JP4122595B2 - Internal water pressure compatible segment - Google Patents

Internal water pressure compatible segment Download PDF

Info

Publication number
JP4122595B2
JP4122595B2 JP30434898A JP30434898A JP4122595B2 JP 4122595 B2 JP4122595 B2 JP 4122595B2 JP 30434898 A JP30434898 A JP 30434898A JP 30434898 A JP30434898 A JP 30434898A JP 4122595 B2 JP4122595 B2 JP 4122595B2
Authority
JP
Japan
Prior art keywords
segment
tunnel
water pressure
internal water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30434898A
Other languages
Japanese (ja)
Other versions
JP2000130097A (en
Inventor
清 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP30434898A priority Critical patent/JP4122595B2/en
Publication of JP2000130097A publication Critical patent/JP2000130097A/en
Application granted granted Critical
Publication of JP4122595B2 publication Critical patent/JP4122595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シールドトンネルの覆工に用いられるセグメントに関し、特に内水圧が負荷されるシールドトンネルの覆工に用いられるセグメントに関する。
【0002】
【従来の技術】
従来、一般のシールドトンネルは、シールド掘進機と呼ばれ、掘進機後部に備わるスプレッダーをセグメントに押圧して推進反力を得つつ掘進機前部がその前端に備えたカッターヘッドにより掘進を行う円筒形の掘進機を用いて掘進施工が行われることが多く、トンネル地山の支保の為に、シールド掘進機後部でブロック状のセグメント(例えば鋼製)をトンネル地山面に沿って連結させてトンネル一次覆工を行い、さらに二次覆工として一次覆工面内周に無筋コンクリートなどを打設してシールドトンネルを形成していた。
【0003】
特に導水を目的として形成されるシールドトンネルにおいては、そのトンネル内に水が充満して内水圧が負荷されることとなる為、それに対応して、一次覆工のセグメントの桁高を大きくして剛性向上を図り、さらにセグメント同士の連結構造を強化することで一次覆工を担うセグメント全体の構造強度を増大させたり、あるいは、上記二次覆工に無筋ではなく鉄筋コンクリートを打設して二次覆工の強度向上を図ったりといった措置を講じることがあった。
【0004】
【発明が解決しようとする課題】
しかしながら、シールドトンネルに生じる内水圧に対し、上記のうち特にセグメントの桁高を大きくして剛性向上を図ったり、セグメント同士の連結構造強化を図るといった従来の対応策によれば、セグメント単価が上昇してコスト増を招くとともに、セグメントの一個あたりの重量が増加することで運搬及び連結設置に要する各種機器の能力や配置数を増大させる必要が生じてきたり、また、一次覆工の巻き厚が厚くなってトンネル内空容積が減少するといったおそれが生じる。
【0005】
さらに、従来のセグメント同士の連結構造強化を図れば、構造の複雑化や、それに伴う施工効率の低下を招くといったおそれが生じる。
【0006】
つまり、内水圧に抗してセグメント強度を向上させるという考えのもとでは、水圧に応じて構成部材を大きく肉厚にするといったいわゆる後手に回った措置を講じることをいたずらに繰り返すこととなるのである。
【0007】
従って、上記いずれの対応策をとることとなっても、経済性と施工性の両面について著しい低下をみることとなりやすい。
【0008】
そこで、本発明は、このような従来の課題に着目してなされたもので、簡便な構造を有して運搬及び設置が容易で、しかもシールドトンネル内にかかる内水圧に無関係に無理なく覆工構造強度を維持することが可能であり、良好な施工性と経済性とを発現する内水圧対応型セグメントを提供するものである。
【0009】
【課題を解決するための手段】
この発明は、上記目的を達成するためになされたもので、トンネル内部から水圧が負荷されるシールドトンネルの覆工を担う内水圧対応型セグメントであって、トンネル地山に当接されるセグメント外表面に、多孔質材料からなり水の透過及び帯水が可能な溜水層が設けられるとともに、該溜水層と、トンネル内空側に対向したセグメント内表面とを貫通して結ぶことで通水を行う通水孔が設けられることを特徴とする。
【0010】
また、前記内水圧対応型セグメントの通水孔内に、トンネル地山側からトンネル内空側への水の流入を抑止する逆止弁を設けたことを特徴とする。
【0011】
さらに、前記溜水層の外表面に、トンネル地山側からの土砂、もしくはトンネル地山とセグメントとの間に注入される裏込注入材の流入を抑止する被覆層を設けたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施の形態につき、添付図面を参照して詳細に説明する。
【0013】
図1は、本発明の内水圧対応型セグメントを、滝F上流部から滝F下流部の発電施設Eに至るシールドトンネル10に用いた例を示す説明図である。
【0014】
本発明の内水圧対応型セグメント20を用いてシールドトンネル10を施工する場合、例えば本実施例の様に発電導水用のものであれば、滝F上流部の流水水位と地下水位とを勘案して掘削開始の縦坑ポイント12を決め、縦坑の開削につづいて係る縦坑にシールド掘進機を搬入する。
【0015】
搬入されたシールド掘進機は、掘進機後部に備わるスプレッダーを既設セグメントに押圧して推進反力を得つつ掘進機前部がその前端に備えたカッターヘッドにより掘進施工を行う。
【0016】
掘進中はトンネル地山11の支保の為に、シールド掘進機後部で本発明の内水圧対応型セグメント20をトンネル地山面に沿って連結させてトンネル一次覆工を行う。
【0017】
図2は、上記の内水圧対応型セグメント20を示す概略図であり、係る内水圧対応型セグメント20とは、例えば側面略台形状で鋼製の一般的なセグメント本体20aの外表面に、多孔質材料(例えばポーラスコンクリート)からなる溜水層20bが設けられるものである。
【0018】
また、上記溜水層20bと、トンネル内空側に対向したセグメント内表面とを貫通して、通水孔20cが設けられる。(本実施例中では、通水孔20cにさらに管状の通水筒を挿入したものを図示している。)
溜水層20b及び通水孔20cの機能として、トンネル地山11からの湧出水と、シールドトンネル10内の圧力水とを溜水層20b中の多孔体に適宜留めつつ相互に流通可能にすることで、地下水圧とシールドトンネル内水圧とに生じる圧力差を打ち消し合って、セグメント他トンネル構造に作用する応力を低減するのである。
【0019】
図3は図2におけるA−A線に沿った断面図であり、かかる内水圧対応型セグメント20がトンネル地山11に施工された状態を示す。
【0020】
施工が行われるトンネル地山11表面とセグメント20との間には図に示すように、まず、本発明の内水圧対応型セグメント20が一次覆工として施工された後、裏込め材30が注入される。
【0021】
この裏込め材30は、トンネル地山11表面の崩壊を防止するとともに、本発明の内水圧対応型セグメント20とトンネル地山11とを確実に結びつけ、僅かな透水性も有して、トンネル地山11からの湧出水と、シールドトンネル10内の圧力水との相互流通を可能にする。
【0022】
図4は、その通水孔20c内部に逆止弁20dを設けた内水圧対応型セグメント20の断面図である。
【0023】
図4に示す内水圧対応型セグメント20は、セグメントとしての基本的構造は上述のものと変わらないが、その通水孔20c内部に、例えば水の透過方向を一方向に限定する半透膜などにより構成された逆止弁20dが設けられており、トンネル地山11側からの水の流入を抑止する機能を備える。
【0024】
また上記とは別に、溜水層20b外表面に、トンネル地山11側からの土砂、もしくはトンネル地山11とセグメント20との間に注入される裏込め材30の流入を抑止する被覆層を設けた内水圧対応型セグメントを採用することも出来る。
【0025】
上記に関し、シールドトンネル10内の圧力水がトンネル地山11へと拡散する速度をコントロールして、含水量の増大に伴う地山崩壊や軟弱化を抑止する為、透水係数を左右する細孔径に基づいて、溜水層20bを形成する多孔質材料を適宜選択変更するといった措置が必要である。
【0026】
本実施例においては、内水圧対応型セグメント一つに対し、通水孔一つを設けた例を示したが、これに限らず、内水圧や水量などに応じて設置数を増加させることも出来る。
【0027】
【発明の効果】
以上詳細に説明したように、本発明の内水圧対応型セグメントによれば、一般のトンネルセグメント表面に溜水層を備え、さらに、係る溜水層とセグメント内表面とを連結するように通水孔を備えるといった比較的単純な構造であって、従来の内水圧対応型セグメントの如く、シールドトンネル内の内水圧に対抗し、桁高を大きくして剛性向上を図ったり、セグメント同士の連結構造強化を図ったりといった措置を施したセグメントではない。
【0028】
したがって、桁高の増大に伴って、セグメント単価が上昇してコスト増を招くとともに、セグメントの一個あたりの重量が増加することで運搬及び連結設置に要する各種機器の能力や配置数を増大させる必要が生じてきたり、また、一次覆工の巻き厚が厚くなってトンネル内空容積が減少するといったおそれが生じることがない上、セグメント同士の連結構造強化に伴う構造の複雑化や、それによる施工効率の低下を招くといったおそれも解消される。
【0029】
つまり、本発明の内水圧対応型セグメントは、内水圧に抗してセグメント強度を向上させるという従来の思考法から脱却し、内水圧に応じ通水孔及び溜水層を介してトンネル内部と地山とを圧力的に無理なく平衡させ、それにより覆工構造強度を容易に維持することが可能であり、上記の効果と併せて、経済性と施工性の両面についての著しい向上を図ることにつながるのである。
【図面の簡単な説明】
【図1】本発明の内水圧対応型セグメントを用いた、滝上流部から滝下流部の発電施設に至るシールドトンネルの施工例を示す説明図である。
【図2】本発明の内水圧対応型セグメントを示す概略図である。
【図3】図2の内水圧対応型セグメントのA−A線に沿った断面図であり、かかるセグメントがトンネル地山に施工された状態を示す。
【図4】内水圧対応型セグメントの断面図であり、通水孔内部に逆止弁が設けられた状態を示す。
【符号の説明】
11 トンネル地山
20 内水圧対応型セグメント
20b 溜水層
20c 通水孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a segment used for lining a shield tunnel, and more particularly to a segment used for lining a shield tunnel to which internal water pressure is applied.
[0002]
[Prior art]
Conventionally, a general shield tunnel is referred to as a shield machine, and a cylinder that performs excavation by a cutter head provided at the front end of the excavator while obtaining a propulsion reaction force by pressing the spreader provided at the rear part of the excavator against the segment. In order to support the tunnel ground, a block segment (eg steel) is connected along the tunnel ground surface at the rear of the shield machine. Tunnel primary lining was performed, and unshielded concrete was placed on the inner periphery of the primary lining as a secondary lining to form a shield tunnel.
[0003]
Especially in shield tunnels formed for the purpose of water transfer, the tunnel is filled with water and the internal water pressure is loaded, so correspondingly, the height of the primary lining segment is increased. By increasing the rigidity and strengthening the connection structure between the segments, the structural strength of the entire segment responsible for the primary lining can be increased, or reinforced concrete can be placed in the secondary lining instead of unreinforced. In some cases, measures were taken to improve the strength of the next lining.
[0004]
[Problems to be solved by the invention]
However, with respect to the internal water pressure generated in the shield tunnel, the segment unit price increases according to conventional measures such as increasing the digit height of the segments to improve the rigidity or strengthening the connection structure between the segments. As a result, the cost per unit increases and the weight per segment increases, so it becomes necessary to increase the capacity and the number of various devices required for transportation and connection installation. There is a risk that the tunnel will become thicker and the volume inside the tunnel will decrease.
[0005]
Furthermore, if the conventional connection structure between segments is strengthened, there is a risk that the structure will be complicated and the construction efficiency will be reduced.
[0006]
In other words, based on the idea of improving the segment strength against the internal water pressure, it would be unnecessarily repeated to take a so-called rear-end measure such as increasing the thickness of the component according to the water pressure. is there.
[0007]
Therefore, even if any of the above countermeasures is taken, it is likely that a significant decrease in both economic efficiency and workability is observed.
[0008]
Therefore, the present invention has been made paying attention to such a conventional problem, has a simple structure, is easy to transport and install, and can be easily covered regardless of the internal water pressure in the shield tunnel. It is possible to provide an internal water pressure compatible segment that can maintain the structural strength and exhibits good workability and economy.
[0009]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above object, and is an internal water pressure compatible segment responsible for lining a shield tunnel in which water pressure is loaded from the inside of the tunnel, and is outside the segment abutting against the tunnel ground. The surface is provided with a reservoir layer made of a porous material and capable of permeating and aquiring water. The reservoir layer and the inner surface of the segment facing the inner side of the tunnel are passed through and connected to each other. It is characterized in that a water passage hole for performing water is provided.
[0010]
Further, the present invention is characterized in that a check valve for suppressing the inflow of water from the tunnel ground side to the tunnel interior side is provided in the water passage hole of the internal water pressure compatible segment.
[0011]
Furthermore, the outer surface of the reservoir layer is provided with a coating layer that suppresses the inflow of earth and sand from the tunnel ground or the backfill material injected between the tunnel ground and the segment. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0013]
FIG. 1 is an explanatory diagram showing an example in which the internal water pressure compatible segment of the present invention is used in a shield tunnel 10 that extends from an upstream portion of a waterfall F to a power generation facility E downstream of the waterfall F.
[0014]
When constructing the shield tunnel 10 using the internal water pressure-compatible segment 20 of the present invention, for example, if it is for power transmission as in this embodiment, the flowing water level and the groundwater level upstream of the waterfall F are taken into account. Then, the vertical shaft point 12 at which excavation is started is determined, and the shield machine is carried into the vertical shaft following the excavation of the vertical shaft.
[0015]
The shield excavator carried in performs excavation work with a cutter head provided at the front end of the excavator while pressing the spreader provided at the rear of the excavator against the existing segment to obtain a propulsion reaction force.
[0016]
During excavation, in order to support the tunnel ground 11, the inner water pressure corresponding segment 20 of the present invention is connected along the tunnel ground at the rear of the shield excavator to perform primary tunnel lining.
[0017]
FIG. 2 is a schematic view showing the internal water pressure-compatible segment 20. The internal water pressure-compatible segment 20 has a substantially trapezoidal shape on the outer surface of a general segment main body 20 a made of steel, for example. A reservoir 20b made of a quality material (for example, porous concrete) is provided.
[0018]
Further, a water passage hole 20c is provided through the reservoir layer 20b and the inner surface of the segment facing the inner space of the tunnel. (In the present embodiment, an example in which a tubular water pipe is further inserted into the water hole 20c is illustrated.)
As a function of the reservoir layer 20b and the water passage hole 20c, the spring water from the tunnel ground 11 and the pressure water in the shield tunnel 10 can be circulated to each other while being appropriately retained in the porous body in the reservoir layer 20b. Thus, the pressure difference between the ground water pressure and the water pressure in the shield tunnel is canceled out, and the stress acting on the segment other tunnel structure is reduced.
[0019]
FIG. 3 is a cross-sectional view taken along line AA in FIG. 2, and shows a state in which the internal water pressure corresponding segment 20 is constructed on the tunnel ground 11.
[0020]
As shown in the figure, between the surface of the tunnel ground 11 where the construction is performed and the segment 20, first, the internal water pressure responsive segment 20 of the present invention is constructed as a primary lining, and then the backfill material 30 is injected. Is done.
[0021]
This backfilling material 30 prevents the collapse of the surface of the tunnel ground 11, reliably connects the internal water pressure compatible segment 20 of the present invention and the tunnel ground 11, and has a slight water permeability. It enables mutual circulation between the spring water from the mountain 11 and the pressure water in the shield tunnel 10.
[0022]
FIG. 4 is a cross-sectional view of the internal water pressure compatible segment 20 in which a check valve 20d is provided inside the water flow hole 20c.
[0023]
The internal water pressure compatible segment 20 shown in FIG. 4 has the same basic structure as the above-mentioned segment, but a semipermeable membrane that limits the water permeation direction to one direction, for example, inside the water passage 20c. The check valve 20d configured by the above is provided, and has a function of suppressing the inflow of water from the tunnel ground 11 side.
[0024]
In addition to the above, a coating layer that suppresses the inflow of the earth and sand from the tunnel ground 11 or the backfill material 30 injected between the tunnel ground 11 and the segment 20 is provided on the outer surface of the reservoir layer 20b. The provided internal water pressure compatible segment can also be adopted.
[0025]
In relation to the above, in order to control the speed at which the pressure water in the shield tunnel 10 diffuses into the tunnel ground 11, and suppress the ground collapse and weakening due to the increase in water content, Based on this, it is necessary to take measures such as appropriately selecting and changing the porous material forming the reservoir layer 20b.
[0026]
In the present embodiment, an example in which one water passage hole is provided for one internal water pressure compatible segment has been shown, but this is not a limitation, and the number of installations may be increased according to the internal water pressure, the amount of water, etc. I can do it.
[0027]
【The invention's effect】
As described above in detail, according to the internal water pressure compatible segment of the present invention, a general tunnel segment surface is provided with a water reservoir layer, and further, the water flow is performed so as to connect the water reservoir layer and the segment inner surface. Comparing to the internal water pressure-compatible segment, it has a relatively simple structure with holes, and counteracts the internal water pressure in the shield tunnel, increasing the digit height and improving the rigidity, or connecting the segments together It is not a segment with measures such as strengthening.
[0028]
Therefore, along with the increase in digit height, the unit price of the segment will rise, leading to an increase in cost, and the weight per segment will need to increase, increasing the capacity and number of devices required for transportation and connection installation. In addition, there is no risk that the winding thickness of the primary lining will be increased and the empty volume in the tunnel will be reduced. The risk of reducing efficiency is also eliminated.
[0029]
In other words, the internal water pressure-compatible segment of the present invention is a departure from the conventional method of improving the segment strength against the internal water pressure, and the inside of the tunnel and the ground through the water holes and the reservoir layer according to the internal water pressure. It is possible to easily balance the mountain with pressure, thereby easily maintaining the strength of the lining structure, and in combination with the above effects, to achieve significant improvements in both economics and workability It is connected.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a construction example of a shield tunnel from an upstream waterfall portion to a downstream power generation facility using an internal water pressure compatible segment of the present invention.
FIG. 2 is a schematic view showing an internal water pressure compatible segment of the present invention.
FIG. 3 is a cross-sectional view taken along line AA of the internal water pressure corresponding segment of FIG. 2 and shows a state in which such a segment is constructed on a tunnel ground.
FIG. 4 is a cross-sectional view of an internal water pressure compatible segment, showing a state in which a check valve is provided inside the water passage hole.
[Explanation of symbols]
11 Tunnel Ground 20 Internal Water Pressure Compatible Segment 20b Reservoir 20c Water Flow Hole

Claims (3)

トンネル内部から水圧が負荷されるシールドトンネルの覆工を担う内水圧対応型セグメントであって、トンネル地山に当接されるセグメント外表面に、多孔質材料からなり水の透過及び帯水が可能な溜水層が設けられるとともに、該溜水層と、トンネル内空側に対向したセグメント内表面とを貫通して結ぶことで通水を行う通水孔が設けられることを特徴とする内水圧対応型セグメント。An internal water pressure compatible segment responsible for lining a shield tunnel where water pressure is applied from the inside of the tunnel, and the outer surface of the segment abutting against the tunnel ground is made of a porous material and allows water to permeate and ablate. The internal water pressure is characterized in that a water reservoir hole is provided to allow water to pass through by connecting the reservoir layer and the inner surface of the segment facing the inner space of the tunnel. Corresponding segment. 前記内水圧対応型セグメントの通水孔内に、トンネル地山側からトンネル内空側への水の流入を抑止する逆止弁を設けたことを特徴とする請求項1に記載の内水圧対応型セグメント。2. The internal water pressure-compatible type according to claim 1, wherein a check valve is provided in the water passage hole of the internal water pressure-compatible type segment so as to suppress the inflow of water from the tunnel ground side to the tunnel interior side. segment. 前記溜水層の外表面に、トンネル地山側からの土砂、もしくはトンネル地山とセグメントとの間に注入される裏込注入材の流入を抑止する被覆層を設けたことを特徴とする請求項1または2に記載の内水圧対応型セグメント。The outer surface of the reservoir layer is provided with a coating layer that suppresses inflow of earth and sand from a tunnel ground or a backfill material injected between a tunnel ground and a segment. The internal water pressure compatible segment according to 1 or 2.
JP30434898A 1998-10-26 1998-10-26 Internal water pressure compatible segment Expired - Fee Related JP4122595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30434898A JP4122595B2 (en) 1998-10-26 1998-10-26 Internal water pressure compatible segment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30434898A JP4122595B2 (en) 1998-10-26 1998-10-26 Internal water pressure compatible segment

Publications (2)

Publication Number Publication Date
JP2000130097A JP2000130097A (en) 2000-05-09
JP4122595B2 true JP4122595B2 (en) 2008-07-23

Family

ID=17931941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30434898A Expired - Fee Related JP4122595B2 (en) 1998-10-26 1998-10-26 Internal water pressure compatible segment

Country Status (1)

Country Link
JP (1) JP4122595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104563069A (en) * 2014-12-16 2015-04-29 成都绿迪科技有限公司 Outflow sluice structure for diversion tunnel
CN106320296A (en) * 2016-11-02 2017-01-11 广西大学 Basalt fiber grid reinforced lining structure for high ground temperature high-pressure hydraulic tunnel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105952473B (en) * 2016-06-27 2019-07-16 中铁第四勘察设计院集团有限公司 Sluice the pipe-plate lining structure being depressured
JP6983623B2 (en) * 2017-11-02 2021-12-17 電源開発株式会社 High-pressure fluid storage equipment and power storage system
CN112253173B (en) * 2020-10-21 2022-06-28 中国水利水电科学研究院 Complex environment tunnel self-adaptive lining structure and construction method
CN114635398B (en) * 2022-04-01 2023-05-26 长江勘测规划设计研究有限责任公司 Pressure reducing system for controlling rear section in section of ultra-long pressure tunnel and water filling and draining control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104563069A (en) * 2014-12-16 2015-04-29 成都绿迪科技有限公司 Outflow sluice structure for diversion tunnel
CN106320296A (en) * 2016-11-02 2017-01-11 广西大学 Basalt fiber grid reinforced lining structure for high ground temperature high-pressure hydraulic tunnel

Also Published As

Publication number Publication date
JP2000130097A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP4122595B2 (en) Internal water pressure compatible segment
CN106939791A (en) One kind can prestress steel structure concrete pipe sheet and its construction method
JP2008014000A (en) Construction method of cast-in-place concrete pile
JP5147361B2 (en) Repair and reinforcement structure for floating structures
CN214944298U (en) Pipe jacking assembly
CN103103990A (en) Underground diaphragm wall construction method utilizing large-diameter reinforced concrete filling pile as connector
CN209510346U (en) Originated for shield part and portal leak when sleeve arrangement
CN111842450B (en) Method for realizing modular permeable reactive barrier and ton bag
JP2003328430A (en) Repairing member for existing conduit and repairing structure for the same
CN208009404U (en) Continuous wall form
US6082930A (en) Shield driving machine
CN210396763U (en) Supporting structure for weak surrounding rock tunnel
CN218206724U (en) Water delivery tunnel country rock supporting construction
KR100717849B1 (en) Construction method of 2-arch tunnel
JP4273031B2 (en) Stabilization method of ground in shield method
CN206737936U (en) A kind of tunnel steel pipe transmission track
KR102358223B1 (en) Sacrificial steel pipe saving cast in placed pile and the construction method therefor
JP2010116676A (en) Method for constructing invert segment
JP2835901B2 (en) Tunnel construction method
JPS5944460B2 (en) Corrosion prevention construction method for steel sheet piles for bank protection
JP6113229B2 (en) Concrete filling method for composite segments
CN108506569A (en) Heavy caliber water intaking siphon piping immersed tube method over long distances
CN213450492U (en) Reinforcement structure of tunnel transverse drain pipe
CN217899105U (en) High-pressure oil pipe with composite structure
CN211342915U (en) Pre-reinforcing system for advanced small catheter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees