JP4124586B2 - Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof - Google Patents

Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof Download PDF

Info

Publication number
JP4124586B2
JP4124586B2 JP2001331937A JP2001331937A JP4124586B2 JP 4124586 B2 JP4124586 B2 JP 4124586B2 JP 2001331937 A JP2001331937 A JP 2001331937A JP 2001331937 A JP2001331937 A JP 2001331937A JP 4124586 B2 JP4124586 B2 JP 4124586B2
Authority
JP
Japan
Prior art keywords
group
oligomer
telechelic
telechelic oligomer
photopolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331937A
Other languages
Japanese (ja)
Other versions
JP2002220413A (en
Inventor
孝志 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San-Ei Kougyou Corp
Original Assignee
San-Ei Kougyou Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001331937A priority Critical patent/JP4124586B2/en
Application filed by San-Ei Kougyou Corp filed Critical San-Ei Kougyou Corp
Priority to CN200810181676XA priority patent/CN101486779B/en
Priority to KR10-2003-7006981A priority patent/KR100501968B1/en
Priority to CNB01819429XA priority patent/CN100558758C/en
Priority to EP01997195A priority patent/EP1364973B1/en
Priority to AU2002224085A priority patent/AU2002224085A1/en
Priority to PCT/JP2001/010244 priority patent/WO2002042340A1/en
Priority to US10/416,615 priority patent/US7125834B2/en
Priority to DE60137463T priority patent/DE60137463D1/en
Priority to EP07001650A priority patent/EP1790669B1/en
Priority to DE60143490T priority patent/DE60143490D1/en
Publication of JP2002220413A publication Critical patent/JP2002220413A/en
Priority to HK04110142.2A priority patent/HK1067135A1/en
Priority to HK09110762.6A priority patent/HK1133025A1/en
Priority to US11/440,900 priority patent/US7229957B2/en
Priority to US11/654,751 priority patent/US7345017B2/en
Application granted granted Critical
Publication of JP4124586B2 publication Critical patent/JP4124586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光重合/解離可逆性テレケリックオリゴマーに関する。さらに詳しくは、片末端または両末端に官能性の基を有するオレフィン・オリゴマーを出発物質とする光重合/解離可逆性テレケリックオリゴマーおよびその重合体ならびにそれらの製造方法に関する。
【0002】
【従来の技術】
本発明者らは、ポリプロピレン、ポリスチレンなどのポリオレフィンの高度制御熱分解により、片末端または両末端に官能性のビニリデン二重結合を有するオレフィン・オリゴマーが得られることをMacromolechles, 28, 7973(1995)で報告した。また、末端ビニリデン二重結合をヒドロキシル化やマレイン化してより反応性の基に修飾できることを高分子学会予稿集,47, (7), 1255(1998)で報告した。一方、アントラセンまたはウラシル、チミンなどのピリミジン塩基は、照射光の波長を選択することにより二量化と解離とが可逆的に生起することが、Macromolechles, 12, 848, 853(1979)に報告されている。
【0003】
【発明が解決しようとする課題】
ポリオレフィンの高度制御熱分解によって得られるオレフィン・オリゴマーは、環境問題となっている漂着ペレットなどの廃オレフィンを原料にでき、しかも末端に官能性の基を有することから、これらを利用した新しい材料の創設が期待され、提案されている。しかしながら、提案された材料のほとんどは未だ実用の段階に至っていない。その有効な利用技術の確立が期待されている。
【0004】
本発明は、片末端または両末端に官能性基を有するオレフィン・オリゴマーを出発物質とする新規な光重合/解離可逆性テレケリックオリゴマーおよびその製造方法を提供することを目的とする。
別の本発明は上記テレケリックオリゴマーを重合させたリサイクル可能な重合体およびその製造方法を提供することを目的とする。
【0005】
本発明者らは、アントラセンの二量化と解離とが照射する活性光線の波長により可逆的に生起することに着目し、本発明を完成した。
【0006】
本発明は、一般式(1)
【化7】

Figure 0004124586
(式中、nは0または1〜100の正数およびpは0または1であり、Rは炭素数1〜3のアルキル基またはフェニル基を表し、R1は300nm以上の長波長の活性光線の露光により二量化し得る光官能性基を表し、pが1のときアントラニル基、pが0のときピリミジル、ウラシルーイルまたはチミジル基であり、R2はR1−、R1−(O)CO−またはR3−(ここにR3は水素、ヒドロキシ基、炭素数1〜8のアルキル基、アルコキシ基またはアルケニル基を表す)を表す)で表される光重合/解離可逆性テレケリックオリゴマーである。
【0007】
別の本発明は、一般式(4)
【化8】
Figure 0004124586
(式中、R、R1およびnは前記定義したとおりの意味を表し、R2はR1−またはR1−(O)CO−である)を繰返し単位とするテレケリックオリゴマー重合体、および前記一般式(1)で表されるテレケリックオリゴマーを、要すれば光増感剤の存在下に300nm以上の長波長の活性光線に露光することを特徴とする、前記一般式(4)で表されるテレケリックオリゴマー重合体の製造方法である。
【0008】
【発明実施の形態】
本発明の前記一般式(1)で表される光重合/解離可逆性テレケリックオリゴマーは、式中のRは炭素数1〜3のアルキル基、たとえばメチル、エチル、プロピルまたはフェニル基である。すなわち( )内はポリオレフィン鎖、たとえばポリプロピレン、ポリ1−ブテン、ポリ1−ペンテンなどの脂肪族ポリオレフィン鎖、またはポリスチレンなどの芳香族ポリオレフィン鎖のモノマー単位を表し、nはその繰返し数を表す。nは1〜100、好ましくは10〜50である。
【0009】
R1は300nm以上の長波長の活性光線の露光により二量化し得る光官能性基、たとえばアントラニル基、ピリミジン塩基たとえばウラシル、チミジルなどである。
R2は上記光官能性基であるか、または−R3基、すなわち光に対して非官能性の基である。すなわちR3は水素、ヒドロキシ基、炭素数1〜8のアルキル基、たとえばメチル、エチル、プロピル、ブチル、t−ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、ノニル基など、アルコキシ基、たとえばメトキシ、エトキシ、プロポキシ、ブトキシなど、またはアルケニル基、たとえばビニル、アリルなどである。
【0010】
上記光重合/解離可逆性テレケリックオリゴマーは、一般式(2)
【化9】
Figure 0004124586
(式中、R、R3およびnは前記定義したとおりの意味を表す)で表される片末端または両末端に官能性ヒドロキシ基を有するオレフィン・オリゴマーと、アントロン酸塩化物、もしくはピリミジン塩酸塩、ウラシル塩酸塩またはチミン塩酸塩とを反応させることにより製造することができる。
【0011】
上記一般式(2)で表される末端ヒドロキシ基含有オレフィン・オリゴマーは、片末端または両末端にビニリデン二重結合を有するオレフィン・オリゴマーをヒドロホウ素化した後、酸化してヒドロキシル化することにより合成することができる。片末端または両末端にビニリデン二重結合を有するオレフィン・オリゴマーは、工業的に生産されているポリオレフィンを高度制御熱分解して製造することが好ましい。このポリオレフィンの高度制御熱分解で得られるオレフィン・オリゴマー、たとえばプロピレン・オリゴマーは、熱分解前のポリプロピレンの立体規則性を極めて良く維持しているので、それらの立体構造に依存した特性をも維持している。
【0012】
本発明のテレケリックオリゴマー重合体は、下記一般式(4)
【化10】
Figure 0004124586
(式中、R、R1およびnは前記定義したとおりの意味を表し、R2はR1−またはR1−(O)CO−である)を繰返し単位とする。この重合体は、前記一般式(1)で表されるテレケリックオリゴマーを300nm以上の長波長の活性光線に露光して光重合させることにより得られ、また300nm未満の短波長の活性光線の露光により前記一般式(1)で表されるテレケリックオリゴマーに解離する。
【0013】
前記一般式(4)で表される重合体は、前記一般式(1)で表されるテレケリックオリゴマーを、適当な溶媒中において、要すれば増感剤の存在下に、300nm未満の波長の光をフィルターでカットした300nm以上の活性光線に露光して光重合させることにより製造することがでる。また、テレケリックオリゴマーの溶液を基体上に塗布して溶媒を除去した後、300nm以上の活性光線に露光してテレケリックオリゴマーを光重合させて製造することもできる。
【0014】
この重合体は、テレケリックオリゴマーの主鎖を構成するオレフィン・オリゴマーの特性を良く継承し、実質的にポリオレフィンと同等の特性を有する。したがって、種々の成形品の製造にベース樹脂として使用できる。また、光重合性を利用した感光性ポリマーとしての利用も期待できる。
【0015】
【実施例】
本発明を実施例によりさらに詳細に説明する。
実施例1
両末端ヒドロキシ基含有プロピレン・オリゴマー(iPPv−OH)の合成
アイソタクチック・ポリプロピレンの高度制御熱分解によって得られた数平均分子量1.43×103、分子量分布の分散度1.11の両末端ビニリデン基含有プロピレン・オリゴマー(n=34)をテトラヒドロフラン(THF)に分散させた中に、BH3・THF錯体のTHF溶液を滴下して両末端ビニリデン基含有プロピレン・オリゴマーをヒドロホウ素化した後、水酸化ナトリウム水溶液および過酸化水素水を添加して両末端のビニリデン基を酸化し、両末端ヒドロキシ基含有プロピレン・オリゴマー(iPPv−OH)を合成した。
【0016】
アントラセン末端テレケリックオリゴマー(iPPv−AT)の合成
iPPv−OH/トリエチルアミンのTHF分散液に、窒素雰囲気下、室温でアントロン酸塩化物のTHF分散液を滴下し、さらに2時間反応を熟成させた。次いで、反応液からTHFを留去し、キシレンを加えて還流下に溶解し、熱濾過してメタノール中に滴下して沈殿させ濾過回収した。沈殿物の収率は約90重量%であった。得られた沈殿物の1H−NMRスペクトルはiPPv−OHのスペクトルに認められるメチレンプロトンに帰属するピークが完全に消失し、代わりにアントロン酸エステル構造の各プロトンに帰属するシグナルが明瞭に出現したことから、この沈殿物はiPPv−ATであることが確認された。
iPPv−ATおよびiPPv−OHの1H−NMRスペクトルを図1に示す。
【0017】
実施例2
iPPv−ATの光重合
10mlのTHFに0.2gのiPPv−ATを溶解した溶液に、高圧水銀灯を用いて300nm未満の光をナフタレン/ヘキサン溶液によるフィルターを介してカットした300nm以上の波長の光を照射し、iPPv−ATを重合させた。
反応液は、時間の経過に伴って白濁したが、追加のTHFの添加により透明になった。
反応混合物のGPC曲線を図2に示す。図2から明らかなように時間の経過に従って、モノマーのピークが低くなり、代わりにダイマー、トリマー、テトラマーの生成を示すピークが出現する。光照射18時間後の面積比から求めた重合反応率は86%であった。
【0018】
実施例3
iPPv−AT重合体の光解離
実施例2において光重合反応時間経過後に得られたiPPv−AT重合体の溶液に、高圧水銀灯を用いて300nm以上の光を光学フィルターを介してカットした300nm未満の波長の光を照射して重合体を解離させた。
この溶液のGPC曲線は、モノマーのピークのみを示した。
【0019】
実施例4
両末端ヒドロキシ基含有プロピレン・オリゴマー(sPPv−OH)の合成
シンジオタクチック・ポリプロピレンの高度制御熱分解によって得られた数平均分子量4.84×103(ポリスチレン換算)、分子量分布の分散度1.43、一分子当たりの末端ビニリデン(TVD)の平均数約1.73の両末端ビニリデン基含有プロピレン・オリゴマーをテトラヒドロフラン(THF)に分散させた中に、BH3・THF錯体のTHF溶液を滴下して両末端ビニリデン基含有プロピレン・オリゴマーをヒドロホウ素化した後、水酸化ナトリウム水溶液および過酸化水素水を添加して両末端のビニリデン基を酸化し、両末端ヒドロキシ基含有プロピレン・オリゴマー(sPPv−OH)を合成した。
【0020】
アントラセン末端テレケリックオリゴマー(sPPv−AT)の合成
sPPv−OH/トリエチルアミンのTHF分散液に、窒素雰囲気下、室温でアントロン酸塩化物のTHF分散液を滴下し、さらに2時間反応を熟成させた。次いで、反応液からTHFを留去し、キシレンを加えて還流下に溶解し、熱濾過してメタノール中に滴下して沈殿させ濾過回収した。沈殿物の収率は約90重量%であった。得られた沈殿物の1H−NMRスペクトルはsPPv−OHのスペクトルに認められるメチレンプロトンに帰属するピークが完全に消失し、代わりにアントロン酸エステル構造の各プロトンに帰属するシグナルが明瞭に出現したことから、この沈殿物はsPPv−ATであることが確認された。
【0021】
実施例5
sPPv−ATの光重合
10mlのTHFに0.2gのsPPv−ATを溶解した溶液に、高圧水銀灯を用いて300nm未満の光をナフタレン/ヘキサン溶液によるフィルターを介してカットした300nm以上の波長の光を照射し、sPPv−ATを重合させた。
反応液は、時間の経過に伴って白濁したが、追加のTHFの添加により透明になった。
反応混合物のGPC曲線を図3に示す。反応時間の増加とともに分子量が徐々に増大し、12時間以上の光照射ではsPPv−ATの分子量分布は変化しなくなり、光逐次重合は止まった。0時間と12時間で得た逐次重合体のピークトップ、数平均分子量を比較すると、ピークトップでは約6倍、数平均分子量では約3倍になっている。このことから、sPPv−ATの両末端のアントラセン基が光により逐次重合していることが明らかとなった。
【0022】
実施例6
sPPv−AT重合体の熱解離
図4は18時間光逐次重合したsPPv−ATを重合管に取り、窒素封管した物を140℃で2時間加熱した時のGPC曲線を示している。図から、光逐次重合体は熱により完全にsPPv−ATに解離していることを示している。
【0023】
【発明の効果】
上記実施例に示したように、本発明のテレケリックオリゴマーは、光重合/解離可逆性である。したがって、このテレケリックオリゴマーの重合体は、使用後に解離させることにより原料のテレケリックオリゴマーを再生することが可能なリサイクル型ポリマー、特定的にはリサイクル型ポリオレフィンである。
【0024】
さらに出発原料の一つ片末端または両末端にヒドロキシ基を含有するオレフィンオリゴマーは、環境問題となっている漂着ペレットなど廃ポリマーの高度制御熱分解によって容易に製造することができる。
本発明は、廃ポリマーの処理およびリサイクル型ポリマーを提供することから、ポリマー分野はもちろんのこと、環境分野における意義はきわめて大きい。
【図面の簡単な説明】
【図1】実施例1で合成されたテレケリックプロピレンオリゴマーおよびその合成に使用した両末端ヒドロキシ基含有プロピレンオリゴマーの1H−NMRスペクトル。
【図2】実施例2で得られたテレケリックプロピレンオリゴマー重合体のGPC曲線
【図3】実施例5で得られた反応混合物のGPC曲線。
【図4】実施例6で得られた反応混合物のGPC曲線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photopolymerization / dissociation reversible telechelic oligomer. More specifically, the present invention relates to a photopolymerization / dissociation reversible telechelic oligomer starting from an olefin oligomer having a functional group at one or both ends, a polymer thereof, and a production method thereof.
[0002]
[Prior art]
Macromolechles, 28, 7973 (1995) that the present inventors can obtain an olefin oligomer having a functional vinylidene double bond at one or both ends by highly controlled pyrolysis of polyolefins such as polypropylene and polystyrene. Reported on. In addition, we reported in Polymer Science Society Proceedings, 47, (7), 1255 (1998) that a terminal vinylidene double bond can be modified to a more reactive group by hydroxylation or maleation. On the other hand, it is reported in Macromolechles, 12, 848, 853 (1979) that pyrimidine bases such as anthracene, uracil, and thymine reversibly cause dimerization and dissociation by selecting the wavelength of irradiation light. Yes.
[0003]
[Problems to be solved by the invention]
Olefin oligomers obtained by highly controlled pyrolysis of polyolefins can be made from waste olefins such as floating pellets, which are environmental problems, and have functional groups at the ends. Founding is expected and proposed. However, most of the proposed materials have not yet reached a practical stage. The establishment of effective utilization technology is expected.
[0004]
An object of the present invention is to provide a novel photopolymerization / dissociation reversible telechelic oligomer starting from an olefin oligomer having a functional group at one or both ends and a method for producing the same.
Another object of the present invention is to provide a recyclable polymer obtained by polymerizing the telechelic oligomer and a method for producing the same.
[0005]
The present inventors have completed the present invention by paying attention to the fact that dimerization and dissociation of anthracene occur reversibly depending on the wavelength of actinic rays irradiated.
[0006]
The present invention relates to a general formula (1)
[Chemical 7]
Figure 0004124586
Wherein n is 0 or a positive number from 1 to 100 and p is 0 or 1, R represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and R 1 is an active light having a long wavelength of 300 nm or more. Represents a photofunctional group that can be dimerized by exposure, and when p is 1, an anthranyl group, when p is 0, a pyrimidyl, uracil-yl or thymidyl group, R 2 is R 1- , R 1- (O) CO A photopolymerization / dissociation reversible telechelic oligomer represented by — or R 3 — (wherein R 3 represents hydrogen, a hydroxy group, an alkyl group having 1 to 8 carbon atoms, an alkoxy group or an alkenyl group). is there.
