JP4123580B2 - Method for detecting element resistance of oxygen concentration sensor - Google Patents

Method for detecting element resistance of oxygen concentration sensor Download PDF

Info

Publication number
JP4123580B2
JP4123580B2 JP20544898A JP20544898A JP4123580B2 JP 4123580 B2 JP4123580 B2 JP 4123580B2 JP 20544898 A JP20544898 A JP 20544898A JP 20544898 A JP20544898 A JP 20544898A JP 4123580 B2 JP4123580 B2 JP 4123580B2
Authority
JP
Japan
Prior art keywords
voltage
sensor
element resistance
oxygen concentration
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20544898A
Other languages
Japanese (ja)
Other versions
JPH11132996A (en
Inventor
朝道 溝口
雅之 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP20544898A priority Critical patent/JP4123580B2/en
Publication of JPH11132996A publication Critical patent/JPH11132996A/en
Application granted granted Critical
Publication of JP4123580B2 publication Critical patent/JP4123580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車載用エンジンの排ガス中の酸素濃度を検出するための酸素濃度センサに係るものであって、当該センサ特有の電圧電流の周波数特性を用いて素子抵抗を検出する方法に関する。
【0002】
【従来の技術】
近年の車載用エンジンの空燃比制御では、例えば制御精度を高めるといった要望やリーンバーン化への要望があり、これらの要望に対応すべく、エンジンに吸入される混合気の空燃比(排ガス中の酸素濃度)を広域に且つリニアに検出するリニア式空燃比センサ(酸素濃度センサ)が具体化されている。こうした空燃比センサにおいて、例えばその活性状態や劣化状態に知るには、センサ素子の内部抵抗(素子抵抗)を正確に検出することが必要となる。
【0003】
本願発明者らはこれまでにも、特願平8−207410号(特開平9−292364号公報)にて素子抵抗検出法の一手法を提案している。これは、図16に示すように、所定の時定数を持たせた電圧を単発的に空燃比センサに印加してt時間経過後のピーク電流ΔI(電流変化量)を検出し、その時の電圧変化量ΔVとピーク電流ΔIとから素子抵抗を検出するものであった(素子抵抗=ΔV/ΔI)。つまり、素子抵抗の検出に際し、センサの印加電圧を所定の時定数を持った波形にて変化させることにより、過度なピーク電流の発生を抑制するようにしていた。その結果、センサ電流値が正確に計測できると共に、センサの素子抵抗が精度良く検出できるようになっていた。
【0004】
【発明が解決しようとする課題】
ところが、上記従来既存の技術では、検出時間tのバラツキや時定数のバラツキが生じると、ピーク電流ΔIが正確に検出できないことがあり得る。例えば図16のように、ΔIを検出するタイミングが遅れその検出時間が「t’」になると、ΔIが実際値よりも小さい値で検出され、素子抵抗が大きめに誤検出されてしまう。この問題は、ΔIを正確に検出できる期間が狭いために起きるものであった。
【0005】
本発明は、上記問題に着目してなされたものであって、その目的とするところは、電圧変化に伴う電流変化量の検出タイミングや時定数などの各種要因のバラツキに関係なく、センサ素子抵抗を精度良く検出することができる酸素濃度センサの素子抵抗検出方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明ではその前提として、電圧の印加に伴い被検出ガス中の酸素濃度に応じた電流信号を出力する酸素濃度センサに適用され、酸素濃度検出のために前記センサに印加した電圧を、所定の時定数を持たせて同センサの素子抵抗検出のための電圧に切り換え、その時の電圧変化と当該電圧変化に伴う電流変化とから前記センサの素子抵抗を検出する。かかる手法によれば、素子抵抗の検出時に問題となる過度なピーク電流の発生が抑制される。
【0007】
そして、請求項1に記載の発明では、前記所定の時定数を持たせて切り換えた電圧の印加時間を、電圧切り換え後にピーク電流が出る時間よりも長くしたことを特徴とする。本発明によれば、素子抵抗検出時において、電圧変化に伴ってピーク電流が出た後に電流変化が緩慢になる期間を設けることができる。つまり、電圧変化に伴う電流変化量を正確に検出するための期間が拡張される。その結果、電流変化量の検出タイミングや時定数などの各種要因にバラツキが生じたとしても、センサの素子抵抗が精度良く検出できるようになる。
【0008】
請求項2に記載の発明では、前記所定の時定数を持たせて切り換えた電圧の印加時間を
、センサ特有のカットオフ周波数となる周波数の逆数で表される周期時間以下としている。これは電圧印加時間の長さを規定するものであって、ジルコニア等の固体電解質を用いた限界電流式酸素濃度センサなどにおいて、センサ特有のカットオフ周波数に基づき前記印加時間を規定すれば、電圧印加を必要以上に長引かせることもなく、電圧印加時間を好適に設定して素子抵抗が検出できる。例えばセンサ特有のカットオフ周波数を40Hz程度とした場合、電圧の印加時間は、その時定数の1桁下のオーダーである2.5ms程度で規定されるとよい。
【0009】
また、請求項3に記載の発明では、前記所定の時定数を持たせた電圧を印加してピーク電流が出た後、その電圧値を前記ピーク電流発生時の電圧値で一定に保つことを特徴とする。本発明によれば、前記請求項1の発明と同様に、素子抵抗検出時において、電圧変化に伴ってピーク電流が出た後に電流変化が緩慢になる期間を設けることができ、電圧変化に伴う電流変化量を正確に検出するための期間が拡張される。その結果、電流変化量の検出タイミングや時定数などの各種要因にバラツキが生じたとしても、センサの素子抵抗が精度良く検出できるようになる。
【0010】
請求項4に記載の発明では、前記ピーク電流発生時の電圧値で一定に保つ時間を、センサ特有のカットオフ周波数となる周波数の逆数で表される周期時間以下としている。本発明によれば、前記請求項2の発明と同様に、素子抵抗検出時の電圧印加を必要以上に長引かせることもなく、適度な電圧印加時間が設定できる。
【0011】
【発明の実施の形態】
以下、この発明を空燃比検出装置に具体化した一実施の形態を図面に従って説明する。本実施の形態における空燃比検出装置は、自動車に搭載される電子制御ガソリン噴射エンジンに適用されるものであって、同エンジンの空燃比制御システムにおいては空燃比検出装置による検出結果を基にエンジンへの燃料噴射量を所望の空燃比に制御する。以下の記載では、空燃比センサを用いた空燃比(A/F)の検出手順、並びに同センサの周波数特性を用いた素子抵抗検出手順を詳細に説明する。
【0012】
図1は、本実施の形態における空燃比検出装置の概要を示す構成図である。図1において、空燃比検出装置は酸素濃度センサとしての限界電流式空燃比センサ(以下、A/Fセンサという)30を備え、このA/Fセンサ30は、エンジン10のエンジン本体11から延びる排気管12に取り付けられている。A/Fセンサ30は、マイクロコンピュータ(以下、マイコンという)20から指令される電圧の印加に伴い、排ガス中の酸素濃度に比例したリニアな空燃比検出信号を出力する。マイコン20は、各種演算処理を実行するための周知のCPU,ROM,RAM等により構成され、所定の制御プログラムに従い後述するバイアス制御回路40及びヒータ制御回路25を制御する。
【0013】
図2は、A/Fセンサ30の概略を示す断面図である。図2において、A/Fセンサ30は前記排気管12の内部に向けて突設されており、同センサ30は大別して、カバー31、センサ本体32及びヒータ33から構成されている。カバー31は断面コ字状をなし、その周壁にはカバー内外を連通する多数の小孔31aが形成されている。センサ本体32は空燃比リーン領域における酸素濃度、若しくは空燃比リッチ領域における未燃ガス(CO,HC,H2 等)濃度に対応する限界電流を発生する。
【0014】
センサ本体32の構成について詳述する。センサ本体32において、断面カップ状に形成された固体電解質層34の外表面には、排ガス側電極層36が固着され、内表面には大気側電極層37が固着されている。また、排ガス側電極層36の外側には、プラズマ溶射法等により拡散抵抗層35が形成されている。固体電解質層34は、ZrO2 、HfO2 、ThO2 、Bi2 O3 等にCaO、MgO、Y2 O3 、Yb2 O3 等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなり、拡散抵抗層35は、アルミナ、マグネシャ、ケイ石質、スピネル、ムライト等の耐熱性無機物質からなる。排ガス側電極層36及び大気側電極層37は共に、白金等の触媒活性の高い貴金属からなりその表面には多孔質の化学メッキ等が施されている。なお、排ガス側電極層36の面積及び厚さは、10〜100mm^2(平方ミリメートル)及び0.5〜2.0μm程度となっており、一方、大気側電極層37の面積及び厚さは、10mm^2(平方ミリメートル)以上及び0.5〜2.0μm程度となっている。
【0015】
ヒータ33は大気側電極層37内に収容されており、その発熱エネルギによりセンサ本体32(大気側電極層37、固体電極質層34、排ガス側電極層36及び拡散抵抗層35)を加熱する。ヒータ33は、センサ本体32を活性化するに十分な発熱容量を有している。
【0016】
上記構成のA/Fセンサ30において、センサ本体32は理論空燃比点よりリーン領域では酸素濃度に応じた限界電流を発生する。この場合、酸素濃度に対応する限界電流は、排ガス側電極層36の面積、拡散抵抗層35の厚さ、気孔率及び平均孔径により決定される。また、センサ本体32は酸素濃度を直線的特性にて検出し得るものであるが、このセンサ本体32を活性化するのに約600℃以上の高温が必要とされると共に、同センサ本体32の活性温度範囲が狭いため、エンジン10の排ガスのみによる加熱では活性領域を制御できない。そのため、本実施の形態では、ヒータ33の加熱制御によりセンサ本体32を活性温度域にまで加熱する。なお、理論空燃比よりもリッチ側の領域では、未燃ガスである一酸化炭素(CO)等の濃度が空燃比に対してほぼリニアに変化し、センサ本体32はCO等の濃度に応じた限界電流を発生する。
【0017】
センサ本体32の電圧−電流特性について図3を用いて説明する。図3によれば、A/Fセンサ30の検出A/Fに比例するセンサ本体32の固体電解質層34への流入電流と、同固体電解質層34への印加電圧とがリニアな特性を有することが分かる。かかる場合、電圧軸Vに平行な直線部分がセンサ本体32の限界電流を特定するものであって、この限界電流(センサ電流)の増減はA/Fの増減(すなわち、リーン・リッチの程度)に対応している。つまり、A/Fがリーン側になるほど限界電流は増大し、A/Fがリッチ側になるほど限界電流は減少する。
【0018】
また、この電圧−電流特性において電圧軸Vに平行な直線部分よりも小さい電圧域は抵抗支配域となっており、その抵抗支配域における一次直線部分の傾きは、センサ本体32における固体電解質層34の内部抵抗(これを素子抵抗という)により特定される。この素子抵抗は温度変化に伴い変化するため、センサ本体32の温度が低下すると素子抵抗の増大により上記傾きが小さくなる。
【0019】
一方、図1において、A/Fセンサ30に電圧を印加するためのバイアス指令信号(デジタル信号)Vrはマイコン20からD/A変換器21に入力され、同D/A変換器21にてアナログ信号Vbに変換された後、LPF(ローパスフィルタ)22に入力される。そして、LPF22にてアナログ信号Vbの高周波成分が除去された出力電圧Vcは、A/F検出用又は素子抵抗検出用の電圧をA/Fセンサ30に印加するためのバイアス制御回路40に入力される。A/F検出時には、前記図3の特性線L1を用いてその時のA/Fに対応した印加電圧Vpが設定されるのに対し、素子抵抗検出時には、所定周波数信号よりなる単発的で且つ所定の時定数を持った電圧が印加される。
【0020】
バイアス制御回路40内の電流検出回路50は、A/Fセンサ30への電圧の印加に伴い流れる電流値を検出する。当該電流検出回路50にて検出された電流値のアナログ信号は、A/D変換器23を介してマイコン20に入力される。バイアス制御回路40の詳細な構成については後述する。A/Fセンサ30に付設されたヒータ33は、ヒータ制御回路25によりその作動が制御される。つまり、ヒータ制御回路25は、A/Fセンサ30の素子温やヒータ温度に応じてバッテリ電源(図示しない)からヒータ33に供給される電力をデューティ制御し、ヒータ33の加熱制御を行う。
【0021】
ここで、素子抵抗検出時にA/Fセンサ30に印加される指令電圧の詳細を説明する。つまり、マイコン20は、デジタル信号としてのバイアス指令信号Vrを出力するが、このバイアス指令信号VrはD/A変換器21及びLPF22を通過する際において、単発的で且つ所定の時定数を持った電圧(アナログ信号)に変換される。図4は、素子抵抗検出時におけるD/A変換器21の出力電圧Vbと、LPF22の出力電圧Vcと、センサ電流Ipとについてその信号波形の一例を示す。この場合、D/A変換器21の出力電圧Vbは、時間t1でその直前の印加電圧Vp(A/F検出用電圧)に対して「ΔV」だけ高い電圧値に切り換えられ、時間t2で元の印加電圧Vpに戻される。
【0022】
LPF22の出力電圧(Vc波形)中の範囲Aの部分は、所定の時定数を持たせることにより高周波成分が除去されたなまし信号となっており、Vc波形中の範囲Bの部分は、LPF22によるなましの効果がなくなり一定電圧となっている。また、センサ電流Ipは、LPF22の時定数で電圧Vcが立ち上がる範囲Aでは電圧Vcと同じ時定数で立ち上がり、電圧Vcがほぼ一定となる範囲Bでは範囲Aの立ち上がり時定数より遅い時定数で立ち下がるようになっている。この範囲Bではその時定数が遅いことから、実際には電流Ipがほとんど変化しない。つまり、範囲B内のどのタイミングでピーク電流ΔI(電流変化量)を検出しても、ΔIの検出誤差はほとんどないことになる。なおその理由については後述する。
【0023】
本実施の形態で言う所定の時定数を持たせた電圧とは単発的な周波数成分を含む信号であるが、以下のようにしてその周波数が決定される。
図5はA/Fセンサ30の等価回路である。この等価回路において、Rgは酸素イオンに対する固体電解質の粒子抵抗、RiとCiはそれぞれ固体電解質の粒子の界面における粒子抵抗と粒界容量、RfとCfはそれぞれ電極界面抵抗と電極界面容量である。
【0024】
図6は、上記図5の如く表されるA/Fセンサ30の複素インピーダンス特性を示す。同図において、横軸の「Zreal」は複素インピーダンスの実数部を、縦軸の「Zimaginary 」は虚数部を示しており、このとき、インピーダンスZACは、
ZAC=Zreal+j・Zimaginary
として表される。図6のA点は周波数1kHzでのインピーダンス特性を示しており、それより低周波であるとA点よりも右の特性となり、高周波であるとA点よりも左の特性となる。すなわち、1kHz付近ではRgとRiの合計値がインピーダンスとして検出されることとなる。
【0025】
図7は、前記図6について横軸を周波数fに、縦軸をインピーダンスZACに変換したものである。同図7によれば、周波数1kHz〜10MHzではインピーダンスZACが所定値(Rg+Ri)に収束する。また、10MHz付近よりもさらに高周波側ではインピーダンスZACは減少し、前記(Rg+Ri)よりも小さい所定値(Rg)に収束する。このことから、インピーダンスZACを安定した状態で精度良く検出するためには、同インピーダンスZACを周波数fによらず一定値となる1kHz〜10MHz付近とすると望ましいことが分かる。本実施の形態では、電圧切り換え時の交流周波数を1kHzとし、その波形の立ち上がり(前記図4のVc波形中の範囲A)を得るべく、LPF22により159μs程度の時定数を設定している。因みに、電圧変化時における時定数の下限(周波数の上限)は、D/A変換器21やA/D変換器23の処理能力によって制限されるものであって、高速回路を使うことで時定数の下限を拡張させることも可能である。
【0026】
こうした理由からA/Fセンサ30への印加電圧の切り換えに時には、マイコン20は1kHz程度の周波数成分を含むデジタル信号を出力し、そのデジタル信号はD/A変換器21及びLPF22の通過に伴い所定の時定数(159μs程度)を持った信号に変換される。なお、マイコン20から出力される指令信号は矩形信号であるため、その信号生成は容易に実現できる。
【0027】
ここで、前記図4の範囲Bでセンサ電流Ipが立ち下がる時定数が範囲Aの時定数よりも遅い理由を説明する。先ず説明を簡明にするため、センサの等価回路(前記図5)を図8(a)のように簡略化する。これは、A/Fセンサ30に実際に印加する電圧Vcの立ち上がり時定数が数kHz〜数10kHz程度であることから、前記図5において電流はほとんどRg−Ri−Cfの経路を通ることになるためである。よって、図8(a)の等価回路は、同図(b)のような単純なHPFのモデルで表現できる。
【0028】
図9に、前記図8の等価回路の抵抗周波数特性を示す。図9の特性は、前記図7のA点付近の周波数特性にほぼ同じであることが分かる。図中の点Bは、前記図8のHPFのカットオフ周波数に相当する。
【0029】
図10(a)は、前記図1のD/A変換器21の出力VbからA/Fセンサ30に流れる電流Ipまでの伝達ブロックを示す。前段のLPFは前記図1のLPF22に相当し、後段のHPFは前記図8のHPFに相当する。このブロック図によれば、A/Fセンサ30にステップ電圧を印加するときの電圧波形Vbと電流波形Ipは図10(b),(c)となり、センサ電流Ipの時間関数の数式は、
【0030】
【数1】

Figure 0004123580
となる。
上記(1)式において、「T1」はHPFの時定数(図9の点Bに相当)であり、「T2」はLPFの時定数(図9の点Aに相当)である。ここで前述した通り、安定した抵抗周波数特性の領域を用いるには、点Aを点Bよりも高周波数側にすることが必須要件となる。すなわち二つの時定数T1,T2の大小関係は必ず、
T1>T2
となる。よって、前記(1)式から、前記図4の範囲Aの立ち上がり時間よりも範囲Bの立ち下り時間が遅くなることが分かる。
【0031】
以上の理由より、前記図4の出力電圧Vbがほぼ一定となる範囲Bにおいて、センサ等価回路のHPFの時定数の1桁下のオーダーである2.5ms程度の時間内ではセンサ電流Ipがほとんど変化しなくなる。つまり、図4の範囲Bではどのタイミングでピーク電流ΔIを検出してもほとんど同じ値が得られるようになる。
【0032】
従って、図11に示すように、正弦波形La(図の二点鎖線の波形)の如くセンサ電流が変化する場合には検出タイミングが「t」から「t’」にずれることでΔIが誤検出されるのに対し、本実施の形態では波形Lb(図の実線の波形)の如くセンサ電流が変化するため、「t’」の検出タイミングでもΔIが正確に検出できる。なお因みに、所定の時定数を持たせて切り換えた電圧の印加時間の合計「A+B」は、ピーク電流ΔIが検出できる時間よりも長くすればよいから、数10μs以上であればよい。
【0033】
次に、バイアス制御回路40の構成を図12の電気回路図を用いて説明する。図12において、バイアス制御回路40は大別して、基準電圧回路44と、第1の電圧供給回路45と、第2の電圧供給回路47と、電流検出回路50とを有する。基準電圧回路44は、定電圧Vccを分圧抵抗44a,44bにより分圧して一定の基準電圧Vaを生成する。
【0034】
第1の電圧供給回路45は電圧フォロア回路にて構成され、基準電圧回路44の基準電圧Vaと同じ電圧VaをA/Fセンサ30の一方の端子(前記図2の大気側電極層37に接続される端子)42に供給する。より具体的には、第1の電圧供給回路45は、正側入力端子が各分圧抵抗44a,44bの分圧点に接続されると共に負側入力端子がA/Fセンサ30の一方の端子42に接続された演算増幅器45aと、演算増幅器45aの出力端子に一端が接続された抵抗45bと、この抵抗45bの他端にそれぞれベースが接続されたNPNトランジスタ45c及びPNPトランジスタ45dとを有する。NPNトランジスタ45cのコレクタは定電圧Vccに接続され、エミッタは電流検出回路50を構成する電流検出抵抗50aを介してA/Fセンサ30の一方の端子42に接続されている。また、PNPトランジスタ45dのエミッタはNPNトランジスタ45cのエミッタに接続され、コレクタはアースされている。
【0035】
第2の電圧供給回路47も同様に電圧フォロア回路にて構成され、前記LPF22の出力電圧Vcと同じ電圧VcをA/Fセンサ30の他方の端子(前記図2の排ガス側電極層36に接続される端子)41に供給する。より具体的には、第2の電圧供給回路47は、正側入力端子が前記LPF22の出力に接続されると共に負側入力端子がA/Fセンサ30の他方の端子41に接続された演算増幅器47aと、演算増幅器47aの出力端子に一端が接続された抵抗47bと、この抵抗47bの他端にそれぞれベースが接続されたNPNトランジスタ47c及びPNPトランジスタ47dとを有する。NPNトランジスタ47cのコレクタは定電圧Vccに接続され、エミッタは抵抗47eを介してA/Fセンサ30の他方の端子41に接続されている。また、PNPトランジスタ47dのエミッタはNPNトランジスタ47cのエミッタに接続され、コレクタはアースされている。
【0036】
上記構成により、A/Fセンサ30の一方の端子42には常時一定電圧Vaが供給される。そして、LPF22を経由してA/Fセンサ30の他方の端子41に一定電圧Vaよりも低い電圧Vcが供給されると、当該A/Fセンサ30が正バイアスされることになる。また、LPF22を経由してA/Fセンサ30の他方の端子41に一定電圧Vaよりも高い電圧Vcが供給されると、当該A/Fセンサ30が負バイアスされることになる。
【0037】
次に、上記の如く構成される空燃比検出装置の作用を説明する。
図13は、本実施の形態における制御プログラムの概要を示すメインルーチンのフローチャートであり、そのルーチンはマイコン20への電源投入に伴い起動される。
【0038】
図13において、マイコン20は、先ずステップ100で前回のA/F検出時から所定時間Taが経過したか否かを判別する。ここで、所定時間Taは、A/Fの検出周期に相当する時間であって、例えば、Ta=2〜4ms程度に設定されるのが適当である。そして、前回のA/F検出時から所定時間Taが経過していれば、マイコン20はステップ100を肯定判別してステップ110に進む。マイコン20は、ステップ110で電流検出回路50にて検出されたセンサ電流Ip(限界電流値)を読み込むと共に、予めマイコン20内のROMに記憶されている特性マップを用いてその時のセンサ電流Ipに対応するA/F値を検出する。A/F値の検出後、マイコン20は、図3の特性線L1を用いてその時々のA/F検出結果(Ip)に応じた印加電圧VpをA/Fセンサ30に印加しておく。
【0039】
また、マイコン20は、続くステップ120で前回の素子抵抗検出時から所定時間Tbが経過したか否かを判別する。ここで、所定時間Tbは、素子抵抗の検出周期に相当する時間であって、例えばエンジン運転状態に応じて選択的に設定される。本実施の形態では、A/Fの変化が比較的小さい通常時(エンジンの定常運転時)にはTb=2s(秒)に、A/Fの急変時(エンジンの過渡運転時)にはTb=128ms(ミリ秒)に、というように所定時間Tbが可変に設定されるようになっている。
【0040】
ステップ120が否定判別されると、マイコン20は、上記の如く所定時間Taの経過毎にA/F値を検出する。また、ステップ120が肯定判別されると、マイコン20は、ステップ130で素子抵抗検出の処理を実施する。以下、素子抵抗検出の処理を図14のサブルーチンを用いて説明する。
【0041】
図14において、マイコン20は、先ずステップ131でバイアス指令信号Vrを操作し、それまでの印加電圧Vp(A/F検出用電圧)に対して電圧を正側に変化させる。このとき、素子抵抗検出用電圧の印加時間(前記図4のt1〜t2の時間)を、電圧切り換え後にピーク電流が出る時間よりも長くする。ここで、当該印加時間は先に規定した2.5ms以下であればよいが、次のA/Fを検出するまでの時間Ta=2〜4ms以内に電流が限界電流値に収束しなければならない。このため、素子電流検出用電圧の印加時間をA/F検出間隔よりも短くする。具体的には、電圧印加時間を数10〜100μs程度とする。
【0042】
その後、マイコン20は、ステップ132でその時の電圧変化量ΔVと電流検出回路50により検出されたセンサ電流の変化量ΔIとを読み取る。かかる場合、前記図4の範囲B内でΔIが検出されることになる。また、マイコン20は、続くステップ133でΔV,ΔIから素子抵抗Rを算出し(R=ΔV/ΔI)、その後元のメインルーチンに戻る。
【0043】
一方、上記の如く求められる素子抵抗Rは、素子温に対して図15に示す関係を有する。すなわち、素子温が低くなるほど、素子抵抗Rが飛躍的に大きくなる。同図において、素子抵抗R=90ΩはA/Fセンサ30の半活性温度(600℃)に相応し、素子抵抗R=30ΩはA/Fセンサ30の活性温度(700℃)に相応する。そして、A/Fセンサ30のヒータ制御に際しては、前記算出した素子抵抗RとA/Fセンサ30が十分に活性化していると思われる目標抵抗値(例えば30Ω)との偏差をなくすべくヒータ33に要求される通電量が求められ、その通電がデューティ制御される。すなわち、素子温フィードバック制御が実施され、これによりセンサ素子温が所定の活性温度に保持される。
【0044】
以上詳述した本実施の形態によれば、以下に示す効果が得られる。
(a)本実施の形態では、A/Fセンサ30の印加電圧をステップ的に変化させてその時の電圧及び電流の変化量ΔV,ΔIから素子抵抗Rを検出する際、所定の時定数を持たせて電圧値を切り換えると共に、前記所定の時定数を持たせて切り換えた電圧の印加時間を、電圧印加後にピーク電流が出る時間よりも長くした。この場合、電圧変化に伴ってピーク電流が出た後に電流変化が緩慢になる期間を設けることができる(前記図4の範囲B)。つまり、電圧変化に伴う電流変化量を正確に検出するための期間が拡張される。その結果、電流変化量の検出タイミングや時定数などの各種要因にバラツキが生じたとしても、センサの素子抵抗が精度良く検出できるようになる。
【0045】
(b)所定の時定数を持たせて切り換えた電圧の印加時間を、センサ特有のカットオフ周波数の逆数のオーダー以下とした。具体的には、センサ特有のカットオフ周波数を40Hz程度とした場合、そのカットオフ周波数に対応する時定数の1桁下のオーダーである2.5ms程度で電圧印加時間を規定した。この場合、電圧印加を必要以上に長引かせることもなく、電圧印加時間を好適に設定して素子抵抗が検出できる。
【0046】
(c)上記のように素子抵抗を精度良く検出することが可能となれば、その検出結果を用いたA/Fセンサ30の活性化制御(ヒータ33の通電制御)が精度良く実現できる。また、素子抵抗の検出結果は、センサ30の劣化判定にも有効に適用できることになる。
【0047】
なお、本発明の実施の形態は、上記以外にも次のように具体化できる。
所定の時定数を持たせた電圧を印加してピーク電流が出た後、その電圧値を直前の値で一定に保つようにする。かかる実施の形態は、前記図14のステップ131にて、素子抵抗検出用電圧の印加時間を制御することにより実現できる。この場合、所定の電圧値で一定に保つ時間を、センサ特有のカットオフ周波数の逆数のオーダー以下とするとよい。本構成でも、上述した実施の形態と同様に、電圧変化に伴ってピーク電流が出た後、電流変化が緩慢になる期間を設けることができ、電圧変化に伴う電流変化量を正確に検出するための期間が拡張される。その結果、電流変化量の検出タイミングや時定数などの各種要因にバラツキが生じたとしても、センサの素子抵抗が精度良く検出できるようになる。また、素子抵抗検出時の電圧印加を必要以上に長引かせることもなく、適度な電圧印加時間が設定できる。
【0048】
素子抵抗検出電圧への切り換え後、当該電圧の印加時間を可変に設定するようにしてもよい。具体的には、
・過渡判定結果や排ガス温度などのエンジン運転状態、
・A/Fセンサの活性度合、
・エンジン始動時からの経過時間、
などに応じて電圧印加時間を可変に設定する。この場合、電圧印加時間がより一層好ましく設定できる。
【0049】
酸素濃度センサとして既述のコップ型限界電流式A/Fセンサに代えて、積層型センサを用いて本発明を具体化してもよい。かかる場合にも、既述した通りの作用及び効果が得られる。
【0050】
上記実施の形態では、車載エンジンの排ガス中の酸素濃度(A/F)を検出するA/Fセンサとして本発明を適用したが、本発明の適用範囲は自動車用A/Fセンサに限定されるものではなく、これ以外にも適用範囲を拡大することも可能である。例えば可燃性ガス(メタンガス、エタンガス等)中の酸素濃度を検出する酸素濃度センサとして具体化することも可能である。
【0051】
上記実施の形態では、マイコン20から出力される矩形状の信号に対してLPFにて所定の時定数を持たせるようにしたが、マイコン20にて所定の時定数を持たせた信号を生成し、その信号を用いて素子抵抗を検出することも可能である。
【図面の簡単な説明】
【図1】発明の実施の形態における空燃比検出装置の概要を示す構成図。
【図2】A/Fセンサの詳細な構成を示す断面図。
【図3】A/Fセンサの電圧−電流特性を示すグラフ。
【図4】D/A変換器の出力電圧Vb、LPFの出力電圧Vc及びセンサ電流Ipを示す波形図。
【図5】A/Fセンサの等価電気回路図。
【図6】A/F検出用電圧をA/Fセンサに印加した状態で交流入力電圧の周波数に対するインピーダンスの軌跡を示すグラフ。
【図7】交流入力電圧の周波数と交流インピーダンスとの関係を示すグラフ。
【図8】A/Fセンサの等価回路図と、その等価回路に対応するブロック図。
【図9】図8の等価回路の抵抗周波数特性を示すグラフ。
【図10】D/A変換器の出力Vbからセンサ電流Ipまでの伝達ブロックと、Vb,Ip波形とを示す図。
【図11】電圧変化に伴う電流変化の様子を示す波形図。
【図12】バイアス制御回路の構成を示す電気回路図。
【図13】メインルーチンを示すフローチャート。
【図14】素子抵抗検出サブルーチンを示すフローチャート。
【図15】素子温と素子抵抗との関係を示すグラフ。
【図16】従来技術において、素子抵抗検出の際の電圧変化と電流変化を示す波形図。
【符号の説明】
10…エンジン、20…マイコン(マイクロコンピュータ)、22…LPF(ローパスフィルタ)、30…酸素濃度センサとしての限界電流式A/Fセンサ、40…バイアス制御回路。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen concentration sensor for detecting, for example, an oxygen concentration in exhaust gas from an in-vehicle engine, and relates to a method for detecting element resistance using a frequency characteristic of a voltage current unique to the sensor.
[0002]
[Prior art]
In recent air-fuel ratio control of in-vehicle engines, for example, there is a demand for higher control accuracy and a demand for lean burn, and in order to meet these demands, the air-fuel ratio of the air-fuel mixture sucked into the engine (in the exhaust gas) A linear air-fuel ratio sensor (oxygen concentration sensor) that linearly detects (oxygen concentration) over a wide area is embodied. In such an air-fuel ratio sensor, in order to know, for example, its active state or deteriorated state, it is necessary to accurately detect the internal resistance (element resistance) of the sensor element.
[0003]
The inventors of the present application have proposed a method of detecting an element resistance in Japanese Patent Application No. 8-207410 (Japanese Patent Laid-Open No. 9-292364). This is because, as shown in FIG. 16, a voltage having a predetermined time constant is applied to the air-fuel ratio sensor on a one-off basis to detect a peak current ΔI (current change amount) after elapse of time t, and the voltage at that time The element resistance was detected from the change amount ΔV and the peak current ΔI (element resistance = ΔV / ΔI). That is, when detecting the element resistance, the generation of excessive peak current is suppressed by changing the applied voltage of the sensor with a waveform having a predetermined time constant. As a result, the sensor current value can be accurately measured, and the element resistance of the sensor can be accurately detected.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technology, if the detection time t varies or the time constant varies, the peak current ΔI may not be detected accurately. For example, as shown in FIG. 16, when the timing for detecting ΔI is delayed and the detection time becomes “t ′”, ΔI is detected as a value smaller than the actual value, and the element resistance is erroneously detected to be larger. This problem occurs because the period during which ΔI can be accurately detected is narrow.
[0005]
The present invention has been made paying attention to the above problems, and the object of the present invention is to detect the resistance of the sensor element regardless of variations in various factors such as the detection timing and time constant of the current change amount accompanying the voltage change. An object of the present invention is to provide an element resistance detection method for an oxygen concentration sensor that can accurately detect the oxygen concentration sensor.
[0006]
[Means for Solving the Problems]
In the present invention, as a premise thereof, the present invention is applied to an oxygen concentration sensor that outputs a current signal corresponding to the oxygen concentration in a gas to be detected with the application of a voltage, and the voltage applied to the sensor for oxygen concentration detection is set to a predetermined value. By switching to a voltage for detecting the element resistance of the sensor with a time constant, the element resistance of the sensor is detected from the voltage change at that time and the current change accompanying the voltage change. According to such a method, generation of an excessive peak current that becomes a problem when detecting element resistance is suppressed.
[0007]
The invention described in claim 1 is characterized in that the application time of the voltage switched with the predetermined time constant is made longer than the time when the peak current appears after the voltage switching. According to the present invention, at the time of detecting the element resistance, it is possible to provide a period in which the current change becomes slow after the peak current is generated with the voltage change. That is, the period for accurately detecting the amount of current change accompanying the voltage change is extended. As a result, even if various factors such as the detection timing of the current change amount and the time constant vary, the element resistance of the sensor can be detected with high accuracy.
[0008]
According to a second aspect of the present invention, the voltage application time switched with the predetermined time constant is set.
Sensor-specific cutoff frequency Frequency Reciprocal of Cycle time represented by It is as follows. This regulates the length of voltage application time, and in a limiting current type oxygen concentration sensor using a solid electrolyte such as zirconia, if the application time is prescribed based on the cut-off frequency peculiar to the sensor, the voltage The element resistance can be detected by suitably setting the voltage application time without prolonging the application more than necessary. For example, when the cut-off frequency peculiar to the sensor is set to about 40 Hz, the voltage application time may be defined by about 2.5 ms which is an order one digit lower than the time constant.
[0009]
In the invention according to claim 3, after a voltage having the predetermined time constant is applied and a peak current is generated, the voltage value is calculated. Voltage at the time of peak current generation It is characterized by keeping the value constant. According to the present invention, as in the first aspect of the present invention, at the time of detecting the element resistance, it is possible to provide a period in which the current change becomes slow after the peak current is generated along with the voltage change. The period for accurately detecting the amount of current change is extended. As a result, even if various factors such as the detection timing of the current change amount and the time constant vary, the element resistance of the sensor can be detected with high accuracy.
[0010]
In a fourth aspect of the present invention, the When peak current occurs The time to keep constant at the voltage value of Frequency Reciprocal of Cycle time represented by It is as follows. According to the present invention, as in the second aspect of the present invention, an appropriate voltage application time can be set without prolonging the voltage application at the time of detecting the element resistance more than necessary.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in an air-fuel ratio detection apparatus will be described with reference to the drawings. The air-fuel ratio detection apparatus in the present embodiment is applied to an electronically controlled gasoline injection engine mounted on an automobile. In the air-fuel ratio control system of the engine, the engine is based on the detection result by the air-fuel ratio detection apparatus. The fuel injection amount to the desired air-fuel ratio is controlled. In the following description, an air-fuel ratio (A / F) detection procedure using an air-fuel ratio sensor and an element resistance detection procedure using the frequency characteristics of the sensor will be described in detail.
[0012]
FIG. 1 is a configuration diagram showing an outline of an air-fuel ratio detection apparatus according to the present embodiment. In FIG. 1, the air-fuel ratio detection device includes a limit current type air-fuel ratio sensor (hereinafter referred to as an A / F sensor) 30 as an oxygen concentration sensor, and the A / F sensor 30 extends from an engine body 11 of the engine 10. Attached to the tube 12. The A / F sensor 30 outputs a linear air-fuel ratio detection signal proportional to the oxygen concentration in the exhaust gas in accordance with application of a voltage commanded from a microcomputer (hereinafter referred to as a microcomputer) 20. The microcomputer 20 is composed of a well-known CPU, ROM, RAM, and the like for executing various arithmetic processes, and controls a bias control circuit 40 and a heater control circuit 25 described later according to a predetermined control program.
[0013]
FIG. 2 is a cross-sectional view showing an outline of the A / F sensor 30. In FIG. 2, the A / F sensor 30 protrudes toward the inside of the exhaust pipe 12, and the sensor 30 is roughly divided into a cover 31, a sensor body 32, and a heater 33. The cover 31 has a U-shaped cross section, and a plurality of small holes 31a communicating with the inside and outside of the cover are formed on the peripheral wall. The sensor body 32 generates a limit current corresponding to the oxygen concentration in the air-fuel ratio lean region or the unburned gas (CO, HC, H2 etc.) concentration in the air-fuel ratio rich region.
[0014]
The configuration of the sensor body 32 will be described in detail. In the sensor body 32, an exhaust gas side electrode layer 36 is fixed to the outer surface of the solid electrolyte layer 34 formed in a cup shape in cross section, and an atmosphere side electrode layer 37 is fixed to the inner surface. A diffusion resistance layer 35 is formed outside the exhaust gas side electrode layer 36 by a plasma spraying method or the like. The solid electrolyte layer 34 is made of an oxygen ion conductive oxide sintered body in which CaO, MgO, Y2 O3, Yb2 O3 or the like is dissolved as a stabilizer in ZrO2, HfO2, ThO2, Bi2 O3 or the like as a stabilizer. Consists of heat-resistant inorganic materials such as alumina, magnesia, siliceous, spinel, mullite. Both the exhaust gas side electrode layer 36 and the atmosphere side electrode layer 37 are made of a noble metal having high catalytic activity such as platinum, and the surface thereof is subjected to porous chemical plating or the like. The area and thickness of the exhaust gas side electrode layer 36 are about 10 to 100 mm ^ 2 (square millimeter) and about 0.5 to 2.0 μm, while the area and thickness of the atmosphere side electrode layer 37 are about It is 10 mm ^ 2 (square millimeter) or more and about 0.5 to 2.0 μm.
[0015]
The heater 33 is accommodated in the atmosphere-side electrode layer 37, and heats the sensor body 32 (the atmosphere-side electrode layer 37, the solid electrode layer 34, the exhaust gas-side electrode layer 36, and the diffusion resistance layer 35) with the generated heat energy. The heater 33 has a heat generation capacity sufficient to activate the sensor body 32.
[0016]
In the A / F sensor 30 configured as described above, the sensor main body 32 generates a limit current corresponding to the oxygen concentration in the lean region from the theoretical air-fuel ratio point. In this case, the limiting current corresponding to the oxygen concentration is determined by the area of the exhaust gas side electrode layer 36, the thickness of the diffusion resistance layer 35, the porosity, and the average pore diameter. The sensor main body 32 can detect the oxygen concentration with a linear characteristic, and a high temperature of about 600 ° C. or higher is required to activate the sensor main body 32. Since the active temperature range is narrow, the active region cannot be controlled by heating only with the exhaust gas of the engine 10. Therefore, in the present embodiment, the sensor body 32 is heated to the activation temperature range by the heating control of the heater 33. Note that in the region on the richer side than the stoichiometric air-fuel ratio, the concentration of unburned gas such as carbon monoxide (CO) changes almost linearly with respect to the air-fuel ratio, and the sensor body 32 corresponds to the concentration of CO or the like. Generate limit current.
[0017]
The voltage-current characteristics of the sensor body 32 will be described with reference to FIG. According to FIG. 3, the inflow current to the solid electrolyte layer 34 of the sensor main body 32 proportional to the detection A / F of the A / F sensor 30 and the applied voltage to the solid electrolyte layer 34 have linear characteristics. I understand. In such a case, the straight line portion parallel to the voltage axis V specifies the limit current of the sensor body 32, and the increase / decrease in the limit current (sensor current) is the increase / decrease in A / F (ie, the degree of lean / rich). It corresponds to. That is, the limit current increases as A / F becomes leaner, and the limit current decreases as A / F becomes richer.
[0018]
In this voltage-current characteristic, a voltage region smaller than the straight line portion parallel to the voltage axis V is a resistance dominant region, and the slope of the primary straight line portion in the resistance dominant region is the solid electrolyte layer 34 in the sensor body 32. Specified internal resistance (this is referred to as element resistance). Since the element resistance changes with a change in temperature, when the temperature of the sensor main body 32 decreases, the inclination decreases due to the increase in element resistance.
[0019]
On the other hand, in FIG. 1, a bias command signal (digital signal) Vr for applying a voltage to the A / F sensor 30 is input from the microcomputer 20 to the D / A converter 21, and the D / A converter 21 performs analog processing. After being converted to the signal Vb, it is input to an LPF (low-pass filter) 22. The output voltage Vc from which the high-frequency component of the analog signal Vb has been removed by the LPF 22 is input to a bias control circuit 40 for applying a voltage for A / F detection or element resistance detection to the A / F sensor 30. The At the time of A / F detection, the applied voltage Vp corresponding to the A / F at that time is set using the characteristic line L1 of FIG. 3, whereas at the time of element resistance detection, it is a single and predetermined frequency signal consisting of a predetermined frequency signal. A voltage having a time constant of is applied.
[0020]
The current detection circuit 50 in the bias control circuit 40 detects a current value that flows as a voltage is applied to the A / F sensor 30. An analog signal having a current value detected by the current detection circuit 50 is input to the microcomputer 20 via the A / D converter 23. The detailed configuration of the bias control circuit 40 will be described later. The operation of the heater 33 attached to the A / F sensor 30 is controlled by the heater control circuit 25. That is, the heater control circuit 25 performs duty control on the power supplied from the battery power source (not shown) to the heater 33 according to the element temperature of the A / F sensor 30 and the heater temperature, and controls the heating of the heater 33.
[0021]
Here, the details of the command voltage applied to the A / F sensor 30 when the element resistance is detected will be described. That is, the microcomputer 20 outputs a bias command signal Vr as a digital signal, and this bias command signal Vr has a single time and a predetermined time constant when passing through the D / A converter 21 and the LPF 22. Converted to voltage (analog signal). FIG. 4 shows an example of signal waveforms of the output voltage Vb of the D / A converter 21, the output voltage Vc of the LPF 22, and the sensor current Ip when detecting the element resistance. In this case, the output voltage Vb of the D / A converter 21 is switched to a voltage value higher by “ΔV” than the immediately preceding applied voltage Vp (A / F detection voltage) at time t1, and the output voltage Vb is restored at time t2. To the applied voltage Vp.
[0022]
The portion of the range A in the output voltage (Vc waveform) of the LPF 22 is an annealed signal from which the high frequency component has been removed by giving a predetermined time constant, and the portion of the range B in the Vc waveform is the LPF 22 The effect of annealing is eliminated and the voltage is constant. The sensor current Ip rises with the same time constant as the voltage Vc in the range A where the voltage Vc rises with the time constant of the LPF 22, and rises with a time constant slower than the rise time constant of the range A in the range B where the voltage Vc is almost constant. It is supposed to go down. In this range B, since the time constant is slow, the current Ip hardly changes in practice. That is, no matter what timing within the range B is detected, the peak current ΔI (current change amount) has almost no detection error of ΔI. The reason will be described later.
[0023]
The voltage having a predetermined time constant referred to in the present embodiment is a signal including a single frequency component, and its frequency is determined as follows.
FIG. 5 is an equivalent circuit of the A / F sensor 30. In this equivalent circuit, Rg is the particle resistance of the solid electrolyte to oxygen ions, Ri and Ci are the particle resistance and grain boundary capacitance at the solid electrolyte particle interface, and Rf and Cf are the electrode interface resistance and electrode interface capacitance, respectively.
[0024]
FIG. 6 shows the complex impedance characteristic of the A / F sensor 30 expressed as shown in FIG. In the figure, “Zreal” on the horizontal axis represents the real part of the complex impedance, and “Zimaginary” on the vertical axis represents the imaginary part. At this time, the impedance ZAC is
ZAC = Zreal + j ・ Zimaginary
Represented as: The point A in FIG. 6 shows the impedance characteristic at a frequency of 1 kHz. When the frequency is lower than that, the characteristic is on the right side of the point A, and when the frequency is high, the characteristic is on the left side of the point A. That is, in the vicinity of 1 kHz, the total value of Rg and Ri is detected as impedance.
[0025]
FIG. 7 is obtained by converting the horizontal axis into the frequency f and the vertical axis into the impedance ZAC in FIG. According to FIG. 7, the impedance ZAC converges to a predetermined value (Rg + Ri) at a frequency of 1 kHz to 10 MHz. Further, the impedance ZAC decreases on the higher frequency side than near 10 MHz, and converges to a predetermined value (Rg) smaller than (Rg + Ri). From this, it can be seen that, in order to detect the impedance ZAC in a stable state with high accuracy, it is desirable that the impedance ZAC is set to a constant value of about 1 kHz to 10 MHz regardless of the frequency f. In the present embodiment, the AC frequency at the time of voltage switching is set to 1 kHz, and a time constant of about 159 μs is set by the LPF 22 in order to obtain the rising edge of the waveform (range A in the Vc waveform in FIG. 4). Incidentally, the lower limit (the upper limit of the frequency) of the time constant at the time of voltage change is limited by the processing capability of the D / A converter 21 and the A / D converter 23, and the time constant can be obtained by using a high-speed circuit. It is also possible to extend the lower limit of.
[0026]
For this reason, when switching the voltage applied to the A / F sensor 30, the microcomputer 20 outputs a digital signal containing a frequency component of about 1 kHz, and the digital signal is predetermined as it passes through the D / A converter 21 and the LPF 22. Is converted to a signal having a time constant (approximately 159 μs). Since the command signal output from the microcomputer 20 is a rectangular signal, the signal generation can be easily realized.
[0027]
Here, the reason why the time constant at which the sensor current Ip falls in the range B in FIG. 4 is slower than the time constant in the range A will be described. First, in order to simplify the explanation, the sensor equivalent circuit (FIG. 5) is simplified as shown in FIG. This is because the rising time constant of the voltage Vc actually applied to the A / F sensor 30 is about several kHz to several tens of kHz, so that the current almost passes through the Rg-Ri-Cf path in FIG. Because. Therefore, the equivalent circuit of FIG. 8A can be expressed by a simple HPF model as shown in FIG.
[0028]
FIG. 9 shows the resistance frequency characteristics of the equivalent circuit of FIG. It can be seen that the characteristics of FIG. 9 are substantially the same as the frequency characteristics in the vicinity of the point A in FIG. Point B in the figure corresponds to the cutoff frequency of the HPF in FIG.
[0029]
FIG. 10A shows a transmission block from the output Vb of the D / A converter 21 of FIG. 1 to the current Ip flowing through the A / F sensor 30. FIG. The front-stage LPF corresponds to the LPF 22 in FIG. 1, and the rear-stage HPF corresponds to the HPF in FIG. According to this block diagram, the voltage waveform Vb and the current waveform Ip when the step voltage is applied to the A / F sensor 30 are shown in FIGS. 10B and 10C, and the equation of the time function of the sensor current Ip is
[0030]
[Expression 1]
Figure 0004123580
It becomes.
In the above equation (1), “T1” is the HPF time constant (corresponding to point B in FIG. 9), and “T2” is the LPF time constant (corresponding to point A in FIG. 9). As described above, in order to use a region having a stable resistance frequency characteristic, it is essential to set the point A to be higher in frequency than the point B. That is, the magnitude relationship between the two time constants T1 and T2 is always
T1> T2
It becomes. Therefore, from the equation (1), it can be seen that the fall time of the range B is later than the rise time of the range A in FIG.
[0031]
For the above reason, in the range B in which the output voltage Vb of FIG. 4 is almost constant, the sensor current Ip is almost within a time of about 2.5 ms, which is an order one digit lower than the HPF time constant of the sensor equivalent circuit. It will not change. That is, in the range B in FIG. 4, almost the same value can be obtained no matter what timing the peak current ΔI is detected.
[0032]
Therefore, as shown in FIG. 11, when the sensor current changes like a sine waveform La (the waveform of the two-dot chain line in the figure), ΔI is erroneously detected by shifting the detection timing from “t” to “t ′”. On the other hand, in the present embodiment, since the sensor current changes like a waveform Lb (solid line waveform in the figure), ΔI can be accurately detected even at the detection timing of “t ′”. Incidentally, the total applied time “A + B” of the voltages switched with a predetermined time constant may be longer than the time during which the peak current ΔI can be detected, and may be several tens μs or more.
[0033]
Next, the configuration of the bias control circuit 40 will be described with reference to the electric circuit diagram of FIG. In FIG. 12, the bias control circuit 40 is roughly divided into a reference voltage circuit 44, a first voltage supply circuit 45, a second voltage supply circuit 47, and a current detection circuit 50. The reference voltage circuit 44 divides the constant voltage Vcc by the voltage dividing resistors 44a and 44b to generate a constant reference voltage Va.
[0034]
The first voltage supply circuit 45 is configured by a voltage follower circuit, and the same voltage Va as the reference voltage Va of the reference voltage circuit 44 is connected to one terminal of the A / F sensor 30 (atmospheric side electrode layer 37 in FIG. 2). Terminal 42). More specifically, in the first voltage supply circuit 45, the positive input terminal is connected to the voltage dividing point of each of the voltage dividing resistors 44a and 44b, and the negative input terminal is one terminal of the A / F sensor 30. 42, an operational amplifier 45a connected to 42, a resistor 45b having one end connected to the output terminal of the operational amplifier 45a, and an NPN transistor 45c and a PNP transistor 45d each having a base connected to the other end of the resistor 45b. The collector of the NPN transistor 45 c is connected to the constant voltage Vcc, and the emitter is connected to one terminal 42 of the A / F sensor 30 through the current detection resistor 50 a constituting the current detection circuit 50. The emitter of the PNP transistor 45d is connected to the emitter of the NPN transistor 45c, and the collector is grounded.
[0035]
Similarly, the second voltage supply circuit 47 is configured by a voltage follower circuit, and the same voltage Vc as the output voltage Vc of the LPF 22 is connected to the other terminal of the A / F sensor 30 (the exhaust gas side electrode layer 36 in FIG. 2). Terminal 41). More specifically, the second voltage supply circuit 47 includes an operational amplifier having a positive input terminal connected to the output of the LPF 22 and a negative input terminal connected to the other terminal 41 of the A / F sensor 30. 47a, a resistor 47b having one end connected to the output terminal of the operational amplifier 47a, and an NPN transistor 47c and a PNP transistor 47d each having a base connected to the other end of the resistor 47b. The collector of the NPN transistor 47c is connected to the constant voltage Vcc, and the emitter is connected to the other terminal 41 of the A / F sensor 30 via the resistor 47e. The emitter of the PNP transistor 47d is connected to the emitter of the NPN transistor 47c, and the collector is grounded.
[0036]
With the above configuration, the constant voltage Va is always supplied to one terminal 42 of the A / F sensor 30. When the voltage Vc lower than the constant voltage Va is supplied to the other terminal 41 of the A / F sensor 30 via the LPF 22, the A / F sensor 30 is positively biased. Further, when the voltage Vc higher than the constant voltage Va is supplied to the other terminal 41 of the A / F sensor 30 via the LPF 22, the A / F sensor 30 is negatively biased.
[0037]
Next, the operation of the air-fuel ratio detection apparatus configured as described above will be described.
FIG. 13 is a flowchart of a main routine showing an outline of the control program in the present embodiment, and this routine is started when the power to the microcomputer 20 is turned on.
[0038]
In FIG. 13, the microcomputer 20 first determines in step 100 whether or not a predetermined time Ta has elapsed since the previous A / F detection. Here, the predetermined time Ta is a time corresponding to the detection cycle of A / F, and is suitably set to about Ta = 2 to 4 ms, for example. If the predetermined time Ta has elapsed since the last A / F detection, the microcomputer 20 makes a positive determination in step 100 and proceeds to step 110. The microcomputer 20 reads the sensor current Ip (limit current value) detected by the current detection circuit 50 in step 110, and uses the characteristic map stored in advance in the ROM in the microcomputer 20 as the sensor current Ip at that time. The corresponding A / F value is detected. After detecting the A / F value, the microcomputer 20 applies an applied voltage Vp corresponding to the A / F detection result (Ip) at that time to the A / F sensor 30 using the characteristic line L1 of FIG.
[0039]
In step 120, the microcomputer 20 determines whether or not a predetermined time Tb has elapsed since the previous element resistance detection. Here, the predetermined time Tb is a time corresponding to the detection cycle of the element resistance, and is selectively set according to, for example, the engine operating state. In the present embodiment, Tb = 2 s (seconds) at normal times (when the engine is in steady operation) where the change in A / F is relatively small, and Tb when there is a sudden change in A / F (when the engine is in transient operation). The predetermined time Tb is variably set to = 128 ms (milliseconds).
[0040]
If the determination at step 120 is negative, the microcomputer 20 detects the A / F value every time the predetermined time Ta elapses as described above. If step 120 is positively determined, the microcomputer 20 performs element resistance detection processing at step 130. The element resistance detection process will be described below using the subroutine of FIG.
[0041]
In FIG. 14, the microcomputer 20 first operates the bias command signal Vr in step 131 to change the voltage to the positive side with respect to the applied voltage Vp (A / F detection voltage) so far. At this time, the application time of the element resistance detection voltage (time t1 to t2 in FIG. 4) is set longer than the time when the peak current is generated after the voltage is switched. Here, the application time may be 2.5 ms or less as defined above, but the current must converge to the limit current value within a time Ta = 2 to 4 ms until the next A / F is detected. . For this reason, the application time of the element current detection voltage is made shorter than the A / F detection interval. Specifically, the voltage application time is set to about several tens to 100 μs.
[0042]
Thereafter, the microcomputer 20 reads the voltage change amount ΔV at that time and the sensor current change amount ΔI detected by the current detection circuit 50 in step 132. In such a case, ΔI is detected within the range B in FIG. In step 133, the microcomputer 20 calculates the element resistance R from ΔV and ΔI (R = ΔV / ΔI), and then returns to the original main routine.
[0043]
On the other hand, the element resistance R obtained as described above has the relationship shown in FIG. 15 with respect to the element temperature. That is, the element resistance R increases dramatically as the element temperature decreases. In the figure, the element resistance R = 90Ω corresponds to the half-active temperature (600 ° C.) of the A / F sensor 30, and the element resistance R = 30Ω corresponds to the activation temperature (700 ° C.) of the A / F sensor 30. In controlling the heater of the A / F sensor 30, the heater 33 is used to eliminate a deviation between the calculated element resistance R and a target resistance value (for example, 30Ω) that the A / F sensor 30 is considered to be sufficiently activated. The energization amount required for the current is obtained, and the energization is duty controlled. That is, element temperature feedback control is performed, whereby the sensor element temperature is maintained at a predetermined activation temperature.
[0044]
According to the embodiment described in detail above, the following effects can be obtained.
(A) In the present embodiment, when the applied voltage of the A / F sensor 30 is changed stepwise and the element resistance R is detected from the change amounts ΔV and ΔI of the voltage and current at that time, a predetermined time constant is provided. In addition to switching the voltage value, the application time of the voltage having the predetermined time constant is set longer than the time when the peak current is generated after the voltage application. In this case, it is possible to provide a period in which the current change becomes slow after the peak current is generated with the voltage change (range B in FIG. 4). That is, the period for accurately detecting the amount of current change accompanying the voltage change is extended. As a result, even if various factors such as the detection timing of the current change amount and the time constant vary, the element resistance of the sensor can be detected with high accuracy.
[0045]
(B) The application time of the voltage switched with a predetermined time constant was set to be less than the order of the reciprocal of the cut-off frequency specific to the sensor. Specifically, when the cut-off frequency peculiar to the sensor is about 40 Hz, the voltage application time is defined at about 2.5 ms, which is an order one digit lower than the time constant corresponding to the cut-off frequency. In this case, the device resistance can be detected by suitably setting the voltage application time without prolonging the voltage application more than necessary.
[0046]
(C) If the element resistance can be detected with high accuracy as described above, activation control of the A / F sensor 30 (energization control of the heater 33) using the detection result can be realized with high accuracy. Further, the detection result of the element resistance can be effectively applied to the deterioration determination of the sensor 30.
[0047]
In addition to the above, the embodiment of the present invention can be embodied as follows.
After applying a voltage having a predetermined time constant and generating a peak current, the voltage value is kept constant at the immediately preceding value. Such an embodiment can be realized by controlling the application time of the element resistance detection voltage in step 131 of FIG. In this case, it is preferable that the time during which the voltage is kept constant at a predetermined voltage value is less than or equal to the order of the reciprocal of the cutoff frequency specific to the sensor. Even in this configuration, as in the above-described embodiment, after the peak current is generated with the voltage change, a period in which the current change becomes slow can be provided, and the current change amount with the voltage change can be accurately detected. The period for is extended. As a result, even if various factors such as the detection timing of the current change amount and the time constant vary, the element resistance of the sensor can be detected with high accuracy. Further, an appropriate voltage application time can be set without prolonging the voltage application at the time of detecting the element resistance more than necessary.
[0048]
After switching to the element resistance detection voltage, the voltage application time may be set variably. In particular,
-Engine operating conditions such as transient judgment results and exhaust gas temperature,
・ Activity of A / F sensor,
・ Elapsed time since engine startup,
The voltage application time is variably set according to the above. In this case, the voltage application time can be set even more preferably.
[0049]
Instead of the above-described cup-type limiting current type A / F sensor as the oxygen concentration sensor, the present invention may be embodied by using a laminated sensor. Even in such a case, the actions and effects as described above can be obtained.
[0050]
In the above embodiment, the present invention is applied as an A / F sensor for detecting the oxygen concentration (A / F) in the exhaust gas of the vehicle-mounted engine. However, the scope of the present invention is limited to an A / F sensor for automobiles. In addition to this, the scope of application can be expanded. For example, it can be embodied as an oxygen concentration sensor that detects the oxygen concentration in a combustible gas (methane gas, ethane gas, etc.).
[0051]
In the above embodiment, the rectangular signal output from the microcomputer 20 has a predetermined time constant by the LPF, but the microcomputer 20 generates a signal having the predetermined time constant. It is also possible to detect the element resistance using the signal.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of an air-fuel ratio detection apparatus in an embodiment of the invention.
FIG. 2 is a cross-sectional view showing a detailed configuration of an A / F sensor.
FIG. 3 is a graph showing voltage-current characteristics of an A / F sensor.
FIG. 4 is a waveform diagram showing an output voltage Vb of the D / A converter, an output voltage Vc of the LPF, and a sensor current Ip.
FIG. 5 is an equivalent electric circuit diagram of the A / F sensor.
FIG. 6 is a graph showing a locus of impedance with respect to the frequency of an AC input voltage in a state where an A / F detection voltage is applied to the A / F sensor.
FIG. 7 is a graph showing the relationship between the frequency of AC input voltage and AC impedance.
FIG. 8 is an equivalent circuit diagram of an A / F sensor and a block diagram corresponding to the equivalent circuit.
9 is a graph showing resistance frequency characteristics of the equivalent circuit of FIG.
FIG. 10 is a diagram showing a transmission block from an output Vb of a D / A converter to a sensor current Ip, and Vb and Ip waveforms.
FIG. 11 is a waveform diagram showing a state of a current change accompanying a voltage change.
FIG. 12 is an electric circuit diagram showing a configuration of a bias control circuit.
FIG. 13 is a flowchart showing a main routine.
FIG. 14 is a flowchart showing an element resistance detection subroutine.
FIG. 15 is a graph showing the relationship between element temperature and element resistance.
FIG. 16 is a waveform diagram showing voltage change and current change when detecting element resistance in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Engine, 20 ... Microcomputer (microcomputer), 22 ... LPF (low-pass filter), 30 ... Limit current type A / F sensor as an oxygen concentration sensor, 40 ... Bias control circuit.

Claims (4)

電圧の印加に伴い被検出ガス中の酸素濃度に応じた電流信号を出力する酸素濃度センサに適用され、
酸素濃度検出のために前記センサに印加した電圧を、所定の時定数を持たせて同センサの素子抵抗検出のための電圧に切り換え、その時の電圧変化と当該電圧変化に伴う電流変化とから前記センサの素子抵抗を検出する酸素濃度センサの素子抵抗検出方法において、
前記所定の時定数を持たせて切り換えた電圧の印加時間を、電圧切り換え後にピーク電流が出る時間よりも長くしたことを特徴とする酸素濃度センサの素子抵抗検出方法。
Applied to an oxygen concentration sensor that outputs a current signal corresponding to the oxygen concentration in the gas to be detected with the application of voltage,
The voltage applied to the sensor for oxygen concentration detection is switched to a voltage for detecting the element resistance of the sensor with a predetermined time constant, and the voltage change at that time and the current change accompanying the voltage change In the element resistance detection method of the oxygen concentration sensor for detecting the element resistance of the sensor,
A method for detecting an element resistance of an oxygen concentration sensor, characterized in that an application time of a voltage switched with the predetermined time constant is made longer than a time during which a peak current is generated after voltage switching.
前記所定の時定数を持たせて切り換えた電圧の印加時間を、センサ特有のカットオフ周波数となる周波数の逆数で表される周期時間以下とする請求項1に記載の酸素濃度センサの素子抵抗検出方法。2. The element resistance detection of the oxygen concentration sensor according to claim 1, wherein an application time of the voltage switched with the predetermined time constant is set to a cycle time represented by a reciprocal of a frequency that is a sensor-specific cutoff frequency. Method. 電圧の印加に伴い被検出ガス中の酸素濃度に応じた電流信号を出力する酸素濃度センサに適用され、
酸素濃度検出のために前記センサに印加した電圧を、所定の時定数を持たせて同センサの素子抵抗検出のための電圧に切り換え、その時の電圧変化と当該電圧変化に伴う電流変化とから前記センサの素子抵抗を検出する酸素濃度センサの素子抵抗検出方法において、
前記所定の時定数を持たせた電圧を印加してピーク電流が出た後、その電圧値を前記ピーク電流発生時の電圧値で一定に保つことを特徴とする酸素濃度センサの素子抵抗検出方法。
Applied to an oxygen concentration sensor that outputs a current signal corresponding to the oxygen concentration in the gas to be detected with the application of voltage,
The voltage applied to the sensor for oxygen concentration detection is switched to a voltage for detecting the element resistance of the sensor with a predetermined time constant, and the voltage change at that time and the current change accompanying the voltage change In the element resistance detection method of the oxygen concentration sensor for detecting the element resistance of the sensor,
A method for detecting an element resistance of an oxygen concentration sensor, wherein after applying a voltage having the predetermined time constant and generating a peak current, the voltage value is kept constant at the voltage value at the time of the generation of the peak current. .
前記ピーク電流発生時の電圧値で一定に保つ時間を、センサ特有のカットオフ周波数となる周波数の逆数で表される周期時間以下とする請求項3に記載の酸素濃度センサの素子抵抗検出方法。4. The element resistance detection method for an oxygen concentration sensor according to claim 3, wherein the time during which the voltage value at the time of peak current generation is kept constant is equal to or shorter than the cycle time represented by the reciprocal of the frequency that is a sensor-specific cutoff frequency.
JP20544898A 1997-08-27 1998-07-21 Method for detecting element resistance of oxygen concentration sensor Expired - Lifetime JP4123580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20544898A JP4123580B2 (en) 1997-08-27 1998-07-21 Method for detecting element resistance of oxygen concentration sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23101497 1997-08-27
JP9-231014 1997-08-27
JP20544898A JP4123580B2 (en) 1997-08-27 1998-07-21 Method for detecting element resistance of oxygen concentration sensor

Publications (2)

Publication Number Publication Date
JPH11132996A JPH11132996A (en) 1999-05-21
JP4123580B2 true JP4123580B2 (en) 2008-07-23

Family

ID=26515071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20544898A Expired - Lifetime JP4123580B2 (en) 1997-08-27 1998-07-21 Method for detecting element resistance of oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JP4123580B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940861B (en) * 2019-12-10 2022-02-18 江苏智闻智能传感科技有限公司 Resistance testing circuit and resistance testing method of gas sensor
CN112784514B (en) * 2021-01-19 2023-09-19 东北大学 Equivalent circuit-based modeling method for nano gas sensor

Also Published As

Publication number Publication date
JPH11132996A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
JP3692640B2 (en) Method for detecting element resistance of oxygen concentration sensor
US6084418A (en) Method for accurately detecting sensor element resistance
JP3684686B2 (en) Oxygen concentration determination device
JP3757507B2 (en) Air-fuel ratio detection device
US5405521A (en) Oxygen concentration measuring device
JP3846058B2 (en) Gas concentration detector
JP3680445B2 (en) Oxygen concentration detector
JP4206566B2 (en) Element resistance detector for gas concentration sensor
US6446488B1 (en) Gas concentration measuring apparatus producing current signals as a function of gas concentration
JP4123580B2 (en) Method for detecting element resistance of oxygen concentration sensor
JP3718399B2 (en) Element resistance detector for oxygen concentration sensor
JP3500775B2 (en) Oxygen sensor deterioration judgment device
JP3420932B2 (en) Method for detecting element resistance of gas concentration sensor
JP6459786B2 (en) Gas sensor control device
JPH11344466A (en) Heater control device of gas concentration sensor
JP2009042242A (en) Control device for gas concentration sensor
JP3695408B2 (en) Control device for gas concentration sensor
JP3292124B2 (en) Element impedance detecting device of oxygen concentration sensor and oxygen concentration detecting device
JP3845998B2 (en) Gas component concentration measuring device
JP3622619B2 (en) Element resistance detector for oxygen concentration sensor
JPH11271264A (en) Temperature control unit for gas concentration sensor
JP4051742B2 (en) Gas component concentration measuring device
JP3486967B2 (en) Air-fuel ratio detector
JPH11230932A (en) Device for detecting element temperature of gas concentration sensor
JP2000193636A (en) Abnormality detection device of air-fuel ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term