JP4122445B2 - Reaction detection chip using porous particles and method for producing the chip - Google Patents

Reaction detection chip using porous particles and method for producing the chip Download PDF

Info

Publication number
JP4122445B2
JP4122445B2 JP2006341970A JP2006341970A JP4122445B2 JP 4122445 B2 JP4122445 B2 JP 4122445B2 JP 2006341970 A JP2006341970 A JP 2006341970A JP 2006341970 A JP2006341970 A JP 2006341970A JP 4122445 B2 JP4122445 B2 JP 4122445B2
Authority
JP
Japan
Prior art keywords
porous particle
particle carrier
substance
porous
carrier carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006341970A
Other languages
Japanese (ja)
Other versions
JP2007192812A (en
Inventor
俊文 塚原
聡 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2006341970A priority Critical patent/JP4122445B2/en
Publication of JP2007192812A publication Critical patent/JP2007192812A/en
Application granted granted Critical
Publication of JP4122445B2 publication Critical patent/JP4122445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、遺伝子診断及び生理機能診断等に使用される多数の機能分子の認識を可能にする多孔質粒子を用いた反応検出チップ特に検出対象定量用反応チップ及び該チップの作成方法に関する。   The present invention relates to a reaction detection chip using porous particles that enables recognition of a large number of functional molecules used for genetic diagnosis, physiological function diagnosis, and the like, and more particularly to a detection chip for determining a detection target and a method for producing the chip.

遺伝子の変異、特に一塩基の変異を含む多型の検出は、突然変異等に起因する疾患、例えばガンの診断等に有効なだけでなく、薬剤への応答性や副作用の指針に必要であり、多因子疾患の病因関連遺伝子の解析や予測医療にも貢献する。この検出にいわゆるDNAチップの使用が有効であることが知られている。従来利用されてきた、短いDNA鎖を固定化したDNAチップ、Affymetrix社のいわゆるGeneChipは、通常約1cm角のシリコンもしくはガラス基板上にフォトリソグラフィー技術を用いて1万以上のオリゴDNA断片(DNAプローブ)を作り込んだものである。このDNAチップ上に、例えば蛍光標識したDNA試料を流すと、上記DNAチップ上のプローブと相補的な配列を有するDNA断片はプローブと結合し、その部分だけが蛍光により識別でき、DNA試料中のDNA断片の特定配列を認識・定量することができる。この方法により、既に、ガン遺伝子の突然変異の検出や、遺伝子多型の検出が可能であることが示されている。   Detection of polymorphisms including gene mutations, especially single nucleotide mutations, is not only effective for diagnosing diseases caused by mutations, such as cancer, but is also necessary for guidelines for drug responsiveness and side effects. Also contributes to the analysis of pathogenesis-related genes and predictive medicine for multifactorial diseases. It is known that the use of a so-called DNA chip is effective for this detection. A so-called GeneChip from Affymetrix, a DNA chip with a short DNA strand immobilized on it, has been used in the past. Usually, about 10,000 oligo DNA fragments (DNA probes) using a photolithographic technique on a 1 cm square silicon or glass substrate. ). For example, when a fluorescently labeled DNA sample is allowed to flow on the DNA chip, a DNA fragment having a sequence complementary to the probe on the DNA chip is bound to the probe, and only that portion can be identified by fluorescence. Recognize and quantify specific sequences of DNA fragments. This method has already been shown to be able to detect mutations in oncogenes and gene polymorphisms.

上記DNAチップと同様に多種類のDNAプローブを基板上に固定したデバイスとしてDNAマイクロアレイがある。一般に、マイクロアレイは固定化されたプローブが長いために、遺伝子変異の検出には適さないが、遺伝子発現解析に有用であることが示されている。   Similar to the DNA chip, there is a DNA microarray as a device in which various types of DNA probes are fixed on a substrate. In general, microarrays are not suitable for detecting gene mutations because of the long immobilized probes, but have been shown to be useful for gene expression analysis.

一方、分相法多孔質ガラスは、(1)母材ホウケイ酸ガラスの熔解、(2)成型、(3)分相、(4)化学的エッチングにより作成される(非特許文献1)。このような方法で作成された分相法多孔質ガラスは、例えばHPLC用充填剤等として使用されてきた(非特許文献2)。本発明者らは、この多孔質ガラスを微粉末として新しいタイプのDNAチップを開発した(非特許文献3)。
また、プローブ分子を内面に固定したキャピラリーを用いたアフィニティー検出分析チップ(特許文献1)、多孔質ガラスビーズ又はシリコン結晶上にガラス層を形成したものを担体としたアフィニティー反応プローブビーズ(特許文献2)もある。
さらに、多孔質ガラス粉末を担体とした反応検出チップがある(特許文献3−5)。しかし、該多孔質ガラス粉末を用いた反応検出チップは、スポット間に多孔質ガラス粉末量のムラがあった。よって、多孔質ガラス粉末量のムラにより、各スポット中に含まれるプローブ量にムラができ、チップで得られるデータはスポット毎に変動が大きく定量分析には利用しにくかった(参照図3)。さらに、S/N比などの点でなお改良する必要があり、遺伝子変異の検出は可能であるが、発現解析は不可能であることが現状である。
H.Tanaka, T.Yazawa, K.Eguchi, H.Nagasawa, N.Matuda and T.Einishi,: Precipitation of colloidal silica and pore size distribution in high silica porous glass. Journal of Non-Crystalline Solids 65, 301-309,(1984) Hiroshi Nagasawa, Yonezo Matumoto, Naobumi Oi, Sigeru Yokoyama, Tetsuo Yazawa, Hiroshi Tanaka and Kiyoshi Eguchi : Effects of pore size on the retention time of octadescyl silanaized porous glass in high performance liquid chromatography. Analytical Science 7 Supplement, 181-182(1991) Toshifumi Tsukahara, Hiroshi Nagasawa : Probe-on-carriers for oligonucleotide microarrays (DNA chips). Science and Technology of Advanced Materials 5, 359-362 (2004) 特開2002-202305 特開2003-139773 特開2001-281251 特開2002-218974 特開2004-93330
On the other hand, the phase separation method porous glass is prepared by (1) melting of a base material borosilicate glass, (2) molding, (3) phase separation, and (4) chemical etching (Non-patent Document 1). The phase separation method porous glass produced by such a method has been used, for example, as a filler for HPLC (Non-patent Document 2). The present inventors have developed a new type of DNA chip using this porous glass as a fine powder (Non-patent Document 3).
In addition, an affinity detection / analysis chip using a capillary with probe molecules fixed on the inner surface (Patent Document 1), an affinity reaction probe bead using a glass layer formed on a porous glass bead or silicon crystal as a carrier (Patent Document 2) There is also.
Furthermore, there is a reaction detection chip using porous glass powder as a carrier (Patent Documents 3-5). However, in the reaction detection chip using the porous glass powder, the amount of the porous glass powder was uneven between the spots. Therefore, the amount of the probe contained in each spot is uneven due to the unevenness of the amount of the porous glass powder, and the data obtained by the chip varies greatly from spot to spot and is difficult to use for quantitative analysis (see FIG. 3). Furthermore, it is still necessary to improve in terms of S / N ratio and the like, and it is possible to detect gene mutations but it is impossible to analyze expression.
H. Tanaka, T. Yazawa, K. Eguchi, H. Nagasawa, N. Matuda and T. Einishi ,: Precipitation of colloidal silica and pore size distribution in high silica porous glass. Journal of Non-Crystalline Solids 65, 301-309 , (1984) Hiroshi Nagasawa, Yonezo Matumoto, Naobumi Oi, Sigeru Yokoyama, Tetsuo Yazawa, Hiroshi Tanaka and Kiyoshi Eguchi: Effects of pore size on the retention time of octadescyl silanaized porous glass in high performance liquid chromatography.Analytical Science 7 Supplement, 181-182 (1991 ) Toshifumi Tsukahara, Hiroshi Nagasawa: Probe-on-carriers for oligonucleotide microarrays (DNA chips) .Science and Technology of Advanced Materials 5, 359-362 (2004) JP2002-202305 JP2003-139773 JP2001-281251 JP2002-218974 JP2004-93330

上記多孔質ガラス粉末を担体とした反応検出チップの作成では、微細多孔質ガラス粉末をスラリー状にして接着剤の上に滴下し、各スポットに固着する。このため、各スポットに含まれる多孔質ガラス粉量(即ち、プローブ量)にバラツキがでる。従って、各スポット間の検出強度を比較する事が困難であった。これにより、従来の反応検出チップでの定量精度、再現性、S/N比に問題があった。
加えて、発現解析のためには、より長いプローブ特に長鎖オリゴヌクレオチドを基板(担体)に固定する必要があるが、in situ合成法を用いた場合、プローブ純度をこれ以上向上する事は技術的に困難であった。
In the production of the reaction detection chip using the porous glass powder as a carrier, the fine porous glass powder is made into a slurry and dropped onto the adhesive and fixed to each spot. For this reason, the amount of porous glass powder (that is, the amount of probe) contained in each spot varies. Therefore, it is difficult to compare the detection intensity between the spots. As a result, there are problems in quantitative accuracy, reproducibility, and S / N ratio in the conventional reaction detection chip.
In addition, it is necessary to fix longer probes, especially long-chain oligonucleotides, to the substrate (carrier) for expression analysis. However, when using in situ synthesis, it is technically necessary to improve probe purity. It was difficult.

そこで、本発明者らは、鋭意研究したところ、検出対象と結合可能な反応性物質を担持した多孔質粒子担体に一定量の標識化合物を担持した多孔質粒子担体を存在させることで、スポット中に含まれる多孔質粒子担体量(即ち、反応性物質(プローブ)量)を標準化・定量化し、各スポットの相対比較が可能になり、これにより検出対象の定量性及びS/N比を向上させることを可能とした。
さらに、より大孔径の多孔質粒子を担体として利用する事によって、選択的縮合率を上げることができ、これにより長いプローブ特に長鎖オリゴヌクレオチドを高密度で基板に集積することを可能とした。
以上により、本発明を完成した。
Therefore, the present inventors have conducted intensive research and found that a porous particle carrier carrying a certain amount of a labeling compound is present in a porous particle carrier carrying a reactive substance capable of binding to a detection target. The amount of porous particle carrier (ie, the amount of reactive substance (probe)) contained in the sample is standardized and quantified, and the relative comparison of each spot becomes possible, thereby improving the quantification of the detection target and the S / N ratio. Made it possible.
Furthermore, by using porous particles having a larger pore diameter as a carrier, it is possible to increase the selective condensation rate, thereby enabling long probes, particularly long-chain oligonucleotides, to be accumulated at a high density on a substrate.
Thus, the present invention has been completed.

すなわち本発明は以下からなる。
「1.多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質を担持した多孔質粒子担体を基板に設けた複数区分の1つ以上の区分に配列・固定させた反応検出チップにおいて、
前記検出対象の濃度を定量可能とするために、前記多孔質粒子担体に一定量の"標準物質としての標識化合物を担持した多孔質粒子担体"が存在していることを特徴とする検出対象定量用反応検出チップ。
2.前記多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質を担持した多孔質粒子担体の細孔径の平均が100nm以上であることを特徴とする前項1の検出対象定量用反応検出チップ。
3.各区分に配列・固定させた多孔質粒子担体において、各区分において異なる反応性物質を担持していることを特徴とする前項1又は2の検出対象定量用反応検出チップ。
4.標準物質としての標識化合物が、以下のいずれか1から選ばれる前項1〜3のいずれか1の検出対象定量用反応検出チップ。
(1)蛍光物質、(2)放射性物質、(3)発光物質、(4)間接的標識物質、(5)磁性物質
5.以下の工程を含む検出対象定量用反応検出チップの作成方法。
(1)多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質を担持した多孔質粒子担体の作成工程、
(2)標準物質としての標識化合物を担持した多孔質粒子担体の作成工程、
(3)(1)の反応性物質を担持した多孔質粒子担体に、(2)の標識化合物を担持した多孔質粒子担体を一定量混入させる工程、
(4)(3)の標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質
粒子担体を基板に設けた複数区分の1つ以上の区分に配列・固定させる工程
6.多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質としての長鎖オリゴヌクレオチドを担持した多孔質粒子担体を基板に設けた複数区分の1つ以上の区分に配列・固定させた反応検出チップにおいて、
前記長鎖オリゴヌクレオチドを該担体に固定化可能とするために、前記多孔質粒子の細孔径の平均が100nm以上であることを特徴とする検出対象定量用反応検出チップ。
7.反応性物質としての長鎖オリゴヌクレオチド固定化反応検出チップにおける35塩基以上の長鎖オリゴヌクレオチドを固定化するための担体としての細孔径の平均が100nm以上の多孔質ガラスの用途。」
That is, this invention consists of the following.
“1. In a reaction detection chip in which a porous particle carrier carrying a reactive substance capable of binding to a detection target is arranged and fixed in one or more sections of a plurality of sections provided on a substrate on the inner surface of a porous particle pore ,
In order to make it possible to quantify the concentration of the detection target, a certain amount of "a porous particle carrier carrying a labeling compound as a standard substance" is present on the porous particle carrier. Reaction detection chip.
2. The reaction detection chip for quantification of a detection target according to item 1 above, wherein the average pore diameter of the porous particle carrier carrying a reactive substance capable of binding to the detection target on the inner surface of the pore of the porous particle is 100 nm or more .
3. 3. The detection target quantitative detection detection chip according to 1 or 2 above, wherein the porous particle carrier arranged and fixed in each section carries a different reactive substance in each section.
4). 4. The detection target quantitative detection detection chip according to any one of items 1 to 3, wherein the labeling compound as a standard substance is selected from any one of the following.
(1) Fluorescent substance, (2) Radioactive substance, (3) Luminescent substance, (4) Indirect labeling substance, (5) Magnetic substance A method for producing a reaction detection chip for quantitative determination of a detection target including the following steps.
(1) A process for producing a porous particle carrier carrying a reactive substance capable of binding to a detection target on the inner surface of a porous particle pore;
(2) A process for producing a porous particle carrier carrying a labeling compound as a standard substance,
(3) A step of mixing a predetermined amount of the porous particle carrier carrying the labeling compound of (2) into the porous particle carrier carrying the reactive substance of (1),
(4) A step of arranging and fixing a porous particle carrier carrying a reactive substance containing a porous particle carrier carrying a labeling compound of (3) in one or more sections of a plurality of sections provided on a substrate. Reaction in which a porous particle carrier carrying a long-chain oligonucleotide as a reactive substance capable of binding to a detection target is arranged and fixed in one or more sections of a plurality of sections provided on a substrate on the inner surface of the porous particle pores In the detection chip,
In order to make it possible to immobilize the long-chain oligonucleotide on the carrier, an average pore diameter of the porous particles is 100 nm or more, and a reaction detection chip for quantitative determination of a detection target.
7). Use of porous glass having an average pore diameter of 100 nm or more as a carrier for immobilizing a long-chain oligonucleotide of 35 bases or more in a long-chain oligonucleotide immobilization reaction detection chip as a reactive substance. "

本発明によれば、フォトリソグラフィー設備等の特別な設備を要することなく、遺伝子解析に必要な長鎖オリゴヌクレオチドなどの検出対象を定量性・再現性を高く測定できる検出チップを容易に提供することができる。
また、既存のGeneChipより、高い集積度を有する検出チップを提供すること及びチップを再利用することも可能である。また、標識化合物を担持した多孔質粒子担体を含む反応性物質を固定した多孔質粒子担体を準備しておけば、必要な時に必要な組み合わせの反応性物質を固定した検出チップを簡単に作成できる。本発明はさらに、低コストかつ安定性の高い反応性検出チップを提供することができる。従って、各個人の必要に対応したDNAなどの反応性検出チップの作成が可能となり、オーダーメイドの医療に貢献できる。
According to the present invention, it is possible to easily provide a detection chip capable of measuring a detection target such as a long-chain oligonucleotide necessary for gene analysis with high quantitativeness and reproducibility without requiring special equipment such as photolithography equipment. Can do.
It is also possible to provide a detection chip having a higher degree of integration than existing GeneChips and reuse the chip. In addition, if a porous particle carrier on which a reactive substance including a porous particle carrier carrying a labeling compound is immobilized is prepared, a detection chip on which a necessary combination of reactive substances is immobilized can be easily prepared when necessary. . The present invention can further provide a low-cost and highly stable reactive detection chip. Accordingly, it is possible to create a reactive detection chip such as DNA corresponding to the needs of each individual, and contribute to custom-made medical care.

本発明の「多孔質粒子」は、反応性物質である任意の塩基配列を持つオリゴヌクレオチド、オリゴペプチド、核酸、タンパク質、抗体、リガンドなどを担持する材料であり、多孔質ガラス、シリカゲル、イオン交換樹脂のような結合能力のある多孔質材料が好ましく、細孔径の表面特性からは多孔質ガラスが最も好ましい。
多孔質粒子の細孔は、検出対象が拡散により十分入り込める大きさである通常の約50nmで良いが、本発明では長鎖のオリゴヌクレオチドを担持することを考慮すれば、約70nm以上、好ましくは約100nm以上、より好ましくは200nm以上である。
さらに、本発明の多孔質ガラスの平均細孔径の測定方法は、水銀圧入法を主に、電子顕微鏡による観察を併せて行う。
また、多孔質ガラスの組成は、分相により多孔質を成形できる分相性基礎ガラスであれば限定されるものではない。例えば、ホウケイ酸ガラスから構成されるガラス、又は重量比(%)で、SiO2:60-80%、B2O3:15-25%、NaO:3-10%、Al2O3:1-5%であり、好適には、SiO2:70%、B2O3:21%、NaO:6%、Al2O3:3%のガラス等である。
The “porous particle” of the present invention is a material carrying an oligonucleotide, oligopeptide, nucleic acid, protein, antibody, ligand, etc. having an arbitrary base sequence that is a reactive substance, porous glass, silica gel, ion exchange A porous material having a binding ability such as a resin is preferred, and porous glass is most preferred from the surface characteristics of the pore diameter.
The pores of the porous particles may be about 50 nm, which is usually large enough to allow the detection target to enter by diffusion, but in the present invention, considering that a long-chain oligonucleotide is supported, about 70 nm or more, preferably About 100 nm or more, more preferably 200 nm or more.
Furthermore, the measuring method of the average pore diameter of the porous glass of the present invention is mainly performed by mercury porosimetry and observation with an electron microscope.
The composition of the porous glass is not limited as long as it is a phase-separating basic glass capable of forming a porous layer by phase separation. For example, glass composed of borosilicate glass, or by weight ratio (%), SiO 2 : 60-80%, B 2 O 3 : 15-25%, NaO: 3-10%, Al 2 O 3 : 1 -5%, and preferred is SiO 2 : 70%, B 2 O 3 : 21%, NaO: 6%, Al 2 O 3 : 3% glass or the like.

本発明の「反応性物質(プローブ)」の「反応性」とは、化学反応により、水素結合、イオン結合や共有結合による化学構造等が変化する場合のみではなく、ファンデルワールス力、水素結合、配位結合、化学吸着、物理吸着等のその他の様式により、他の物質と結合した状況を作り得る性質を意味する。
そのような反応性物質としては、任意の構成を持つタンパク質又は任意の塩基配列を持つオリゴヌクレオチドなどを担持する材料であるが、当然のことながらこれらに限定されない。
なお、本発明の「反応性物質としての長鎖オリゴヌクレオチド」とは、オリゴヌクレオチド長が35塩基以上、好ましくは60塩基以上、最も好ましくは100塩基以上であるオリゴヌクレオチドである。
The “reactivity” of the “reactive substance (probe)” of the present invention is not only the case where the chemical structure changes due to a chemical reaction due to a chemical reaction, but also van der Waals force, hydrogen bonding. In other words, it means a property capable of creating a situation in which it is combined with other substances by other modes such as coordination bond, chemical adsorption, and physical adsorption.
Such a reactive substance is a material carrying a protein having an arbitrary configuration or an oligonucleotide having an arbitrary base sequence, but it is naturally not limited thereto.
The “long oligonucleotide as a reactive substance” of the present invention is an oligonucleotide having an oligonucleotide length of 35 bases or more, preferably 60 bases or more, and most preferably 100 bases or more.

本発明の「検出対象」とは、上記の「反応性物質」に特異的に認識される物質である。例としては、「反応性物質」がオリゴヌクレオチドの場合には、各オリゴヌクレオチドと相補配列のオリゴヌクレオチドであり、「反応性物質」が抗体の場合には、抗原であるが、当然のことながらこれらに限定されない。   The “detection target” of the present invention is a substance specifically recognized by the above “reactive substance”. As an example, when the “reactive substance” is an oligonucleotide, it is an oligonucleotide having a complementary sequence to each oligonucleotide, and when the “reactive substance” is an antibody, it is an antigen. It is not limited to these.

本発明の「基板」は、検出システムに対して変化しない安定な素材であれば特に限定されないが、多孔質粒子を固定するのに適した表面特性を持つことが必要であり、石英ガラス、ホウケイ酸ガラスなどのガラス基板、シリコンウェハーなどの無機基板が好ましいが、多孔質粒子との結合方法を工夫することによりポリエステルフィルム・ポリエチレンフィルムなどの有機基板を用いることもでき、場合によっては紙類を用いることができる。
さらに、基板上は、複数の区分(スポット)に仕切られており、ある反応性物質が基板上のどの位置に存在するかを識別することができる。
The “substrate” of the present invention is not particularly limited as long as it is a stable material that does not change with respect to the detection system, but it must have surface characteristics suitable for fixing porous particles. Glass substrates such as acid glass and inorganic substrates such as silicon wafers are preferred, but organic substrates such as polyester films and polyethylene films can also be used by devising a method for bonding with porous particles, and in some cases papers are used. Can be used.
Further, the substrate is divided into a plurality of sections (spots), and it is possible to identify where a certain reactive substance exists on the substrate.

本発明の「標識化合物」とは、多孔質粒子を直接的又は間接的に標識することができる物質であり、かつ検出対象の検出を阻害しない物質であれば特に限定されない。例えば、(1)蛍光物質としては、FITC, ローダミン, Cy3, Cy5, Alexa, TAMRA, FAM, GFP, YFP等、(2)放射性物質としては、32P, 33P, 35S, 3H, 14C, 125I等、(3)発光物質としては、ルミノール, Cyalume, CLA, ルシフェラーゼ等、(4)間接的標識物質としては、DIG,Biotin,aminoallyl等(ここで間接的標識物質とは、多孔質粒子に固定され、直接的又は2次的に蛍光物質、発光物質あるいはタンパク質性標識(例、酵素、抗体等)と特異的に結合する物質を意味する)、(5)磁性物質等が挙げられる。 The “labeling compound” of the present invention is not particularly limited as long as it is a substance that can directly or indirectly label porous particles and does not inhibit detection of a detection target. For example, (1) fluorescent substances include FITC, rhodamine, Cy3, Cy5, Alexa, TAMRA, FAM, GFP, YFP, etc. (2) radioactive substances include 32 P, 33 P, 35 S, 3 H, 14 C, 125 I, etc. (3) Luminol, Cyalume, CLA, luciferase, etc. as luminescent substances, (4) DIG, Biotin, aminoallyl, etc. as indirect labeling substances (herein indirectly labeled substances are porous And a substance that binds to a fluorescent substance, a luminescent substance, or a proteinaceous label (eg, an enzyme, an antibody, etc.) directly or secondarily, or (5) a magnetic substance. It is done.

本発明の「一定量の"標準物質としての標識化合物を担持した多孔質粒子担体"が存在する」における「一定量」とは、ある反応性物質を担持した多孔質粒子担体群に含まれる、標識化合物を担持した多孔質粒子の割合が同じであることを意味する。   “Constant amount” in “a certain amount of“ a porous particle carrier carrying a labeling compound as a standard substance ”of the present invention” is included in the porous particle carrier group carrying a certain reactive substance. It means that the ratio of the porous particles carrying the labeling compound is the same.

本発明の「プローブ純度」とは、目的の完全長プローブ(オリゴヌクレオチド)が、担体(基板)に固定化されている割合を意味する。一般に遺伝子発現解析に利用するような長い配列になればなるほど、目的の完全長プローブの部分配列である不完全長配列が担体(基板)に固定化されてプローブ純度は低下する。   The “probe purity” in the present invention means the ratio of the target full-length probe (oligonucleotide) immobilized on the carrier (substrate). In general, the longer the sequence used for gene expression analysis, the imperfect length sequence, which is a partial sequence of the target full length probe, is immobilized on the carrier (substrate), and the probe purity decreases.

次に、本発明の検出対象定量用反応検出チップの作成方法を説明する。しかしながら、反応性物質を担持した多孔質粒子担体に一定量の標識化合物を担持した多孔質粒子が存在する反応検出チップを構成する限り、特に作成方法は限定されない。   Next, a method for producing the detection target quantification reaction detection chip of the present invention will be described. However, the preparation method is not particularly limited as long as the reaction detection chip is configured such that a porous particle carrier carrying a certain amount of a labeling compound exists on a porous particle carrier carrying a reactive substance.

(1)反応性物質を担持した多孔質粒子担体の作成工程
表面処理した多孔質ガラスに、定法により各種の反応性物質であるオリゴヌクレオチド、オリゴペプチド、核酸、タンパク質、抗体またはリガンドを合成または固定する。
(1) Production process of porous particle carrier carrying a reactive substance Various reactive substances such as oligonucleotides, oligopeptides, nucleic acids, proteins, antibodies or ligands are synthesized or immobilized on a surface-treated porous glass by a conventional method. To do.

(2)標準物質としての標識化合物を担持した多孔質粒子担体の作成工程
表面処理した多孔質ガラスに、定法により標識化合物を固定する。
(2) Step of making porous particle carrier carrying labeling compound as standard substance The labeling compound is fixed to the surface-treated porous glass by a conventional method.

(3)反応性物質を担持した多孔質粒子担体に、標識化合物を担持した多孔質粒子担体を一定量存在させる工程
(1)の反応性物質を担持した多孔質粒子担体に、一定量の標識化合物を担持した多孔質粒子担体を混入させ、均一にする。混入割合は、反応性物質を担持した多孔質粒子担体を1とすると、標識化合物を担持した多孔質粒子担体は0.2以下である。
(3) A step of causing a certain amount of a porous particle carrier carrying a labeling compound to be present in a porous particle carrier carrying a reactive substance (1) A certain amount of labeling to a porous particle carrier carrying a reactive substance in (1) The porous particle carrier carrying the compound is mixed to make uniform. The mixing ratio is 0.2 or less for the porous particle carrier carrying the labeling compound, where 1 is the porous particle carrier carrying the reactive substance.

(4)標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質粒子担体を基板に設けた複数区分の1つ以上の区分に配列・固定させる工程
まず、検出チップのスライドガラスやプラスチック板等の基板上の多孔質粒子を設置する領域に適当な接着剤を塗布する。次いで、(3)で作成しておいた"標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質粒子担体"を基板上に移動させ、所定位置に固定する。続いて、同一又は別種の"標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質粒子担体"を所定位置に固定し、この作業を順次繰り返すことにより、同一又は異なった種類の"標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質粒子担体"を配列していく。これにより、基板上の所定位置に同一又は異なった種類の"標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質粒子担体"が配列された検出チップを得ることができる。
(4) A step of arranging and fixing a porous particle carrier carrying a reactive substance including a porous particle carrier carrying a labeling compound in one or more of a plurality of sections provided on a substrate First, a slide glass of a detection chip A suitable adhesive is applied to a region where porous particles are placed on a substrate such as a plastic plate. Next, the “porous particle carrier carrying a reactive substance including a porous particle carrier carrying a labeling compound” prepared in (3) is moved onto the substrate and fixed at a predetermined position. Subsequently, the same or different kind of “porous particle carrier carrying a reactive substance containing a porous particle carrier carrying a labeling compound” is fixed at a predetermined position, and this operation is repeated in sequence, so that the same or different types The “porous particle carrier carrying a reactive substance including a porous particle carrier carrying a labeling compound” is arranged. Thereby, it is possible to obtain a detection chip in which the same or different types of “porous particle carriers carrying a reactive substance including a porous particle carrier carrying a labeling compound” are arranged at predetermined positions on the substrate.

測定方法
まず、検出チップ上の各スポットの標準物質としての標識化合物の検出強度を比較する。各スポットの標識化合物の検出強度差から、各スポットに含まれるプローブの量を算出する。
次に、反応検出チップを反応セルにいれ、標準物質とは別の方法で標識した検出対象をセルに流し込み、反応させる。反応・洗浄の後、検出チップ上の各スポットの位置及び標識の強度を検出器により解析する。この時、標準物質としての標識化合物と検出対象の標識化合物に例えばCy5とCy3の様な検出波長の異なる蛍光化合物を用いれば、先のステップを省略できる。
スポットに含まれるプローブ量及び検出対象の蛍光値を基にして、検出対象を正確に定量化する。詳しくは、検出対象の検出強度量を標準化合物の検出強度量で割った数値が相対的な検出対象の検出強度量とすることができる。
Measurement Method First, the detection intensities of the labeled compounds as the standard substances of the spots on the detection chip are compared. The amount of probe contained in each spot is calculated from the difference in detection intensity of the labeled compound in each spot.
Next, the reaction detection chip is placed in the reaction cell, and the detection target labeled by a method different from that for the standard substance is poured into the cell and reacted. After the reaction / washing, the position of each spot on the detection chip and the intensity of the label are analyzed by a detector. At this time, if fluorescent compounds having different detection wavelengths such as Cy5 and Cy3 are used for the labeling compound as the standard substance and the labeling compound to be detected, the previous step can be omitted.
The detection target is accurately quantified based on the amount of probe contained in the spot and the fluorescence value of the detection target. Specifically, a numerical value obtained by dividing the detection intensity amount of the detection target by the detection intensity amount of the standard compound can be used as the relative detection intensity amount of the detection target.

より正確に検出対象を定量するためには、予め複数の既知濃度の蛍光標識した内部標準となる検出対象の蛍光強度を測定する。既知濃度の蛍光標識した検出対象の蛍光強度及びプローブ量を基にして検量線を作成し、この検量線を用いて検出対象の定量化を行う事もできる。   In order to quantify the detection target more accurately, the fluorescence intensity of the detection target serving as a plurality of fluorescently labeled internal standards in advance is measured. It is also possible to create a calibration curve based on the fluorescence intensity of the fluorescently labeled detection target having a known concentration and the amount of the probe, and to quantify the detection target using this calibration curve.

次に、本発明の長鎖オリゴヌクレオチド固定化反応検出チップに用いる長鎖オリゴヌクレオチドの固定化担体としての多孔質ガラス担体の作成方法及び長鎖オリゴヌクレオチド固定化反応検出チップを説明する。しかしながら、望みの細孔径の平均を持つ多孔質ガラスを作成できる限り、特に以下の作成方法は限定されない。   Next, a method for producing a porous glass carrier as an immobilization carrier for a long-chain oligonucleotide used in the long-chain oligonucleotide immobilization reaction detection chip of the present invention and a long-chain oligonucleotide immobilization reaction detection chip will be described. However, the following preparation methods are not particularly limited as long as a porous glass having an average average pore diameter can be prepared.

長鎖オリゴヌクレオチドの固定化担体としての多孔質ガラス担体の作成方法
上記述べた母材ホウケイ酸ガラスに熱処理(約600℃〜800℃で数十時間以上)を行う。これにより、母材ホウケイ酸ガラスは分相といわれる現象を起こす。分相後のガラスを、粉砕して粒状にする。この状態では、まだ多孔質にはなっていない。続いて、各粒子状の分相ガラスを、酸溶液中(塩酸、硝酸等)に浸け込み、酸処理を行う。得られた酸処理後の各粒子状の分相ガラスを回収し、アルカリ処理(水酸化ナトリウム、水酸化カリウム等)により、細孔中の堆積シリカゲルを除去する。
以上により、粒子状の多孔質ガラスを作成することができる。
Method for producing porous glass carrier as immobilization carrier for long-chain oligonucleotide The above-mentioned base material borosilicate glass is subjected to heat treatment (at about 600 ° C. to 800 ° C. for several tens of hours or more). As a result, the base material borosilicate glass causes a phenomenon called phase separation. The glass after phase separation is pulverized into granules. In this state, it is not yet porous. Subsequently, each particulate phase-separated glass is immersed in an acid solution (hydrochloric acid, nitric acid, etc.) to perform acid treatment. The obtained particulate phase-separated glass after acid treatment is collected, and the deposited silica gel in the pores is removed by alkali treatment (sodium hydroxide, potassium hydroxide, etc.).
As described above, particulate porous glass can be produced.

長鎖オリゴヌクレオチド固定化反応検出チップの作成方法
上記多孔質ガラス担体に表面処理をして、定法により長鎖オリゴヌクレオチドを合成する。
次に、検出チップのスライドガラスやプラスチック板等の基板上の多孔質粒子を設置する領域に適当な接着剤を塗布する。次いで、上記作成した長鎖オリゴヌクレオチドを担持(固定)した多孔質粒子担体を基板上に移動させ、所定位置に固定する。続いて、同一又は別種の長鎖オリゴヌクレオチドを担持した多孔質粒子担体を所定位置に固定し、この作業を順次繰り返すことにより、同一又は異なった種類の長鎖オリゴヌクレオチドを担持した多孔質粒子担体を配列していく。これにより、基板上の所定位置に同一又は異なった種類の長鎖オリゴヌクレオチドを担持(固定)した多孔質粒子担体が配列された検出チップを得ることができる。
Method for Producing Long Oligonucleotide Immobilization Reaction Detection Chip The porous glass carrier is subjected to surface treatment, and a long oligonucleotide is synthesized by a conventional method.
Next, an appropriate adhesive is applied to a region where porous particles on a substrate such as a slide glass or a plastic plate of the detection chip are placed. Next, the porous particle carrier carrying (fixed) the long oligonucleotide prepared above is moved onto the substrate and fixed at a predetermined position. Subsequently, the porous particle carrier carrying the same or different types of long-chain oligonucleotides is fixed at a predetermined position, and this operation is sequentially repeated to thereby carry the same or different types of long-chain oligonucleotides. Will be arranged. Thereby, it is possible to obtain a detection chip in which porous particle carriers carrying (fixed) the same or different types of long-chain oligonucleotides are arranged at predetermined positions on the substrate.

以下に実施例を示し、本発明の特徴をより詳細に説明する。但し、本発明の範囲は、これら実施例に限定されるものではない。   Hereinafter, the features of the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to these examples.

長鎖オリゴヌクレオチド固定化多孔質ガラスの作成方法
細孔径の平均100nm又は200nmを持つ多孔質ガラスに、120塩基のオリゴヌクレオチド配列(taaccgggga ttctgtacat gcattgagct ctctcattgt ctgtgtagag tgttatactt gggaatataa aggaggtgac caaatcagtg tgaggaggta gatttggctc ctctgcttct:配列番号1)を定法により合成した。
なお、コントロールとして、細孔径の平均100nm相当のCLPS(ABI社の市販品:Cross-Linked Polystyrene製)でも上記同様に長鎖オリゴヌクレオチドを合成した。
Method for producing long-chain oligonucleotide-immobilized porous glass Porous glass having an average pore diameter of 100 nm or 200 nm, 120 base oligonucleotide sequence (taaccgggga ttctgtacat gcattgagct ctctcattgt ctgtgtagag tgttatactt gggaatataa aggaggtgac caaatcagtg tctggctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctct Was synthesized by a conventional method.
As a control, long-chain oligonucleotides were synthesized in the same manner as described above using CLPS (commercial product of ABI: manufactured by Cross-Linked Polystyrene) having an average pore diameter of 100 nm.

長鎖オリゴヌクレオチド合成の確認
実施例2で得られた長鎖オリゴヌクレオチド固定化多孔質ガラスから、アンモニア水を用いて合成した長鎖オリゴヌクレオチドを切断した。
(1)電気泳動測定
上記切断した長鎖オリゴヌクレオチドを電気泳動にかけて、長鎖オリゴヌクレオチドの120塩基長を示すバンドの位置を確認した(図1:(1)細孔径の平均100nmを持つ多孔質ガラス、(2)細孔径の平均200nmを持つ多孔質ガラス、(3)細孔径の平均100nm相当のCLPS)。
(2)HPLC測定
上記切断した長鎖オリゴヌクレオチドをHPLCで測定し、120塩基長の長鎖オリゴヌクレオチドを検出した(図2:(1)細孔径の平均100nmを持つ多孔質ガラス、(2)細孔径の平均200nmを持つ多孔質ガラス、(3)細孔径の平均100nm相当のCLPS)。
Confirmation of long-chain oligonucleotide synthesis The long-chain oligonucleotide synthesized using aqueous ammonia was cleaved from the long-chain oligonucleotide-immobilized porous glass obtained in Example 2.
(1) Electrophoretic measurement The cleaved long oligonucleotide was subjected to electrophoresis, and the position of the band indicating the 120 base length of the long oligonucleotide was confirmed (FIG. 1: (1) porous having an average pore diameter of 100 nm. Glass, (2) porous glass having an average pore diameter of 200 nm, and (3) CLPS equivalent to an average pore diameter of 100 nm).
(2) HPLC measurement The cleaved long oligonucleotide was measured by HPLC to detect a 120 base long oligonucleotide (FIG. 2: (1) porous glass having an average pore diameter of 100 nm, (2) Porous glass having an average pore diameter of 200 nm, (3) CLPS equivalent to an average pore diameter of 100 nm).

上記(1)の測定結果より、本発明の細孔径平均100nm又は200nmを持つ多孔質ガラスでは、長鎖オリゴヌクレオチドが効率良く合成できていたことを示す120塩基付近の濃いバンドを検出できた。しかし、従来の担体であるCLIPSでは、120塩基付近の濃いバンドを検出することができなかった。
上記(2)の測定結果より、本発明の細孔径平均100nm又は200nmを持つ多孔質ガラスでは、120塩基長の長鎖オリゴヌクレオチドを高効率で回収することができた(それぞれ、回収率1.89%、3.17%)。しかし、従来の担体であるCLIPSでは、長鎖オリゴヌクレオチドをわずかしか回収することことができなかった(回収率0.19%)。
From the measurement result of (1) above, in the porous glass having an average pore diameter of 100 nm or 200 nm of the present invention, a dark band around 120 bases indicating that a long-chain oligonucleotide was synthesized efficiently could be detected. However, with the conventional carrier CLIPS, a dark band around 120 bases could not be detected.
From the measurement result of the above (2), in the porous glass having an average pore diameter of 100 nm or 200 nm of the present invention, 120 base long long oligonucleotides could be recovered with high efficiency (recovery rate: 1.89%, respectively). , 3.17%). However, with the conventional carrier CLIPS, only a small amount of the long-chain oligonucleotide could be recovered (recovery rate 0.19%).

以上の結果より、本発明の多孔質ガラス担体は目的の長鎖オリゴヌクレオチドが効率良く合成することが確認できた。これにより、本発明の多孔質ガラス担体は高いプローブ純度を示す。さらに、200nmの細孔径平均は、100nmの細孔径平均より、高いプローブ純度を示すので、より大孔径の多孔質ガラスが担体として優れていることがわかった。
最後に、本発明の多孔質ガラスを集積した反応検出チップは、生体試料由来の標識DNAあるいはRNAを効率良く固定化できるので遺伝子発現解析に用いることができる。
From the above results, it was confirmed that the target long-chain oligonucleotide was efficiently synthesized from the porous glass carrier of the present invention. Thereby, the porous glass support | carrier of this invention shows high probe purity. Furthermore, since the average pore diameter of 200 nm shows higher probe purity than the average pore diameter of 100 nm, it was found that porous glass having a larger pore diameter is superior as a carrier.
Finally, the reaction detection chip on which the porous glass of the present invention is integrated can be used for gene expression analysis because it can efficiently immobilize labeled DNA or RNA derived from a biological sample.

電気泳動の結果Electrophoresis results HPLCの結果HPLC results 従来の多孔質ガラス粉末を担体とした反応検出チップReaction detection chip using conventional porous glass powder as support

Claims (5)

多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質を担持した多孔質粒子担体を基板に設けた複数区分の1つ以上の区分に配列・固定させた反応検出チップにおいて、
前記検出対象の濃度を定量可能とするために、前記多孔質粒子担体に一定量の"標準物質としての標識化合物を担持した多孔質粒子担体"が存在していることを特徴とする検出対象定量用反応検出チップ。
In a reaction detection chip in which a porous particle carrier carrying a reactive substance capable of binding to a detection target is arranged and fixed in one or more sections of a plurality of sections provided on a substrate on the inner surface of a porous particle pore,
In order to make it possible to quantify the concentration of the detection target, a certain amount of "a porous particle carrier carrying a labeling compound as a standard substance" is present on the porous particle carrier. Reaction detection chip.
前記多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質を担持した多孔質粒子担体の細孔径の平均が100nm以上であることを特徴とする請求項1の検出対象定量用反応検出チップ。   The reaction detection for quantitative determination of a detection target according to claim 1, wherein the average pore diameter of the porous particle carrier carrying a reactive substance capable of binding to the detection target on the pore inner surface of the porous particle is 100 nm or more. Chip. 各区分に配列・固定させた多孔質粒子担体において、各区分において異なる反応性物質を担持していることを特徴とする請求項1又は2の検出対象定量用反応検出チップ。   3. The detection target quantification reaction detection chip according to claim 1 or 2, wherein the porous particle carrier arranged and fixed in each section carries a different reactive substance in each section. 標準物質としての標識化合物が、以下のいずれか1から選ばれる請求項1〜3のいずれか1の検出対象定量用反応検出チップ。
(1)蛍光物質、(2)放射性物質、(3)発光物質、(4)間接的標識物質、(5)磁性物質
The reaction detection chip for quantitative detection according to any one of claims 1 to 3, wherein the labeling compound as the standard substance is selected from any one of the following.
(1) Fluorescent substance, (2) Radioactive substance, (3) Luminescent substance, (4) Indirect labeling substance, (5) Magnetic substance
以下の工程を含む検出対象定量用反応検出チップの作成方法。
(1)多孔質粒子細孔内部表面に検出対象と結合可能な反応性物質を担持した多孔質粒子担体の作成工程、
(2)標準物質としての標識化合物を担持した多孔質粒子担体の作成工程、
(3)(1)の反応性物質を担持した多孔質粒子担体に、(2)の標識化合物を担持した多孔質粒子担体を一定量混入させる工程、
(4)(3)の標識化合物を担持した多孔質粒子担体を含む反応性物質を担持した多孔質粒子担体を基板に設けた複数区分の1つ以上の区分に配列・固定させる工程
A method for producing a reaction detection chip for quantitative determination of a detection target including the following steps.
(1) A process for producing a porous particle carrier carrying a reactive substance capable of binding to a detection target on the inner surface of a porous particle pore;
(2) A process for producing a porous particle carrier carrying a labeling compound as a standard substance,
(3) A step of mixing a predetermined amount of the porous particle carrier carrying the labeling compound of (2) into the porous particle carrier carrying the reactive substance of (1),
(4) A step of arranging and fixing a porous particle carrier carrying a reactive substance containing a porous particle carrier carrying a labeling compound of (3) in one or more sections of a plurality of sections provided on a substrate
JP2006341970A 2005-12-20 2006-12-19 Reaction detection chip using porous particles and method for producing the chip Active JP4122445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341970A JP4122445B2 (en) 2005-12-20 2006-12-19 Reaction detection chip using porous particles and method for producing the chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005366479 2005-12-20
JP2006341970A JP4122445B2 (en) 2005-12-20 2006-12-19 Reaction detection chip using porous particles and method for producing the chip

Publications (2)

Publication Number Publication Date
JP2007192812A JP2007192812A (en) 2007-08-02
JP4122445B2 true JP4122445B2 (en) 2008-07-23

Family

ID=38448609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341970A Active JP4122445B2 (en) 2005-12-20 2006-12-19 Reaction detection chip using porous particles and method for producing the chip

Country Status (1)

Country Link
JP (1) JP4122445B2 (en)

Also Published As

Publication number Publication date
JP2007192812A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
Venkatasubbarao Microarrays–status and prospects
US7985539B2 (en) Nanoparticle probes with raman spectroscopic fingerprints for analyte detection
EP2881736A1 (en) Single polymerase molecule loading methods and compositions
EP1307743B1 (en) Colloid compositions for solid phase biomolecular analytical systems
US20080176768A1 (en) Hydrogel microarray with embedded metal nanoparticles
JP2006501817A (en) New high-density array and sample analysis method
EP1488000B1 (en) Signal amplification by hybrid capture
WO2000061806A2 (en) GENERIC cDNA OR PROTEIN ARRAY FOR CUSTOMIZED ASSAYS
JP2002531098A (en) Cloning and copying on surface
JPWO2011142307A1 (en) Nucleic acid analysis device, manufacturing method thereof and nucleic acid analysis apparatus
JP5822929B2 (en) Nucleic acid analyzer
TWI388831B (en) In-solution microarray assay
CN101663406A (en) Nucleic acid chip for obtaining bind profile of single strand nucleic acid and unknown biomolecule, manufacturing method thereof and analysis method of unknown biomolecule using nucleic acid chip
JP4122445B2 (en) Reaction detection chip using porous particles and method for producing the chip
US20070087382A1 (en) Molecule array and method for producing the same
Cui et al. Simultaneous and sensitive detection of dual DNA targets via quantum dot‐assembled amplification labels
JPWO2007063807A1 (en) Analysis method of primary structure change of nucleic acid
JP2002202305A (en) Affinity detection and analysis chip, method for manufacturing the same and detection method and system using the affinity detection and analysis chip
JP2007192811A (en) Sheet type porous glass carrier, its manufacturing method, and sheet type porous glass laminate
JP2001255327A (en) Method for detecting and/or determining substance using porous support and delayed fluorescence
JP2011047873A (en) Blocking agent
JP2004093331A (en) High-sensitivity chip for detecting affinity reaction, its producing method and detecting device
JP2001281251A (en) Reaction detection chip and its manufacturing method
JP2004177348A (en) Method for detecting nucleic acid or protein with ultra-high sensitivity, detecting agent, and detection apparatus
Soloviev et al. Chip based proteomics technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080123

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150