[0007]
Another aspect of the present invention is a compound of the general formula (4)
[Chemical 8]
Figure 0004124586
(Wherein R, R 1 and n represent the meanings as defined above, and R 2 is R 1 — or R 1 — (O) CO—), and a telechelic oligomer polymer having a repeating unit, and In the general formula (4), the telechelic oligomer represented by the general formula (1) is exposed to an actinic ray having a long wavelength of 300 nm or more, if necessary, in the presence of a photosensitizer. It is a manufacturing method of the telechelic oligomer polymer represented.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the photopolymerization / dissociation reversible telechelic oligomer represented by the general formula (1) of the present invention, R in the formula is an alkyl group having 1 to 3 carbon atoms, for example, a methyl, ethyl, propyl or phenyl group. That is, () represents a monomer unit of a polyolefin chain, for example, an aliphatic polyolefin chain such as polypropylene, poly 1-butene, poly 1-pentene, or an aromatic polyolefin chain such as polystyrene, and n represents the number of repetitions thereof. n is 1 to 100, preferably 10 to 50.
[0009]
R 1 is a photofunctional group that can be dimerized by exposure to actinic rays having a long wavelength of 300 nm or longer, such as an anthranyl group, a pyrimidine base such as uracil, thymidyl, and the like.
R 2 is the above-mentioned photofunctional group or —R 3 group, that is, a non-functional group with respect to light. That is, R 3 is hydrogen, hydroxy group, alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, nonyl group, etc., alkoxy groups such as methoxy, ethoxy , Propoxy, butoxy and the like, or alkenyl groups such as vinyl, allyl and the like.
[0010]
The photopolymerization / dissociation reversible telechelic oligomer has the general formula (2)
[Chemical 9]
Figure 0004124586
(Wherein R, R 3 and n represent the meanings as defined above), an olefin oligomer having a functional hydroxy group at one or both ends, and an anthron chloride or pyrimidine hydrochloride Can be produced by reacting with uracil hydrochloride or thymine hydrochloride.
[0011]
The terminal hydroxy group-containing olefin oligomer represented by the general formula (2) is synthesized by hydroborating an olefin oligomer having a vinylidene double bond at one end or both ends, and then oxidizing and hydroxylating. can do. The olefin / oligomer having a vinylidene double bond at one or both ends is preferably produced by highly controlled pyrolysis of an industrially produced polyolefin. Olefin oligomers obtained by highly controlled pyrolysis of polyolefins, such as propylene oligomers, maintain the stereoregularity of polypropylene before pyrolysis very well, so that the properties depending on their stereostructure are also maintained. ing.
[0012]
The telechelic oligomer polymer of the present invention has the following general formula (4)
Embedded image
Figure 0004124586
(Wherein R, R 1 and n represent the meanings as defined above, and R 2 represents R 1 — or R 1 — (O) CO—) as a repeating unit. This polymer is obtained by exposing the telechelic oligomer represented by the general formula (1) to an actinic ray having a long wavelength of 300 nm or longer and photopolymerizing it, and exposing the actinic ray having a short wavelength of less than 300 nm. To dissociate into the telechelic oligomer represented by the general formula (1).
[0013]
The polymer represented by the general formula (4) comprises a telechelic oligomer represented by the general formula (1) having a wavelength of less than 300 nm in an appropriate solvent, if necessary, in the presence of a sensitizer. Can be produced by exposing the light to an actinic ray of 300 nm or more cut by a filter and photopolymerizing it. Alternatively, the telechelic oligomer solution may be coated on a substrate to remove the solvent, and then exposed to actinic rays of 300 nm or more to photopolymerize the telechelic oligomer.
[0014]
This polymer inherits the characteristics of the olefin oligomer constituting the main chain of the telechelic oligomer well and has substantially the same characteristics as polyolefin. Therefore, it can be used as a base resin in the manufacture of various molded products. In addition, it can be expected to be used as a photosensitive polymer utilizing photopolymerization.
[0015]
【Example】
The invention is explained in more detail by means of examples.
Example 1
Synthesis of Propylene Oligomer Containing Both Ends Hydroxyl Group (iPPv-OH) Both Ends of Number Average Molecular Weight 1.43 × 10 3 Obtained by Highly Controlled Pyrolysis of Isotactic Polypropylene and Molecular Weight Distribution Dispersity 1.11 In a dispersion of vinylidene group-containing propylene oligomer (n = 34) in tetrahydrofuran (THF), a THF solution of BH 3 · THF complex was added dropwise to hydroborate the vinylidene group-containing propylene oligomer. A sodium hydroxide aqueous solution and a hydrogen peroxide solution were added to oxidize vinylidene groups at both ends to synthesize a propylene oligomer (iPPv-OH) containing hydroxy groups at both ends.
[0016]
Synthesis of anthracene-terminated telechelic oligomer (iPPv-AT) To a THF dispersion of iPPv-OH / triethylamine, a THF dispersion of antron chloride was added dropwise at room temperature under a nitrogen atmosphere, and the reaction was further aged for 2 hours. Next, THF was distilled off from the reaction solution, xylene was added, and the mixture was dissolved under reflux, filtered hot, dropped into methanol, precipitated, and collected by filtration. The yield of the precipitate was about 90% by weight. In the 1 H-NMR spectrum of the obtained precipitate, the peak attributed to the methylene proton observed in the spectrum of iPPv-OH completely disappeared, and instead a signal attributed to each proton of the anthronic ester structure clearly appeared. From this, it was confirmed that this precipitate was iPPv-AT.
1 H-NMR spectra of iPPv-AT and iPPv-OH are shown in FIG.
[0017]
Example 2
Photopolymerization of iPPv-AT Light having a wavelength of 300 nm or more obtained by cutting light of less than 300 nm through a filter with a naphthalene / hexane solution into a solution of 0.2 g of iPPv-AT dissolved in 10 ml of THF using a high-pressure mercury lamp. To polymerize iPPv-AT.
The reaction solution became cloudy over time, but became clear with the addition of additional THF.
The GPC curve of the reaction mixture is shown in FIG. As apparent from FIG. 2, the monomer peak decreases with the passage of time, and instead, peaks indicating the formation of dimer, trimer, and tetramer appear. The polymerization reaction rate determined from the area ratio after 18 hours of light irradiation was 86%.
[0018]
Example 3
Photodissociation of iPPv-AT polymer In the solution of iPPv-AT polymer obtained after the photopolymerization reaction time in Example 2, light of 300 nm or more was cut through an optical filter using a high-pressure mercury lamp, and the solution was less than 300 nm. The polymer was dissociated by irradiation with light of a wavelength.
The GPC curve of this solution showed only the monomer peak.
[0019]
Example 4
Synthesis of both terminal hydroxy group-containing propylene oligomer (sPPv-OH) Number average molecular weight 4.84 × 10 3 (polystyrene conversion) obtained by highly controlled pyrolysis of syndiotactic polypropylene, dispersity of molecular weight distribution 1. 43. A bivinylidene group-containing propylene oligomer having an average number of terminal vinylidene (TVD) per molecule of about 1.73 was dispersed in tetrahydrofuran (THF), and a THF solution of BH 3 · THF complex was added dropwise. After hydroboration of the vinylidene group-containing propylene oligomer at both ends, a sodium hydroxide aqueous solution and hydrogen peroxide solution were added to oxidize the vinylidene groups at both ends to oxidize the both-end hydroxy group-containing propylene oligomer (sPPv-OH ) Was synthesized.
[0020]
Synthesis of anthracene-terminated telechelic oligomer (sPPv-AT) To a THF dispersion of sPPv-OH / triethylamine, a THF dispersion of anthronic acid chloride was added dropwise at room temperature in a nitrogen atmosphere, and the reaction was further aged for 2 hours. Next, THF was distilled off from the reaction solution, xylene was added, and the mixture was dissolved under reflux, filtered hot, dropped into methanol, precipitated, and collected by filtration. The yield of the precipitate was about 90% by weight. In the 1 H-NMR spectrum of the obtained precipitate, the peak attributed to the methylene proton found in the spectrum of sPPv-OH completely disappeared, and instead a signal attributed to each proton of the anthronic ester structure clearly appeared. From this, it was confirmed that this precipitate was sPPv-AT.
[0021]
Example 5
Photopolymerization of sPPv-AT Light having a wavelength of 300 nm or more obtained by cutting light of less than 300 nm through a filter with a naphthalene / hexane solution into a solution of 0.2 g of sPPv-AT dissolved in 10 ml of THF using a high-pressure mercury lamp. Was irradiated to polymerize sPPv-AT.
The reaction solution became cloudy over time, but became clear with the addition of additional THF.
The GPC curve of the reaction mixture is shown in FIG. As the reaction time increased, the molecular weight gradually increased, and when irradiated for 12 hours or longer, the molecular weight distribution of sPPv-AT did not change, and the photopolymerization stopped. Comparing the peak top and number average molecular weight of the sequential polymers obtained at 0 hours and 12 hours, the peak top is about 6 times, and the number average molecular weight is about 3 times. This revealed that the anthracene groups at both ends of sPPv-AT were sequentially polymerized by light.
[0022]
Example 6
Thermal Dissociation of sPPv-AT Polymer FIG. 4 shows a GPC curve when sPPv-AT photo-sequentially polymerized for 18 hours is placed in a polymerization tube and the nitrogen sealed tube is heated at 140 ° C. for 2 hours. From the figure, it is shown that the photo sequential polymer is completely dissociated into sPPv-AT by heat.
[0023]
【The invention's effect】
As shown in the above examples, the telechelic oligomer of the present invention is photopolymerization / dissociation reversible. Therefore, the polymer of the telechelic oligomer is a recyclable polymer, specifically a recyclable polyolefin, that can regenerate the raw telechelic oligomer by dissociation after use.
[0024]
Furthermore, an olefin oligomer containing a hydroxy group at one or both ends of the starting material can be easily produced by highly controlled pyrolysis of waste polymer such as floating pellets, which is an environmental problem.
Since the present invention provides a waste polymer treatment and recyclable polymer, it has great significance not only in the polymer field but also in the environmental field.
[Brief description of the drawings]
FIG. 1 is a 1 H-NMR spectrum of a telechelic propylene oligomer synthesized in Example 1 and a propylene oligomer containing both terminal hydroxy groups used in the synthesis.
2 is a GPC curve of the telechelic propylene oligomer polymer obtained in Example 2. FIG. 3 is a GPC curve of the reaction mixture obtained in Example 5.
4 is a GPC curve of the reaction mixture obtained in Example 6. FIG.

Claims (5)

一般式(1)
Figure 0004124586
(式中、
nは、0または1〜100の正数であり、
Rは、炭素数1〜3のアルキル基またはフェニル基であり、
は、300nm以上の長波長の活性光線の露光により二量化し得る光官能性基であり、
は、R −、R −(O)CO−又はR −(ここにR は水素、ヒドロキシ基、炭素数1〜8のアルキル基、アルコキシ基またはアルケニル基を表す)
を表し、
pは0または1である。
ただし、pが1のときR はアントラニル基であり、pが0のときR はピリミジル、ウラシル−イル、またはチミジル基である。)
で表される光重合/解離可逆性テレケリックオリゴマー。
General formula (1)
Figure 0004124586
(Where
n is 0 or a positive number from 1 to 100;
R is an alkyl group having 1 to 3 carbon atoms or a phenyl group,
R 1 is a photofunctional group that can be dimerized by exposure to actinic rays having a long wavelength of 300 nm or longer,
R 2 represents R 1 —, R 1 — (O) CO—, or R 3 — (wherein R 3 represents hydrogen, a hydroxy group, an alkyl group having 1 to 8 carbon atoms, an alkoxy group, or an alkenyl group).
Represents
p is 0 or 1;
However, when p is 1, R 1 is an anthranyl group, and when p is 0, R 1 is a pyrimidyl, uracil-yl, or thymidyl group. )
A photopolymerization / dissociation reversible telechelic oligomer represented by:
Rがメチル基またはフェニル基である請求項1記載のテレケリックオリゴマー。  The telechelic oligomer according to claim 1, wherein R is a methyl group or a phenyl group. pが1でありRがアントラニル基である請求項1記載のテレケリックオリゴマー。The telechelic oligomer according to claim 1, wherein p is 1 and R 1 is an anthranyl group. 一般式(2)
Figure 0004124586
(式中、R、Rおよびnは請求項1で定義したとおりの意味を表す)で表される片末端または両末端に官能性ヒドロキシ基を有するオレフィン・オリゴマーと、アントロン酸塩化物、もしくはピリミジン塩酸塩、ウラシル塩酸塩またはチミン塩酸塩とを反応させることを特徴とする、請求項1記載の光重合/解離可逆性テレケリックオリゴマーの製造方法。
General formula (2)
Figure 0004124586
(Wherein R, R 3 and n represent the meanings as defined in claim 1), an olefin oligomer having a functional hydroxy group at one or both ends, an anthron chloride, or The method for producing a photopolymerization / dissociation reversible telechelic oligomer according to claim 1 , wherein pyrimidine hydrochloride, uracil hydrochloride or thymine hydrochloride is reacted .
一般式(1)
Figure 0004124586
(式中、
nは、0または1〜100の正数であり、
Rは、炭素数1〜3のアルキル基またはフェニル基であり、
は、300nm以上の長波長の活性光線の露光により二量化し得る光官能性基であり、
は、R −、R −(O)CO−又はR −(ここにR は水素、ヒドロキシ基、炭素数1〜8のアルキル基、アルコキシ基またはアルケニル基を表す)
を表し、
pは0または1である。
ただし、pが1のときR はアントラニル基であり、pが0のときR はピリミジル、ウラシル−イル、またはチミジル基である。)
で表されるテレケリックオリゴマーを、要すれば光増感剤の存在下に、300nm以上の長波長の活性光線に露光して光重合することにより得られるテレケリックオリゴマー重合体。
General formula (1)
Figure 0004124586
(Where
n is 0 or a positive number from 1 to 100;
R is an alkyl group having 1 to 3 carbon atoms or a phenyl group,
R 1 is a photofunctional group that can be dimerized by exposure to actinic rays having a long wavelength of 300 nm or longer,
R 2 represents R 1 —, R 1 — (O) CO—, or R 3 — (wherein R 3 represents hydrogen, a hydroxy group, an alkyl group having 1 to 8 carbon atoms, an alkoxy group, or an alkenyl group).
Represents
p is 0 or 1;
However, when p is 1, R 1 is an anthranyl group, and when p is 0, R 1 is a pyrimidyl, uracil-yl, or thymidyl group. )
A telechelic oligomer polymer obtained by photopolymerizing the telechelic oligomer represented by the formula (1) by exposing it to actinic rays having a long wavelength of 300 nm or longer, if necessary, in the presence of a photosensitizer.
JP2001331937A 2000-11-24 2001-10-30 Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof Expired - Fee Related JP4124586B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2001331937A JP4124586B2 (en) 2000-11-24 2001-10-30 Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof
DE60143490T DE60143490D1 (en) 2000-11-24 2001-11-22 FUNCTIONAL SUBSTANCES DERIVED FROM OLIGOOLEFINS WITH FUNCTIONAL END GROUPS
CNB01819429XA CN100558758C (en) 2000-11-24 2001-11-22 From the lower polyolefins deutero-functional substance of functional end-group is arranged
EP01997195A EP1364973B1 (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
AU2002224085A AU2002224085A1 (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
PCT/JP2001/010244 WO2002042340A1 (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
US10/416,615 US7125834B2 (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
DE60137463T DE60137463D1 (en) 2000-11-24 2001-11-22 functional substances from oligoolefins with functional end groups
CN200810181676XA CN101486779B (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
KR10-2003-7006981A KR100501968B1 (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
EP07001650A EP1790669B1 (en) 2000-11-24 2001-11-22 Functional substances derived from oligoolefins having functional groups at the ends
HK04110142.2A HK1067135A1 (en) 2000-11-24 2004-12-22 Functional substances derived from oligoolefins having functional groups at the ends
HK09110762.6A HK1133025A1 (en) 2000-11-24 2004-12-22 Functional substances derived from oligoolefins having functional groups at the ends
US11/440,900 US7229957B2 (en) 2000-11-24 2006-05-25 Functional substances derived from oligoolefins having functional groups at the ends
US11/654,751 US7345017B2 (en) 2000-11-24 2007-01-18 Functional substances derived from oligoolefins having functional groups at the ends

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-358224 2000-11-24
JP2000358224 2000-11-24
JP2001331937A JP4124586B2 (en) 2000-11-24 2001-10-30 Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof

Publications (2)

Publication Number Publication Date
JP2002220413A JP2002220413A (en) 2002-08-09
JP4124586B2 true JP4124586B2 (en) 2008-07-23

Family

ID=26604557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331937A Expired - Fee Related JP4124586B2 (en) 2000-11-24 2001-10-30 Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof

Country Status (1)

Country Link
JP (1) JP4124586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161111A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Olefin oligomer containing terminal perfluoroalkyl group and its producing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255159A (en) * 2007-04-02 2008-10-23 Sanei Kogyo:Kk Method for synthesizing oligomer having on its one end vinylidene-type double bond and/or oligomer having on its both ends vinylidene-type double bonds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161111A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Olefin oligomer containing terminal perfluoroalkyl group and its producing method

Also Published As

Publication number Publication date
JP2002220413A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP5187825B2 (en) Hyperbranched polymer and method for producing the same
US7229957B2 (en) Functional substances derived from oligoolefins having functional groups at the ends
FR2588099A1 (en) VINYLARYL AND ORGANOMETHYL-T-SUBSTITUTE PHOTORESISTANT AND VINYLARYL ETHER-OXIDE COMPOSITIONS
CN110527005B (en) Ultra-high molecular weight poly (4-alkoxy styrene) and preparation method thereof
JP4623690B2 (en) Star block copolymer
Visscher et al. Synthesis and characterization of polycarbynes, a new class of carbon-based network polymers
WO2001016198A1 (en) Star block copolymer
JP4124586B2 (en) Photopolymerization / dissociation reversible telechelic oligomer, polymer thereof, and production method thereof
Song et al. Derivatization of propene/methyloctadiene copolymers: A flexible approach to side‐chain‐functionalized polypropenes
US20030166804A1 (en) Trivalent organic lanthanoid complex, catalyst for production of (meth) acrylic polymer, and (meth) acrylic polymer
TWI336335B (en) Method of preparing phosphonium compound for cyclic olefin polymerization
CN116253764A (en) Single metallocene compound and preparation method and application thereof
JP2862720B2 (en) Narrowly dispersible polyhydroxystyrene partially esterified with t-butoxycarbonyl group and method for producing the same
JPS63215720A (en) Production of functional group-terminated lactone polymer
US5216083A (en) Polymerization of cis-5,6-bis(trimethylsiloxy)-1,3-cyclohexadiene and other substituted cyclohexadienes
JPH082923B2 (en) Method for producing star compound
JP4322626B2 (en) Both-end photoresponsive oligomer
US5128418A (en) Polymerization of cis-5,6-bis(trimethylsiloxy)-1,3-cyclohexadiene and other substituted cyclohexadienes
JPS6088015A (en) Production of silicon-containing organic high-molecular compound
JP3060006B2 (en) Preparation method of polysilane and organic zirconium complex
JP2001114832A (en) New methacrylic ester and method for producing the same and new polymethacrylic ester and method for producing the same
JP5872540B2 (en) Method for producing chlorinated hyperbranched polymer
Nomura et al. Synthesis of alkoxycarbene-containing polymers and their application as polymeric catalysts for phenylacetylene polymerization
TW436498B (en) Enolate functionalised reaction intermediate its preparation process and vinylic polymer prepared therefrom
JP2575958B2 (en) Method for producing polyhydroxystyrene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees