JP4127477B2 - Method for producing anhydrous nickel chloride and nickel ultrafine powder - Google Patents

Method for producing anhydrous nickel chloride and nickel ultrafine powder Download PDF

Info

Publication number
JP4127477B2
JP4127477B2 JP2002073562A JP2002073562A JP4127477B2 JP 4127477 B2 JP4127477 B2 JP 4127477B2 JP 2002073562 A JP2002073562 A JP 2002073562A JP 2002073562 A JP2002073562 A JP 2002073562A JP 4127477 B2 JP4127477 B2 JP 4127477B2
Authority
JP
Japan
Prior art keywords
nickel chloride
nickel
less
mass
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002073562A
Other languages
Japanese (ja)
Other versions
JP2002348122A (en
Inventor
英司 片山
健志 諸住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2002073562A priority Critical patent/JP4127477B2/en
Publication of JP2002348122A publication Critical patent/JP2002348122A/en
Application granted granted Critical
Publication of JP4127477B2 publication Critical patent/JP4127477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、無水塩化ニッケルを気化し、気相状態の塩化ニッケルと水素ガスの反応でニッケル超微粉を製造するプロセスに使用される無水塩化ニッケル及びこれを用いてニッケル超微粉を製造する方法に関する。
【0002】
【従来の技術】
積層セラミックコンデンサーは、ニッケル超微粉の内部電極とチタン酸バリウムを主成分とする誘電体が交互に数百層も積層されている。製造時には最高温度1300℃程度の高温度で焼成される。したがって、内部電極と誘電体は物理的、かつ、化学的に独立して安定な材料が好ましい。誘電体はチタン酸バリウムを主成分とするが、実際の組成は酸化カルシウム、酸化マグネシウム、酸化ジルコニウム、酸化マンガン、酸化シリコン、希土類酸化物などが少量又は微量、厳密に管理されて添加されている。したがって、内部電極から異なる物質が誘電体に侵入すると、誘電体としての特性が阻害され、積層セラミックコンデンサーは不良品になる。
【0003】
無水塩化ニッケル中の塩化ニッケルの含有率は98質量%以上が好ましい。含有率が低いとニッケル超微粉の生産性が低下するとともに、残余分が反応装置内に堆積し製造トラブルを誘発したり、より多くの不純物がニッケル超微粉中に含有されることになり、好ましくない。以上のように、ニッケル超微粉の原材料としての無水塩化ニッケルには無水塩化ニッケルの純度、不純物含有率、水分および粒径に適した特性が必要である。
【0004】
積層セラミックコンデンサー用ニッケル粉末製造用の無水塩化ニッケルについては、特開平11−228145号公報には高純度で特に硫黄含有率の低い金属ニッケルを500℃以上、1000℃以下に加熱し、塩素ガスにより塩化することにより塩化ニッケル蒸気を生成させた後、凝縮回収する技術が開示されている。この方法で得られた無水塩化ニッケルは、水分が1%以下、硫黄含有率が100ppm以下などの記述はあるが、塩化ニッケルの含有率や鉄分の含有率、嵩密度、平均粒径、微粉の存在率などの記述がない。凝縮回収と記述されているので、微粉の無水塩化ニッケルと推定される。
【0005】
特開平11−263625号公報には、塩化ニッケルの六水塩の結晶を160℃以上200℃以下の温度に加熱処理する方法において、気圧を減圧して加熱処理することによって、NiOの含有率を効果的に低減できることが記載されている。用途は積層セラミックコンデンサー用Ni粉末製造用と記述されている。この方法で得られた無水塩化ニッケルは、NiOの含有率が0.1%以上1%以下との記述はあるが、塩化ニッケルの含有率や鉄分の含有率、嵩密度、平均粒径や微粉の存在率などの記述はない。また、水分含有率については、比較例2で4%と言う記述があるが、実施例には記述がない。
【0006】
【発明が解決しようとする課題】
積層セラミックコンデンサー用ニッケル超微粉は、積層セラミックコンデンサーの小型化、高容量化、内部電極の薄層化などに対応して、近年ますます品質の向上と低価格を要求されている。
【0007】
本発明は気相状態の塩化ニッケルガスと水素ガスを反応させてニッケル超微粉を製造する気相化学法(CVD法)における、ニッケル超微粉の生産上のトラブルを低減し、ニッケル超微粉の品質を向上することができる無水塩化ニッケル及びニッケル超微粉の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、塩化ニッケル含有率98質量%以上、鉄分0.005質量%以下、含水分0.5質量%以下、重量平均粒径が3mm以下、0.2mm以上であることを特徴とする無水塩化ニッケルである。無水塩化ニッケルは、金属ニッケルを塩酸で溶解し、不純物を除去した塩化ニッケル溶液を脱水及び/又は乾燥した後、造粒機で粒度調整した物が品質的に、かつ、経済的に好ましい。この無水塩化ニッケルは特に積層セラミックコンデンサー用ニッケル超微粉(平均粒径1〜0.1μm)を気相化学法で製造する際に使用される原料として好適である。
【0009】
無水塩化ニッケル中の塩化ニッケルの含有率は98質量%以上とする。含有率がこれより低いとニッケル超微粉の生産性が低下するとともに、残余分が反応装置内に堆積し製造トラブルを誘発したり、より多くの不純物がニッケル超微粉中に含有されることになり、好ましくない。
【0010】
本発明では無水塩化ニッケル中の鉄分の含有率を0.005質量%以下に限定した。これは、無水塩化ニッケルが反応装置で気化する際、含有する鉄分も気化しやすく、気相状態の塩化ニッケルに同伴されるため、最終的にニッケル超微粉中に含有されるからである。鉄分は最高温度1300℃程度の焼成中に誘電体に侵入し、誘電体の結晶に悪影響を及ぼし、積層セラミックコンデンサーの特性を害する。無水塩化ニッケル中の鉄分含有率はゼロが好ましいが、経済的価格で多量に製造する場合には誘電体に影響が少ない0.005質量%以下が好ましい。
【0011】
無水塩化ニッケル中の水分は0.5質量%以下とする。水分は一般に酸化性の挙動をなし、無水塩化ニッケルを加熱すると塩化ニッケルが酸化されて酸化ニッケルに変質し、気化すべきNi分の低下をもたらす。また、酸化ニッケルは塩化ニッケルよりも安定なため、反応装置内で徐々に堆積増加し、塩化ニッケルの気化を阻害したり、反応装置の運転停止などの被害を生じる。もとより、水分含有率はゼロが好ましいが、無水塩化ニッケルは吸湿性が強く、また吸湿すると比較的安定な化合水になるため、その低減が困難である。ニッケル超微粉の製造への影響が少ないのは無水塩化ニッケル中の水分が0.5質量%以下である。
【0012】
無水塩化ニッケルの粒度は、重量平均径で3〜0.2mmより好ましくは3〜0.5mmである。気相化学反応装置内に無水塩化ニッケルを供給する際、供給機を使用して時間当たりの供給量を連続的に制御するので、粒径が大きすぎると、供給機自体として大型の機械を使用する必要があり、設備的に不経済である。また、粒径が大きいと、単位時間に供給される無水塩化ニッケルの粒数が少なくなり、断続的に反応装置内に供給されることになる。これは無水塩化ニッケルの気化が断続的になってニッケル超微粉の生成が変動し、ニッケル超微粉の粒径や特性が変動することになる。無水塩化ニッケルを気化するには外部からの熱供給が必要であり、無水塩化ニッケル粒はその表面から加熱される。粒径の大きな粒状の無水塩化ニッケルは比較的比表面積が小さく、外部からの熱供給による気化時間が比較的長くなる傾向になる。そのため、時間当たりの気化量が低下し、ニッケル超微粉の生産性の低下をもたらす。気化のみを考えれば無水塩化ニッケルの粒径はより小さい方が良いことになるが、無水塩化ニッケル製造時に微粉ほど大気などからの吸湿で水和物が生じやすいこと、ハンドリング時の発塵の抑制、供給機からの切出しの容易さ、切出された無水塩化ニッケルが反応装置に至る経路内での付着や詰まりの防止などの理由から無水塩化ニッケルの粒度は、重量平均径で3〜0.2mmである。
【0013】
4mm以上の部分はゼロが好ましいが、工業的には混入することがあるので1質量%以下であることが望ましい。また、微粉部分に関しては、0.3mm以下の部分が60質量%以下であること及び0.1mm以下の部分が15質量%以下であると好適である。より好ましくは0.3mm以下の部分が10質量%以下であり、0.1mm以下の部分が3質量%以下である。
【0014】
無水塩化ニッケルの嵩密度は1.5〜0.9kg/Lが好ましい。無水塩化ニッケルは容器に入れて運搬、保管あるいは貯蔵される。この際、嵩密度が大きいと容器の大きさを小型化することができ、設備的にも運搬上も有利である。嵩密度が大き過ぎると、反応装置内への供給時、時間当たり少ない体積の塩化ニッケルを切出すことになり、精緻な制御が必要になる。
【0015】
以上のように、本発明の無水塩化ニッケルは、特定範囲の純度、不純物含有率、水分および粒径を有する。このような無水塩化ニッケルを製造する手段としては、鉄分などの不純物が適度に少ない金属ニッケルを工業用の35%塩酸で50℃以上で溶解する。生成した塩化ニッケル溶液は溶液中の鉄分やコバルト分などを化学処理で析出させ、フィルターでろ過し除去する。回収した塩化ニッケル溶液は濃縮器や分離機、さらには乾燥器などにより、脱水及び/又は乾燥し無水塩化ニッケルを回収する。このままでは、粒度が不適当なので、前述した無水塩化ニッケル回収時に解砕、篩分けしたり、一般的な造粒装置と篩分け装置で粒度調整することにより、目的の無水塩化ニッケルを製造することができる。なお、不純物の混入の防止のため、前述した機器は耐酸性や耐摩耗性などの材質を考慮することが望ましい。
【0016】
【発明の実施の形態】
本発明者が種々の無水塩化ニッケルを使用し、気相化学法でニッケル超微粉を製造した結果を表1に示した。積層セラミックコンデンサーに適したニッケル超微粉を製造するためには、塩化ニッケルの純度、鉄分含有率、水分、さらに粒度が適正であることの必要性が判明した。
【0017】
なお、気相化学法によるニッケル超微粉の製造は、気化温度1050℃、反応温度1050℃、無水塩化ニッケルの供給量は1kg/hr、水素ガス流量20L/minで行なった。この際、無水塩化ニッケル供給のトラブル頻度やNi分の回収率のデータを収集した。また、回収したニッケル超微粉の平均粒径や鉄含有量の測定を実施した。
【0018】
【表1】

Figure 0004127477
【0019】
(実施例1〜11)
用いた無水塩化ニッケルは、塩化ニッケル含有率が98質量%以上であり、鉄含有率は0.004質量%以下と低く、水分は0.4質量%以下である。実施例1〜11では質量平均粒径が0.25〜2.9mm、粒径4mm以上が1.1質量%以下、粒径0.3mm以下が1.1〜57.0質量%、粒径0.1mm以下は0.5〜9.3質量%、嵩密度は0.95〜1.34kg/Lの無水塩化ニッケルを用いた。これらはいずれも反応装置への原料の切出しは安定しており、また、反応装置内の堆積物は少なく.製造運転はトラブル頻度も小さく、順調に推移した。気相反応法で製造したニッケル超微粉は、Ni収率が96質量%以上であり、鉄含有率は0.0018質量%以下であった。
(比較例1〜6)
用いた無水塩化ニッケルは、塩化ニッケル含有率が95.0〜97.0質量%で98質量%を下廻っており、鉄含有率は0.006質量%以上と高く、水分も0.7質量%以上と高い。
【0020】
気相反応法で製造したニッケル超微粉は、Ni収率が81〜92質量%と低く、鉄含有率は0.0030質量%以上と高い。また、反応装置内の堆積物により、製造運転が途中で中止になるトラブルが多い。
【0021】
比較例全般に、原料を反応装置に供給するトラブルや、反応装置内に堆積物が生成し製造運転が途中で中止になるなどのトラブルが発生した。また、Niの回収率が比較的低く鉄含有率が高くなるなどの結果になった。なお、ニッケル超微粉の平均粒径が実施例より比較的小さいのは、Ni収率が比較的低いことやトラブルが発生しやすかったことによるものと考えられる。
【0022】
【発明の効果】
本発明の無水塩化ニッケルを使用することにより、気相化学法によるニッケル超微粉の製造のトラブルが低減され、Ni収率が高く、鉄含有率が低いなどの効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to anhydrous nickel chloride used in a process for vaporizing anhydrous nickel chloride and producing nickel ultrafine powder by reaction of nickel chloride in a gas phase with hydrogen gas, and a method for producing nickel ultrafine powder using the same. .
[0002]
[Prior art]
In the multilayer ceramic capacitor, hundreds of layers of dielectric electrodes mainly composed of nickel ultrafine powder and barium titanate are alternately laminated. At the time of manufacture, it is fired at a high temperature of about 1300 ° C. Therefore, the internal electrode and the dielectric are preferably materials that are physically and chemically independent and stable. The dielectric is mainly composed of barium titanate, but the actual composition contains calcium oxide, magnesium oxide, zirconium oxide, manganese oxide, silicon oxide, rare earth oxide, etc., in a small amount or in a minute amount, strictly controlled. . Therefore, when a different substance enters the dielectric from the internal electrode, the characteristics as the dielectric are hindered, and the multilayer ceramic capacitor becomes a defective product.
[0003]
The content of nickel chloride in anhydrous nickel chloride is preferably 98% by mass or more. When the content is low, the productivity of the nickel ultrafine powder is reduced, and the remainder accumulates in the reaction apparatus to induce manufacturing trouble, and more impurities are contained in the nickel ultrafine powder. Absent. As described above, anhydrous nickel chloride as a raw material for nickel ultrafine powder must have characteristics suitable for the purity, impurity content, moisture content, and particle size of anhydrous nickel chloride.
[0004]
Regarding anhydrous nickel chloride for the production of nickel powder for multilayer ceramic capacitors, Japanese Patent Application Laid-Open No. 11-228145 discloses that high-purity and particularly low-sulfur metal nickel is heated to 500 ° C. or more and 1000 ° C. or less, and chlorine gas is used. A technique for condensing and recovering after generating nickel chloride vapor by chlorination is disclosed. The anhydrous nickel chloride obtained by this method has a description that the moisture content is 1% or less and the sulfur content is 100 ppm or less, but the content of nickel chloride, the content of iron, the bulk density, the average particle size, There is no description such as existence rate. Since it is described as condensation recovery, it is presumed to be fine nickel chloride anhydrous.
[0005]
Japanese Patent Laid-Open No. 11-263625 discloses a method in which nickel chloride hexahydrate crystals are heat-treated at a temperature of 160 ° C. or higher and 200 ° C. or lower. It is described that it can be effectively reduced. The use is described for producing Ni powder for multilayer ceramic capacitors. The anhydrous nickel chloride obtained by this method has a description that the content of NiO is 0.1% or more and 1% or less, but the content of nickel chloride, the content of iron, the bulk density, the average particle size and the fine powder There is no description of the existence rate of. The moisture content is described as 4% in Comparative Example 2, but is not described in the examples.
[0006]
[Problems to be solved by the invention]
In recent years, nickel ultrafine powder for multilayer ceramic capacitors has been increasingly required to have higher quality and lower price in response to downsizing, higher capacity, and thinner internal electrodes.
[0007]
The present invention reduces nickel ultrafine powder production problems in the vapor phase chemical method (CVD method) in which nickel chloride gas and hydrogen gas in a gas phase are reacted to produce nickel ultrafine powder. An object of the present invention is to provide a method for producing anhydrous nickel chloride and nickel ultrafine powder, which can improve the temperature.
[0008]
[Means for Solving the Problems]
The present invention is anhydrous, characterized in that the nickel chloride content is 98% by mass or more, the iron content is 0.005% by mass or less, the moisture content is 0.5% by mass or less, the weight average particle size is 3 mm or less, and 0.2 mm or more. Nickel chloride. Anhydrous nickel chloride is preferably qualitatively and economically preferable in that metallic nickel is dissolved in hydrochloric acid, and the nickel chloride solution from which impurities are removed is dehydrated and / or dried, and then the particle size is adjusted by a granulator. This anhydrous nickel chloride is particularly suitable as a raw material used when producing ultrafine nickel powder (average particle size of 1 to 0.1 μm) for multilayer ceramic capacitors by a gas phase chemical method.
[0009]
The content of nickel chloride in anhydrous nickel chloride is 98% by mass or more. If the content is lower than this, the productivity of the ultrafine nickel powder will decrease, and the residue will accumulate in the reactor, causing manufacturing troubles, and more impurities will be contained in the ultrafine nickel powder. It is not preferable.
[0010]
In the present invention, the content of iron in anhydrous nickel chloride is limited to 0.005% by mass or less. This is because when the anhydrous nickel chloride is vaporized in the reaction apparatus, the iron content is easily vaporized and is entrained in the vapor phase nickel chloride, so that it is finally contained in the ultrafine nickel powder. Iron content penetrates into the dielectric during firing at a maximum temperature of about 1300 ° C., adversely affects the dielectric crystals, and adversely affects the characteristics of the multilayer ceramic capacitor. The iron content in anhydrous nickel chloride is preferably zero, but 0.005% by mass or less, which has little influence on the dielectric, is preferable when producing a large amount at an economical price.
[0011]
The moisture in anhydrous nickel chloride is 0.5% by mass or less. Moisture generally behaves in an oxidative manner, and when anhydrous nickel chloride is heated, nickel chloride is oxidized and transformed into nickel oxide, resulting in a decrease in Ni content to be vaporized. In addition, since nickel oxide is more stable than nickel chloride, the deposition gradually increases in the reaction apparatus, thereby obstructing vaporization of nickel chloride and causing damage such as shutdown of the reaction apparatus. Of course, the water content is preferably zero, but anhydrous nickel chloride has a high hygroscopic property, and when it absorbs moisture, it becomes a relatively stable compound water, which makes it difficult to reduce it. The amount of moisture in anhydrous nickel chloride is less than 0.5% by mass that has little influence on the production of nickel ultrafine powder.
[0012]
The particle size of anhydrous nickel chloride is 3 to 0.2 mm, more preferably 3 to 0.5 mm in terms of weight average diameter. When supplying anhydrous nickel chloride into the gas phase chemical reactor, the supply amount per hour is continuously controlled using a feeder, so if the particle size is too large, a large machine is used as the feeder itself. It is necessary to do so and it is uneconomical in terms of equipment. On the other hand, when the particle size is large, the number of anhydrous nickel chloride particles supplied per unit time decreases, and the particles are intermittently supplied into the reactor. This is because the evaporation of anhydrous nickel chloride is intermittent and the production of nickel ultrafine powder fluctuates, and the particle size and characteristics of the nickel ultrafine powder fluctuate. In order to vaporize anhydrous nickel chloride, heat supply from the outside is required, and anhydrous nickel chloride particles are heated from the surface. Granular anhydrous nickel chloride having a large particle size has a relatively small specific surface area and tends to have a relatively long vaporization time due to external heat supply. For this reason, the amount of vaporization per hour is reduced, and the productivity of nickel ultrafine powder is reduced. Considering vaporization alone, the particle size of anhydrous nickel chloride should be smaller. However, when powdered anhydrous nickel chloride is produced, hydrates are more likely to be generated due to moisture absorption from the atmosphere, and dust generation during handling is suppressed. The particle size of anhydrous nickel chloride is 3 to 0. 3 in terms of weight average diameter for reasons such as easy cutting out from the feeder and prevention of adhesion and clogging of the extracted anhydrous nickel chloride in the path to the reactor. 2 mm.
[0013]
The portion of 4 mm or more is preferably zero, but it is preferably 1% by mass or less because it may be mixed industrially. Moreover, regarding a fine powder part, it is suitable that a 0.3 mm or less part is 60 mass% or less, and a 0.1 mm or less part is 15 mass% or less. More preferably, the portion of 0.3 mm or less is 10 mass% or less, and the portion of 0.1 mm or less is 3 mass% or less.
[0014]
The bulk density of anhydrous nickel chloride is preferably 1.5 to 0.9 kg / L. Anhydrous nickel chloride is transported, stored or stored in a container. At this time, if the bulk density is large, the size of the container can be reduced, which is advantageous in terms of equipment and transportation. If the bulk density is too high, a small volume of nickel chloride is cut out per hour when supplying the reactor, and precise control is required.
[0015]
As described above, the anhydrous nickel chloride of the present invention has a specific range of purity, impurity content, moisture, and particle size. As a means for producing such anhydrous nickel chloride, metallic nickel with moderately low impurities such as iron is dissolved in industrial 35% hydrochloric acid at 50 ° C. or higher. The produced nickel chloride solution deposits iron, cobalt, etc. in the solution by chemical treatment, and is filtered and removed. The recovered nickel chloride solution is dehydrated and / or dried by a concentrator, a separator, and a dryer to recover anhydrous nickel chloride. Since the particle size is not suitable as it is, the desired anhydrous nickel chloride can be produced by crushing and sieving at the time of the above-mentioned anhydrous nickel chloride recovery, or by adjusting the particle size with a general granulator and sieving device. Can do. In order to prevent contamination by impurities, it is desirable to consider materials such as acid resistance and wear resistance for the above-described equipment.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Table 1 shows the results of the inventors using various anhydrous nickel chlorides to produce ultrafine nickel powders by a gas phase chemical method. In order to produce a nickel ultrafine powder suitable for a multilayer ceramic capacitor, it has been found that the purity, iron content, moisture, and particle size of nickel chloride are appropriate.
[0017]
The ultrafine nickel powder was produced by the vapor phase chemical method at a vaporization temperature of 1050 ° C., a reaction temperature of 1050 ° C., an anhydrous nickel chloride supply rate of 1 kg / hr, and a hydrogen gas flow rate of 20 L / min. At this time, data on the frequency of troubles in supplying anhydrous nickel chloride and the recovery rate of Ni were collected. Moreover, the average particle diameter and iron content of the recovered nickel ultrafine powder were measured.
[0018]
[Table 1]
Figure 0004127477
[0019]
(Examples 1 to 11)
The used anhydrous nickel chloride has a nickel chloride content of 98% by mass or more, an iron content as low as 0.004% by mass or less, and a water content of 0.4% by mass or less. In Examples 1 to 11, the mass average particle size is 0.25 to 2.9 mm, the particle size of 4 mm or more is 1.1% by mass or less, the particle size of 0.3 mm or less is 1.1 to 57.0% by mass, the particle size Anhydrous nickel chloride having a thickness of 0.1 to 0.5 mm and a bulk density of 0.95 to 1.34 kg / L was used. All of these materials are stable in cutting out the raw material into the reactor, and there are few deposits in the reactor. Manufacturing operation was smooth with less frequent trouble. The nickel ultrafine powder produced by the gas phase reaction method had a Ni yield of 96% by mass or more and an iron content of 0.0018% by mass or less.
(Comparative Examples 1-6)
The anhydrous nickel chloride used had a nickel chloride content of 95.0-97.0% by mass, less than 98% by mass, an iron content as high as 0.006% by mass, and a moisture content of 0.7% by mass. More than that.
[0020]
The nickel ultrafine powder produced by the gas phase reaction method has a low Ni yield of 81 to 92 mass% and a high iron content of 0.0030 mass% or more. In addition, there are many troubles that the production operation is interrupted due to deposits in the reactor.
[0021]
In general comparative examples, troubles such as supplying raw materials to the reaction apparatus and deposits formed in the reaction apparatus and the production operation was stopped in the middle occurred. In addition, the Ni recovery rate was relatively low and the iron content was high. In addition, it is thought that the average particle diameter of nickel ultrafine powder is comparatively smaller than an Example because Ni yield was comparatively low and trouble was easy to generate | occur | produce.
[0022]
【The invention's effect】
By using the anhydrous nickel chloride of the present invention, troubles in the production of ultrafine nickel powder by a gas phase chemical method are reduced, and effects such as high Ni yield and low iron content can be obtained.

Claims (5)

塩化ニッケル含有率98質量%以上、鉄分0.005質量%以下、含水分0.5質量%以下、重量平均粒径が3mm以下、0.2mm以上であることを特徴とする無水塩化ニッケル。Anhydrous nickel chloride having a nickel chloride content of 98% by mass or more, an iron content of 0.005% by mass or less, a moisture content of 0.5% by mass or less, and a weight average particle size of 3 mm or less, 0.2 mm or more. 粒径4mm以上の粒子が1質量%以下で、かつ、0.3mm以下の粒子が60質量%以下であることを特徴とする請求項1記載の無水塩化ニッケル。2. The anhydrous nickel chloride according to claim 1, wherein particles having a particle size of 4 mm or more are 1% by mass or less and particles having a particle size of 0.3 mm or less are 60% by mass or less. 粒径0.1mm以下の粒子が15質量%以下であることを特徴とする請求項2記載の無水塩化ニッケル。3. Anhydrous nickel chloride according to claim 2, wherein particles having a particle size of 0.1 mm or less are 15% by mass or less. 嵩密度が1.5〜0.9kg/Lであることを特徴とする請求項1〜3のいずれかに記載の無水塩化ニッケル。The anhydrous nickel chloride according to any one of claims 1 to 3, wherein a bulk density is 1.5 to 0.9 kg / L. 請求項1〜4のいずれかに記載の無水塩化ニッケルを気化させ、気相状態の塩化ニッケルと水素ガスとを反応させてニッケル超微粉を製造することを特徴とするニッケル超微粉の製造方法。A method for producing nickel ultrafine powder, comprising vaporizing the anhydrous nickel chloride according to any one of claims 1 to 4 and reacting vapor phase nickel chloride with hydrogen gas to produce nickel ultrafine powder.
JP2002073562A 2001-03-22 2002-03-18 Method for producing anhydrous nickel chloride and nickel ultrafine powder Expired - Lifetime JP4127477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073562A JP4127477B2 (en) 2001-03-22 2002-03-18 Method for producing anhydrous nickel chloride and nickel ultrafine powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001083403 2001-03-22
JP2001-83403 2001-03-22
JP2002073562A JP4127477B2 (en) 2001-03-22 2002-03-18 Method for producing anhydrous nickel chloride and nickel ultrafine powder

Publications (2)

Publication Number Publication Date
JP2002348122A JP2002348122A (en) 2002-12-04
JP4127477B2 true JP4127477B2 (en) 2008-07-30

Family

ID=26611838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073562A Expired - Lifetime JP4127477B2 (en) 2001-03-22 2002-03-18 Method for producing anhydrous nickel chloride and nickel ultrafine powder

Country Status (1)

Country Link
JP (1) JP4127477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126442A1 (en) 2016-01-21 2017-07-27 Jx金属株式会社 Anhydrous nickel chloride and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928651A4 (en) * 2005-08-19 2013-04-24 Nanosys Inc Electronic grade metal nanostructures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126442A1 (en) 2016-01-21 2017-07-27 Jx金属株式会社 Anhydrous nickel chloride and method for producing same
KR20170134618A (en) 2016-01-21 2017-12-06 제이엑스금속주식회사 Anhydrous nickel chloride and method for producing same
US10882757B2 (en) 2016-01-21 2021-01-05 Jx Nippon Mining & Metals Corporation Anhydrous nickel chloride and method for producing the same

Also Published As

Publication number Publication date
JP2002348122A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US6036741A (en) Process for producing high-purity ruthenium
AU2008246253B2 (en) Metalothermic reduction of refractory metal oxides
CN1264633C (en) Method for producing metal powder
KR20160142842A (en) Nickel powder
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
AU2001296793A1 (en) Metalothermic reduction of refractory metal oxides
JP4127477B2 (en) Method for producing anhydrous nickel chloride and nickel ultrafine powder
US10316391B2 (en) Method of producing titanium from titanium oxides through magnesium vapour reduction
US20230415232A1 (en) Method for producing nickel nanopowder and nickel nanopowder produced using same
JPH1180816A (en) Nickel powder for conductive paste and its production
WO2003099491A1 (en) Method and device for producing metal powder
US6106790A (en) Abatement of NF3 using small particle fluidized bed
KR102642963B1 (en) Method of manufacturing metal nanopowder using vapor synthesis
JP4075214B2 (en) Method and apparatus for producing nickel powder for multilayer ceramic capacitor electrode
JPH11228145A (en) Production of nickel chloride and production of nickel powder using the same
JP2004161533A (en) Method for producing barium titanate particle powder
JP2009120422A (en) Preparation method of titanium oxide
KR101023225B1 (en) Method of preparing for metal powder
JPH09227965A (en) Refined metal ruthenium powder and its production
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
JP6139863B2 (en) Method for producing activated carbon
JP6334016B2 (en) Method for producing alkaline earth metal hydroxide powder
JP5060227B2 (en) Method for producing nickel powder
JP6114416B2 (en) Alkaline earth metal hydroxide powder and method for producing the same
JP5908766B2 (en) Method for producing alkaline earth metal hydroxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term