基を加水分解、脱水縮合を繰り返して得られる分子量が10,000を越えないオリゴマーであるシラン縮合体、及びシラン剤縮合体以外の硬化剤を用いることを特徴とする熱硬化性樹脂の機械特性向上方法。 Phenol resin having functional group that reacts with amino group or has strong interaction, and oligomer whose molecular weight does not exceed 10,000 obtained by repeating hydrolysis and dehydration condensation of alkoxysilane group of silane coupling agent having amino group A method for improving mechanical properties of a thermosetting resin, comprising using a certain silane condensate and a curing agent other than a silane agent condensate . 請求項1記載の熱硬化性樹脂の機械特性向上方法において、シロキサン基で結合している分子量が10,000を越えないオリゴマーであるシラン剤縮合体に反応性を有するシラノール基を残留させ、シラノール基を樹脂内で結合させることを特徴とする熱硬化性樹脂の機械的特性向上方法。 In the mechanical properties improved method of claim 1 thermosetting resin, wherein the molecular weight that is bound with a siloxane group leaving a silanol group having a reactive silane agent condensate is an oligomer does not exceed 10,000, silanols A method for improving the mechanical properties of a thermosetting resin, wherein a group is bonded in a resin. 請求項1または2記載の熱硬化性樹脂の機械特性向上方法において、得られた熱硬化樹脂中にシロキサン網目構造が形成している熱硬化性樹脂の機械特性向上方法。 In the mechanical properties improved method according to claim 1 or 2 thermosetting resin, wherein the mechanical properties improved method of thermosetting resin siloxane network structure in the obtained thermosetting resin is formed. 請求項1または2記載の熱硬化性樹脂の機械特性向上方法に使用するシラン剤縮合体と、フェノール樹脂、及びシラン剤縮合体以外の硬化剤とを含む熱硬化性樹脂。 A thermosetting resin comprising a silane agent condensate used in the method for improving mechanical properties of a thermosetting resin according to claim 1, a phenol resin, and a curing agent other than the silane agent condensate . 請求項4記載の熱硬化性樹脂が硬化する前の熱硬化性樹脂に、シラン剤縮合体以外の薬剤として、硬化開始触媒、可塑剤、添加剤、無機充填材、複合材料用途繊維を組み合わせて、硬化させる熱硬化性樹脂の成形方法。The thermosetting resin before claim 4 thermosetting resin according to curing, as an agent other than the silane agent condensate, curing initiation catalyst, a plasticizer, an additive, an inorganic filler, a combination of composite material applications fibers A method for forming a thermosetting resin to be cured .
JP2002023190A 2002-01-31 2002-01-31 Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates Expired - Fee Related JP4128364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023190A JP4128364B2 (en) 2002-01-31 2002-01-31 Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023190A JP4128364B2 (en) 2002-01-31 2002-01-31 Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates

Publications (2)

Publication Number Publication Date
JP2003221446A JP2003221446A (en) 2003-08-05
JP4128364B2 true JP4128364B2 (en) 2008-07-30

Family

ID=27745973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023190A Expired - Fee Related JP4128364B2 (en) 2002-01-31 2002-01-31 Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates

Country Status (1)

Country Link
JP (1) JP4128364B2 (en)

Also Published As

Publication number Publication date
JP2003221446A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
Li et al. The influence of silane treatment on nylon 6/nano‐SiO2 in situ polymerization
US3518221A (en) Reinforcing fillers in a matrix of two thermosetting resins
CN112877010B (en) Natural rubber and metal hot vulcanization adhesive as well as preparation method and application thereof
CN109503912B (en) Particle-reinforced rubber material capable of being repeatedly processed and preparation method thereof
JP4516779B2 (en) Metal oxide surface-treated particles, method for producing the same, and method for producing a resin composition
JP4128364B2 (en) Method for improving the mechanical properties of thermosetting resins using silane coupling agent condensates
Messori et al. Isoprene rubber filled with silica generated in situ
Ahmadi Phenol Novalac Epoxy-modified unsaturated polyester hybrid networks by Silica Nanoparticles/and Cross linking with Silane Compounds
Fang et al. Synthesis and characterization of phenolic resol resin blended with silica sol and PVA
JPH08245835A (en) Resin composition containing silica particle and method of surface-treating silica particle
CN112795297A (en) Double-component polyurethane finish varnish and preparation method thereof
KR102605531B1 (en) Epoxy adhesive composition and manufacturing method thereof
JP3152421B2 (en) Method for producing lignocellulose-phenolic resin and lignocellulose-phenolic resin molded product
Parvaiz Influence of silane‐coupling agents on the performance of morphological, mechanical, thermal, electrical, and rheological properties of polycarbonate/fly ash composites
KR101222502B1 (en) Silicone-Epoxy-Vinyl Resin Useful for Dispersion and Coupling of Fillers and Method of Producing the Same
CN110483716B (en) In-situ self-reinforced polyimide composite material and preparation method thereof
Wang et al. Synthesis and characterization of epoxy resin modified with γ‐thiopropyl triethoxy silane
KR20010112078A (en) Process for producing friction material and friction material obtained by the process
JP2006233141A (en) Phenolic resin molding material
De et al. Reinforcing effect of silica on the properties of styrene butadiene rubber–reclaim rubber blend system
CA1136793A (en) Methylolated kraft lignin adhesive
JP5552897B2 (en) Interfacial strengthened glass filler and phenolic resin molding material
CN113667315B (en) Polymer modified asphalt and preparation method thereof
JPH0311306B2 (en)
WO2005040276A1 (en) Phenolic resin molding material and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees