JP4122770B2 - Exhaust temperature detection device for internal combustion engine - Google Patents

Exhaust temperature detection device for internal combustion engine Download PDF

Info

Publication number
JP4122770B2
JP4122770B2 JP2002000804A JP2002000804A JP4122770B2 JP 4122770 B2 JP4122770 B2 JP 4122770B2 JP 2002000804 A JP2002000804 A JP 2002000804A JP 2002000804 A JP2002000804 A JP 2002000804A JP 4122770 B2 JP4122770 B2 JP 4122770B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
gas temperature
temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002000804A
Other languages
Japanese (ja)
Other versions
JP2003201908A (en
Inventor
暁 白河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002000804A priority Critical patent/JP4122770B2/en
Publication of JP2003201908A publication Critical patent/JP2003201908A/en
Application granted granted Critical
Publication of JP4122770B2 publication Critical patent/JP4122770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気温度検出装置に関する。
【0002】
【従来の技術】
内燃機関の制御系で排気温度が必要となる場合、排気通路に排気温度センサを配置し、この排気温度センサの出力信号を用いて制御することが一般的であるが、特願2001−29175号(特に段落番号0026)では、排気温度センサを配置せず、燃料噴射量と機関回転数とから排気温度を推定している。
【0003】
これは噴射された燃料がトルク(駆動力)に変換される際に、トルクに変換されずに残った燃料が熱に変換されるといった考えに基づくものであり、燃料噴射量と機関回転数とで任意の時間における排気温度を推定するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来の技術は、燃焼室内の燃焼温度を考慮していなかったため、排気温度推定時の燃焼温度の差分がそのまま排気温度の推定誤差となるといった問題があった。
【0005】
本発明は、このような従来の問題点に鑑み、燃焼室内の燃焼温度を考慮して、より正確な排気温度推定を可能とすることを目的とする。
【0006】
【課題を解決するための手段】
このため、請求項1の発明では、内燃機関の排気中のNOx濃度、空燃比、ガス流量に対応する機関回転数又は吸入新気量をそれぞれ検出する手段と、検出された空燃比、及び、ガス流量に対応する機関回転数又は吸入新気量に基づいて、排気温度基本値を演算し、空燃比がリッチであるほど、また機関回転数又は吸入新気量が大きくなるほど、排気温度基本値を大きくする排気温度基本値演算手段と、検出されたNOx濃度に基づいて、前記排気温度基本値に対する補正値を演算し、NOx濃度が低くなるほど、補正値を大きくする補正値演算手段と、前記排気温度基本値に、前記補正値を乗じて、排気温度を演算する排気温度推定手段とにより、内燃機関の排気温度検出装置を構成する。
【0007】
請求項2の発明では、前記補正値演算手段は、検出されたNOx濃度、及び、ガス流量に対応する吸入新気量又は機関回転数に基づいて、補正値を演算し、NOx濃度が低くなるほど、また吸入新気量又は機関回転数が大きくなるほど、補正値を大きくすることを特徴とする。
【0008】
請求項3の発明では、ターボ過給機を備え、排気タービン下流側の排気温度を推定する場合に、排気タービンでの熱交換による排気温度の降下分に基づいて、前記排気温度推定手段で推定した排気温度を補正する手段を備えることを特徴とする。
請求項4の発明では、排気浄化装置を備え、排気浄化装置の入口側温度を推定する場合に、排気浄化装置までの排気通路での放熱量に基づいて、前記排気温度推定手段で推定した排気温度を補正する手段を備えることを特徴とする。
【0009】
請求項5の発明では、排気浄化装置を備え、排気浄化装置の表面温度を推定する場合に、排気浄化装置までの排気通路での放熱量及び排気浄化装置自体での放熱量に基づいて、前記排気温度推定手段で推定した排気温度を補正する手段を備えることを特徴とする。
請求項6の発明では、排気中のNOx濃度と共に空燃比を検出可能なNOxセンサを備えることを特徴とする。
【0010】
【発明の効果】
請求項1の発明によれば、燃料がトルクに変換される効率である燃費率と、燃焼室内の燃焼温度とを考慮して、排気温度を精度良く推定することができる。すなわち、燃費率との相関が強い空燃比と、ガス流量に対応する機関回転数又は吸入新気量とを用いて、排気温度基本値を演算し、燃焼温度との相関が強い(燃焼温度の上昇によりNOx濃度が増加し、NOx濃度が大きいほど燃焼温度が高くなる)NOx濃度を用いて、前記排気温度基本値に対する補正値を演算することで、排気温度を精度良く推定することができる。従って、過渡的な排気温度の変化を精度良く検出でき、かつ、排気中の特定成分の濃度の変化は環境変化(気圧変化等)の影響も含まれるため、環境変化による排気温度の変化も検出できる。
【0011】
請求項2の発明によれば、前記補正値の演算に際し、NOx濃度の他、ガス流量に対応する吸入新気量又は機関回転数を用いることで、より精度良く補正することができる。
【0012】
請求項3の発明によれば、ターボ過給機を備える場合に、排気タービンでの熱交換による排気温度の降下分を考慮することで、排気タービン下流側の排気温度を応答良く高い精度で推定することができる。
請求項4の発明によれば、排気浄化装置の入口側温度を応答良く高い精度で推定することができる。
【0013】
請求項5の発明によれば、排気浄化装置の表面温度を応答良く高い精度で推定することができる。
請求項6の発明によれば、1つのNOxセンサで排気中のNOx濃度と共に空燃比を検出することで、コストアップを抑制できる。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は内燃機関(ここではディーゼルエンジン)のシステム図である。
エンジン1の吸気通路2には、外気を取入れるエアクリーナ3の下流側に、可変ノズル型のターボ過給機4の吸気コンプレッサ5が設けられている。このターボ過給機4は、排気通路12に介装されて排気のエネルギーにより回転駆動される排気タービン15と、これに同軸結合されて回転駆動される吸気コンプレッサ5とを有し、この吸気コンプレッサ5によりエアクリーナ3からの空気を加圧して供給する。
【0015】
吸気コンプレッサ5の下流側には、過給空気を冷却して充填効率を高めるインタークーラ6があり、これにより冷却された過給空気は、コレクタ7、スワール制御弁8を経て、エンジン1の各気筒の燃焼室に供給される。
エンジン1の燃料供給系は、燃料を加圧して供給するサプライポンプ9と、このサプライポンプ9からの高圧燃料を蓄圧するコモンレール10と、このコモンレール10から高圧燃料を導いて各気筒の燃焼室に噴射供給するインジェクタ11とから構成される。
【0016】
エンジン1からの排気は、排気通路12に流出し、排気の一部はEGR通路13によりEGR弁14を介して吸気通路2側のコレクタ7へ還流される。残りの排気は、排気タービン15を駆動した後、排気浄化装置(例えばディーゼルパティキュレートフィルタ機能付き排気浄化触媒)16により浄化されて、排出される。
【0017】
エンジン1の各種制御を行うエンジンコントロールユニット(ECU)20には、エンジン回転数Neを検出するエンジン回転数センサ21、エアクリーナ3下流で吸入新気量Qas0 を検出するエアフローメータ22、コレクタ7位置で吸気圧(過給圧)Pmを検出する吸気圧センサ23、排気浄化装置16の入口側にて排気中のNOx濃度を検出すると同時に排気空燃比AbyFを検出可能なNOxセンサ24などから信号が入力されている。従って、NOxセンサはNOx濃度検出手段と空燃比検出手段とを兼ねる。
【0018】
ここにおいて、ECU20に入力される信号から、排気温度をより応答良く検出(推定)することが本発明の課題であり、これは以下のフローにより実現される。
図2は第1実施形態でのフローチャートである。
【0019】
S11では、NOxセンサのNOx濃度に関連する信号を読込んで、排気中のNOx濃度を検出する。
S12では、NOxセンサの空燃比に関連する信号を読込んで、排気中の空燃比AbyFを検出する。
S13では、エンジン回転数センサの信号を読込んで、エンジン回転数Neを検出する。
【0020】
S14では、エアフローメータの信号を読込んで、吸入新気量Qas0 を検出する。
S15では、図3に示すマップを参照して、空燃比AbyFとエンジン回転数Ne(又は吸入新気量Qas0 )とから、燃費率に依存する排気温度基本値Texhbを演算する。ここで、空燃比AbyFが小(リッチ)であるほど、またエンジン回転数Neが大きくなるほど、排気温度基本値Texhbは大きくなる。この部分が排気温度基本値演算手段に相当する。
【0021】
尚、本実施形態では、排気温度基本値の演算のため、空燃比A by Fとエンジン回転数Neとを用いているが、ここでエンジン回転数Neはガス流量のパラメータとして用いているので、エンジン回転数Neに代えて、吸入新気量Q as0 を用いることができる。
【0022】
S16では、図4に示すマップを参照し、NOx濃度と吸入新気量Qas0 (又はエンジン回転数Ne)とから、燃焼温度に依存する補正値(補正係数)Ktexhを演算する。この部分が補正値演算手段に相当する。
S17では、次式のごとく、排気温度基本値Texhbに、燃焼温度補正値Ktexhを乗じて、排気温度Texh を演算する。この部分が排気温度推定手段に相当する。
Texh =Texhb・Ktexh
【0023】
実施形態では、燃焼温度に対するNOxの傾向、及び、燃費率に対する空燃比も傾向が非線形なので、これらを吸入新気量やエンジン回転数で補償することで、より精度の高い排気温度の推定が可能となる。
【0024】
また、本実施形態によれば、NOxセンサの応答性は、0.1〜0.3 msec (63%応答の時定数)であり、高温気体計測用の排気温度センサ(同約10 sec )と比較して格段に早い応答性が得られる。
また、エンジンパラメータ(燃料噴射時期、燃料噴射圧、EGR)や環境の変化はNOx濃度、空燃比計測値に現れるため、これらも排気温度推定に反映されるので、ロバスト性の高い温度計測が可能となる。
【0025】
図5第2実施形態でのフローチャートである。
本実施形態は、エンジンから排出される排気温度から排気浄化装置の触媒表面温度を推定する場合である。
S21では、第1実施形態として説明した図2のフローに従って、排気温度(エンジン出口排気温度)Texh を演算する。
【0026】
S22では、エアフローメータの信号を読込んで、吸入新気量Qas0 を検出する。
S23では、吸気圧センサの信号を読込んで、過給圧Pmを検出する。
S24では、ターボ過給機での排気温度降下を見積もるため、図6のマップを参照し、排気タービンを通過するガス量に対応する吸入新気量Qas0 と、過給圧Pmとから、ターボ効率の変化による排気温度降下係数Ktexhtcを演算する。
【0027】
この排気温度降下係数Ktexhtcは、排気タービン下流温度/排気タービン上流温度として表せる値である。また、図6のマップのKtexhtc小の領域は、ターボ効率が良く、温度降下が大となる領域で、この領域では例えばKtexhtc=0.4となり、Ktexhtc大の領域は、ターボ効率が悪く、温度降下が小となる領域で、この領域では例えばKtexhtc=0.9となる。尚、自然吸気のエンジンではKtexhtc=1でよい。
【0028】
S25では、エンジン出口排気温度Texh と排気温度降下係数Ktexhtcとから、次式により、ターボ出口排気温度Texh0を演算する。
Texh0=Texh ・Ktexhtc
S26では、排気通路と排気浄化装置自体とから放出される熱量を勘案して排気温度が低下することを見積もるため、図7の各テーブルを参照し、排気流量に対応する吸入新気量Qas0 から排気通路分放熱定数Ktloss 及び排気浄化装置分放熱定数Otloss を演算する。
【0029】
S27では、ターボ出口排気温度Texh0と、排気通路分放熱定数Ktloss 及び排気浄化装置分放熱定数Otloss とから、熱伝達の式を簡略した次式により、触媒表面温度基本値Texh1を演算する。
Texh1=Ktloss ・Texh0+Otloss
S28では、排気ガスの輸送遅れと放熱の遅れを補償するため、触媒表面温度基本値Texh1の1次遅れ処理により(次式参照)、排気浄化装置の触媒表面温度Texhbedを求めて、演算を終了する。
【0030】
Texhbed=k・Texh1+(1−k)・Texhbed-1
ここで、kは重み付け定数(0<k<1)、Texhbed-1はTexhbedの前回値である。
尚、本実施形態では、排気浄化装置の触媒表面温度を求めているが、図7のテーブルの設定(吸入新気量Qas0 に対する放熱定数Ktloss 及びOtloss の設定)により、排気浄化装置の入口温度を求めることも可能である。
【図面の簡単な説明】
【図1】 本発明の実施形態を示すエンジンのシステム図
【図2】 第1実施形態を示す排気温度推定のフローチャート
【図3】 排気温度基本値演算用マップを示す図
【図4】 燃焼温度補正値演算用マップを示す図
【図5】 第2実施形態での排気浄化装置表面温度推定のフローチャート
【図6】 排気温度降下係数演算用マップを示す図
【図7】 放熱定数演算用テーブルを示す図
【符号の説明】
1 エンジン
2 吸気通路
4 ターボ過給機
5 吸気コンプレッサ
6 インタークーラ
7 コレクタ
11 インジェクタ
12 排気通路
15 排気タービン
16 排気浄化装置
20 コントロールユニット(ECU)
21 エンジン回転数センサ
22 エアフローメータ
23 吸気圧センサ
24 NOxセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas temperature detection device for an internal combustion engine.
[0002]
[Prior art]
When an exhaust temperature is required in the control system of an internal combustion engine, an exhaust temperature sensor is generally disposed in the exhaust passage and control is performed using an output signal of the exhaust temperature sensor. Japanese Patent Application No. 2001-29175 In particular (paragraph number 0026), the exhaust gas temperature is estimated from the fuel injection amount and the engine speed without arranging the exhaust gas temperature sensor.
[0003]
This is based on the idea that when the injected fuel is converted into torque (driving force), the remaining fuel without being converted into torque is converted into heat. The exhaust temperature at an arbitrary time is estimated.
[0004]
[Problems to be solved by the invention]
However, since the above conventional technique does not consider the combustion temperature in the combustion chamber, there is a problem that the difference in combustion temperature at the time of exhaust temperature estimation becomes an estimation error of the exhaust temperature as it is.
[0005]
In view of such a conventional problem, an object of the present invention is to enable more accurate exhaust gas temperature estimation in consideration of the combustion temperature in the combustion chamber.
[0006]
[Means for Solving the Problems]
Therefore, in the first aspect of the invention, the means for detecting the NOx concentration in the exhaust gas of the internal combustion engine, the air-fuel ratio, the engine speed or the intake fresh air amount corresponding to the gas flow rate, the detected air-fuel ratio, and The exhaust temperature basic value is calculated based on the engine speed or intake fresh air amount corresponding to the gas flow rate, and the exhaust gas basic value becomes higher as the air-fuel ratio becomes richer or the engine speed or intake fresh air amount becomes larger. An exhaust temperature basic value calculating means for increasing the exhaust gas, a correction value for the exhaust gas basic value based on the detected NOx concentration, and a correction value calculating means for increasing the correction value as the NOx concentration decreases ; An exhaust gas temperature detecting device for an internal combustion engine is configured by exhaust gas temperature estimation means for calculating the exhaust gas temperature by multiplying the exhaust gas temperature basic value by the correction value.
[0007]
In the invention of claim 2, the correction value calculating means calculates a correction value based on the detected NOx concentration and the intake fresh air amount or the engine speed corresponding to the gas flow rate, and the lower the NOx concentration is, the lower the NOx concentration is. Further, the correction value is increased as the intake fresh air amount or the engine speed increases .
[0008]
In the third aspect of the invention, when the exhaust gas temperature is estimated by the heat exchange in the exhaust turbine when the exhaust gas temperature is estimated at the downstream side of the exhaust turbine provided with the turbocharger, the exhaust temperature estimation means estimates the exhaust gas temperature. Means for correcting the exhaust temperature is provided.
In the invention of claim 4 , when the exhaust gas purification device is provided and the inlet side temperature of the exhaust gas purification device is estimated, the exhaust gas estimated by the exhaust gas temperature estimation means based on the heat radiation amount in the exhaust passage to the exhaust gas purification device A means for correcting the temperature is provided.
[0009]
In the invention of claim 5 , when the exhaust purification device is provided and the surface temperature of the exhaust purification device is estimated, based on the heat radiation amount in the exhaust passage to the exhaust purification device and the heat radiation amount in the exhaust purification device itself, A means for correcting the exhaust temperature estimated by the exhaust temperature estimation means is provided.
The invention of claim 6 is characterized in that a NOx sensor capable of detecting the air-fuel ratio together with the NOx concentration in the exhaust gas is provided.
[0010]
【The invention's effect】
According to the first aspect of the present invention , the exhaust gas temperature can be accurately estimated in consideration of the fuel efficiency that is the efficiency with which the fuel is converted into torque and the combustion temperature in the combustion chamber. In other words, the basic value of the exhaust temperature is calculated using the air-fuel ratio having a strong correlation with the fuel consumption rate and the engine speed or intake fresh air amount corresponding to the gas flow rate, and the correlation with the combustion temperature is strong (the combustion temperature By calculating the correction value for the exhaust gas basic value using the NOx concentration, the exhaust gas temperature can be estimated with high accuracy. Therefore, transient exhaust temperature changes can be accurately detected, and changes in the concentration of specific components in the exhaust also include the effects of environmental changes (such as changes in atmospheric pressure). it can.
[0011]
According to the second aspect of the present invention, the correction value can be corrected with higher accuracy by using the intake fresh air amount or the engine speed corresponding to the gas flow rate in addition to the NOx concentration.
[0012]
According to the invention of claim 3 , when a turbocharger is provided, the exhaust temperature downstream of the exhaust turbine can be estimated with high accuracy with good response by taking into account the decrease in the exhaust temperature due to heat exchange in the exhaust turbine. can do.
According to the invention of claim 4, the temperature on the inlet side of the exhaust gas purification device can be estimated with high response and high accuracy.
[0013]
According to the invention of claim 5 , it is possible to estimate the surface temperature of the exhaust purification device with high response and high accuracy.
According to the sixth aspect of the present invention, the cost increase can be suppressed by detecting the air-fuel ratio together with the NOx concentration in the exhaust gas with one NOx sensor.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an internal combustion engine (here, a diesel engine).
The intake passage 2 of the engine 1 is provided with an intake compressor 5 of a variable nozzle type turbocharger 4 on the downstream side of an air cleaner 3 for taking in outside air. The turbocharger 4 includes an exhaust turbine 15 that is interposed in an exhaust passage 12 and is rotationally driven by the energy of exhaust gas, and an intake air compressor 5 that is coaxially coupled thereto and rotationally driven. 5 pressurizes and supplies the air from the air cleaner 3.
[0015]
On the downstream side of the intake compressor 5, there is an intercooler 6 that cools the supercharged air to increase the charging efficiency. The supercharged air cooled thereby passes through the collector 7 and the swirl control valve 8 to each of the engine 1. Supplied to the combustion chamber of the cylinder.
The fuel supply system of the engine 1 includes a supply pump 9 that pressurizes and supplies fuel, a common rail 10 that accumulates high-pressure fuel from the supply pump 9, and a high-pressure fuel that is guided from the common rail 10 to the combustion chamber of each cylinder. The injector 11 is configured to inject and supply.
[0016]
Exhaust gas from the engine 1 flows into the exhaust passage 12, and part of the exhaust gas is recirculated to the collector 7 on the intake passage 2 side via the EGR valve 14 by the EGR passage 13. After the exhaust turbine 15 is driven, the remaining exhaust gas is purified by an exhaust gas purification device (for example, an exhaust gas purification catalyst with a diesel particulate filter function) 16 and discharged.
[0017]
An engine control unit (ECU) 20 that performs various controls of the engine 1 includes an engine speed sensor 21 that detects the engine speed Ne, an air flow meter 22 that detects the intake fresh air amount Qas0 downstream of the air cleaner 3, and a collector 7 position. A signal is input from an intake pressure sensor 23 that detects the intake pressure (supercharging pressure) Pm, a NOx sensor 24 that can detect the exhaust air-fuel ratio AbyF at the same time that the NOx concentration in the exhaust gas is detected on the inlet side of the exhaust gas purification device 16, etc. Has been. Therefore, the NOx sensor serves as both NOx concentration detection means and air-fuel ratio detection means.
[0018]
Here, it is an object of the present invention to detect (estimate) the exhaust gas temperature from the signal input to the ECU 20 with better response, and this is realized by the following flow.
FIG. 2 is a flowchart in the first embodiment.
[0019]
In S11, a signal related to the NOx concentration of the NOx sensor is read to detect the NOx concentration in the exhaust gas.
In S12, a signal related to the air-fuel ratio of the NOx sensor is read to detect the air-fuel ratio AbyF in the exhaust gas.
In S13, the engine speed sensor signal is read to detect the engine speed Ne.
[0020]
In S14, the air flow meter signal is read to detect the intake air quantity Qas0.
In S15, the exhaust temperature basic value Texhb depending on the fuel efficiency is calculated from the air-fuel ratio AbyF and the engine speed Ne (or the intake fresh air amount Qas0) with reference to the map shown in FIG . Here, as the air-fuel ratio AbyF is smaller (rich) and the engine speed Ne is larger, the exhaust temperature basic value Texhb is larger. This portion corresponds to the exhaust gas temperature basic value calculation means .
[0021]
In this embodiment, the air-fuel ratio A by F and the engine speed Ne are used for the calculation of the exhaust gas temperature basic value . Here, the engine speed Ne is used as a gas flow rate parameter. The intake fresh air amount Q as0 can be used in place of the engine speed Ne .
[0022]
In S16, referring to the map shown in FIG. 4 , a correction value (correction coefficient) Ktexh depending on the combustion temperature is calculated from the NOx concentration and the intake fresh air amount Qas0 (or engine speed Ne). This part corresponds to the correction value calculation means .
In S17, the exhaust gas temperature Texh is calculated by multiplying the exhaust gas temperature basic value Texhb by the combustion temperature correction value Ktexh as in the following equation. This part corresponds to the exhaust temperature estimating means.
Texh = Texhb ・ Ktexh
[0023]
In the present embodiment, the tendency of NOx with respect to the combustion temperature and the tendency of the air-fuel ratio with respect to the fuel consumption rate are also non-linear. It becomes possible.
[0024]
Further, according to the present embodiment, the response of the NOx sensor is 0.1 to 0.3 msec (63% response time constant), and the exhaust temperature sensor for measuring high temperature gas (about 10 sec ). Compared with this, a much faster response can be obtained.
In addition, changes in engine parameters (fuel injection timing, fuel injection pressure, EGR) and environment appear in the NOx concentration and air-fuel ratio measurement values, which are also reflected in the exhaust gas temperature estimation, enabling highly robust temperature measurement It becomes.
[0025]
FIG. 5 is a flowchart in the second embodiment.
This embodiment is a case where the catalyst surface temperature of the exhaust purification device is estimated from the exhaust temperature discharged from the engine.
In S21, the exhaust temperature (engine outlet exhaust temperature) Texh is calculated according to the flow of FIG. 2 described as the first embodiment.
[0026]
In S22, the air flow meter signal is read to detect the intake air quantity Qas0.
In S23, the intake pressure sensor signal is read to detect the supercharging pressure Pm.
In S24, in order to estimate the exhaust gas temperature drop in the turbocharger, the turbo efficiency is determined from the intake fresh air amount Qas0 corresponding to the amount of gas passing through the exhaust turbine and the supercharging pressure Pm with reference to the map of FIG. The exhaust gas temperature drop coefficient Ktexhtc due to the change of is calculated.
[0027]
The exhaust temperature drop coefficient Ktexhtc is a value that can be expressed as exhaust turbine downstream temperature / exhaust turbine upstream temperature. Further, the area of Ktexhtc small in the map of FIG. 6 is an area where the turbo efficiency is good and the temperature drop is large. In this area, for example, Ktexhtc = 0.4. This is a region where the drop is small. In this region, for example, Ktexhtc = 0.9. In a naturally aspirated engine, Ktexhtc = 1 may be used.
[0028]
In S25, the turbo outlet exhaust temperature Texh0 is calculated from the engine outlet exhaust temperature Texh and the exhaust temperature drop coefficient Ktexhtc by the following equation.
Texh0 = Texh ・ Ktexhtc
In S26, in order to estimate that the exhaust gas temperature is lowered in consideration of the amount of heat released from the exhaust passage and the exhaust gas purification device itself, referring to each table in FIG. 7 , from the intake fresh air amount Qas0 corresponding to the exhaust gas flow rate. The exhaust passage heat dissipation constant Ktloss and the exhaust purification device heat dissipation constant Otloss are calculated.
[0029]
In S27, the catalyst surface temperature basic value Texh1 is calculated from the turbo outlet exhaust temperature Texh0, the exhaust passage heat release constant Ktloss, and the exhaust purification device heat release constant Otloss by the following equation, which is a simplified heat transfer equation.
Texh1 = Ktloss ・ Texh0 + Otloss
In S28, in order to compensate for exhaust gas transport delay and heat dissipation delay, the catalyst surface temperature Texhbed of the exhaust purification device is obtained by primary delay processing of the catalyst surface temperature basic value Texh1 (see the following formula), and the calculation is completed. To do.
[0030]
Texhbed = k ・ Texh1 + (1-k) ・ Texhbed -1
Here, k is a weighting constant (0 <k <1), and Texhbed −1 is the previous value of Texhbed.
In this embodiment, the catalyst surface temperature of the exhaust purification device is obtained. However, the inlet temperature of the exhaust purification device is set by setting the table in FIG. 7 (setting of the heat dissipation constants Ktloss and Otloss for the intake air quantity Qas0). It is also possible to ask for it.
[Brief description of the drawings]
FIG. 1 is a system diagram of an engine showing an embodiment of the present invention. FIG. 2 is a flowchart of exhaust temperature estimation showing a first embodiment.
FIG. 3 is a diagram showing an exhaust temperature basic value calculation map.
FIG. 4 is a diagram showing a combustion temperature correction value calculation map
FIG. 5 is a flowchart of exhaust gas purification apparatus surface temperature estimation in the second embodiment .
FIG. 6 is a diagram showing an exhaust temperature drop coefficient calculation map
FIG. 7 is a diagram showing a heat dissipation constant calculation table.
1 engine
2 Intake passage
4 Turbocharger
5 Intake compressor
6 Intercooler
7 Collector
11 Injector
12 Exhaust passage
15 Exhaust turbine
16 Exhaust purification device
20 Control unit (ECU)
21 Engine speed sensor
22 Air flow meter
23 Intake pressure sensor
24 NOx sensor

Claims (6)

内燃機関の排気中のNOx濃度、空燃比、ガス流量に対応する機関回転数又は吸入新気量をそれぞれ検出する手段と、
検出された空燃比、及び、ガス流量に対応する機関回転数又は吸入新気量に基づいて、排気温度基本値を演算し、空燃比がリッチであるほど、また機関回転数又は吸入新気量が大きくなるほど、排気温度基本値を大きくする排気温度基本値演算手段と、
検出されたNOx濃度に基づいて、前記排気温度基本値に対する補正値を演算し、NOx濃度が低くなるほど、補正値を大きくする補正値演算手段と、
前記排気温度基本値に、前記補正値を乗じて、排気温度を演算する排気温度推定手段と、
を含んで構成される内燃機関の排気温度検出装置。
Means for detecting the NOx concentration in the exhaust gas of the internal combustion engine, the air-fuel ratio, the engine speed corresponding to the gas flow rate, or the intake fresh air amount;
Based on the detected air-fuel ratio and the engine speed or intake fresh air amount corresponding to the gas flow rate, the exhaust temperature basic value is calculated. The richer the air-fuel ratio, the more the engine speed or intake fresh air amount. The exhaust gas temperature basic value calculating means for increasing the exhaust gas temperature basic value as the
A correction value calculating means for calculating a correction value for the exhaust gas basic value based on the detected NOx concentration, and increasing the correction value as the NOx concentration decreases ;
An exhaust gas temperature estimating means for calculating an exhaust gas temperature by multiplying the exhaust gas temperature basic value by the correction value;
An exhaust gas temperature detecting device for an internal combustion engine comprising:
前記補正値演算手段は、検出されたNOx濃度、及び、ガス流量に対応する吸入新気量又は機関回転数に基づいて、補正値を演算し、NOx濃度が低くなるほど、また吸入新気量又は機関回転数が大きくなるほど、補正値を大きくすることを特徴とする請求項1記載の内燃機関の排気温度検出装置。The correction value calculation means calculates a correction value based on the detected NOx concentration and the intake fresh air amount or engine speed corresponding to the gas flow rate, and the lower the NOx concentration, the more the intake fresh air amount or 2. The exhaust gas temperature detecting device for an internal combustion engine according to claim 1 , wherein the correction value is increased as the engine speed increases . ターボ過給機を備え、排気タービン下流側の排気温度を推定する場合に、排気タービンでの熱交換による排気温度の降下分に基づいて、前記排気温度推定手段で推定した排気温度を補正する手段を備えることを特徴とする請求項1又は請求項2記載の内燃機関の排気温度検出装置。  Means for correcting the exhaust gas temperature estimated by the exhaust gas temperature estimating means based on a decrease in exhaust gas temperature due to heat exchange in the exhaust turbine when the turbocharger is provided and the exhaust gas temperature downstream of the exhaust gas turbine is estimated The exhaust gas temperature detection device for an internal combustion engine according to claim 1 or 2, further comprising: 排気浄化装置を備え、排気浄化装置の入口側温度を推定する場合に、排気浄化装置までの排気通路での放熱量に基づいて、前記排気温度推定手段で推定した排気温度を補正する手段を備えることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気温度検出装置。  An exhaust emission control device is provided, and when estimating the inlet side temperature of the exhaust emission control device, provided with means for correcting the exhaust gas temperature estimated by the exhaust gas temperature estimation means based on the heat radiation amount in the exhaust passage to the exhaust emission control device The exhaust temperature detection device for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust temperature detection device is an internal combustion engine. 排気浄化装置を備え、排気浄化装置の表面温度を推定する場合に、排気浄化装置までの排気通路での放熱量及び排気浄化装置自体での放熱量に基づいて、前記排気温度推定手段で推定した排気温度を補正する手段を備えることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気温度検出装置。  When the exhaust gas purification device is provided and the surface temperature of the exhaust gas purification device is estimated, the exhaust gas temperature estimating means estimates the heat radiation amount in the exhaust passage to the exhaust gas purification device and the heat radiation amount in the exhaust gas purification device itself. The exhaust gas temperature detecting device for an internal combustion engine according to any one of claims 1 to 3, further comprising means for correcting the exhaust gas temperature. 排気中のNOx濃度と共に空燃比を検出可能なNOxセンサを備えることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の排気温度検出装置。  The exhaust gas temperature detecting device for an internal combustion engine according to any one of claims 1 to 5, further comprising a NOx sensor capable of detecting an air-fuel ratio together with a NOx concentration in the exhaust gas.
JP2002000804A 2002-01-07 2002-01-07 Exhaust temperature detection device for internal combustion engine Expired - Fee Related JP4122770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000804A JP4122770B2 (en) 2002-01-07 2002-01-07 Exhaust temperature detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000804A JP4122770B2 (en) 2002-01-07 2002-01-07 Exhaust temperature detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003201908A JP2003201908A (en) 2003-07-18
JP4122770B2 true JP4122770B2 (en) 2008-07-23

Family

ID=27641088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000804A Expired - Fee Related JP4122770B2 (en) 2002-01-07 2002-01-07 Exhaust temperature detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4122770B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859501B1 (en) * 2003-09-05 2007-05-04 Siemens Vdo Automotive METHOD OF DETERMINING THE TEMPERATURE BEFORE ENTERING A CATALYTIC POT OF A TURBOOCOMPRESS ENGINE
FR2891868B1 (en) * 2005-10-07 2007-12-21 Renault Sas METHOD OF ESTIMATING THE EXHAUST TEMPERATURE OF AN ENGINE, AND METHOD OF DIAGNOSING A CYLINDER PRESSURE SENSOR USING EXHAUST TEMPERATURE ESTIMATION.
JP4917443B2 (en) * 2007-01-19 2012-04-18 本田技研工業株式会社 Cooling fan drive control device
JP5143170B2 (en) 2010-03-17 2013-02-13 日立オートモティブシステムズ株式会社 Control method for internal combustion engine

Also Published As

Publication number Publication date
JP2003201908A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
CN101688483B (en) Exhaust reflux device for internal-combustion engine
US8286616B2 (en) Condensation control systems and methods
US6993909B2 (en) EGR-gas temperature estimation apparatus for internal combustion engine
JP4417289B2 (en) Method and apparatus for controlling exhaust gas recirculation in an internal combustion engine based on measurement of oxygen concentration in a gas mixture taken up by the internal combustion engine
KR100829649B1 (en) Egr control apparatus and method for operating the same
US20100199639A1 (en) Exhaust-gas recirculation apparatus and exhaust-gas recirculation flow rate estimation method for internal combustion engines
JP4622719B2 (en) PM deposition amount estimation device
US6820600B1 (en) Method for controlling an engine with an EGR system
US20060112679A1 (en) Exhaust gas purifying apparatus
CN101555839A (en) A method for estimating the oxygen concentration in internal combustion engines
JPH02163443A (en) Controller for engine equipped with supercharger
US6816771B2 (en) Intake air control system and method for an internal combustion engine
US7769526B2 (en) Diesel transient combustion control based on intake carbon dioxide concentration
JP4122770B2 (en) Exhaust temperature detection device for internal combustion engine
JP5125298B2 (en) Fuel supply control device for internal combustion engine
JP5608614B2 (en) Engine EGR flow rate detection device
JP4946904B2 (en) Internal combustion engine control system
WO2004027244A1 (en) Method for controlling an engine with an egr system
JP2011157942A (en) Egr control device of internal combustion engine
CN111566321B (en) Exhaust gas purification method and exhaust gas purification device for gasoline engine
JP4061971B2 (en) EGR control device for internal combustion engine
US20060130807A1 (en) Control apparatus for an internal combustion engine
JP3897242B2 (en) Exhaust gas recirculation control device
JP2000303895A (en) Internal combustion engine
JP2005023819A (en) Air fuel ratio control system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees