JP4122299B2 - A method for heating fiber-reinforced thermosetting resin. - Google Patents

A method for heating fiber-reinforced thermosetting resin. Download PDF

Info

Publication number
JP4122299B2
JP4122299B2 JP2004000117A JP2004000117A JP4122299B2 JP 4122299 B2 JP4122299 B2 JP 4122299B2 JP 2004000117 A JP2004000117 A JP 2004000117A JP 2004000117 A JP2004000117 A JP 2004000117A JP 4122299 B2 JP4122299 B2 JP 4122299B2
Authority
JP
Japan
Prior art keywords
frp
temperature
heating
resin
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000117A
Other languages
Japanese (ja)
Other versions
JP2004148841A5 (en
JP2004148841A (en
Inventor
俊作 林田
Original Assignee
有限会社矢上船舶機器サービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社矢上船舶機器サービス filed Critical 有限会社矢上船舶機器サービス
Priority to JP2004000117A priority Critical patent/JP4122299B2/en
Publication of JP2004148841A publication Critical patent/JP2004148841A/en
Publication of JP2004148841A5 publication Critical patent/JP2004148841A5/ja
Application granted granted Critical
Publication of JP4122299B2 publication Critical patent/JP4122299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は硬化した繊維強化熱硬化性樹脂(以後FRPと略記する。)の加熱、加温処理に関する技術で、特に廃FRPの減容や再利用の技術分野に活用できるものである。 The present invention is a technique related to heating and heating treatment of a cured fiber reinforced thermosetting resin (hereinafter abbreviated as FRP), and can be used particularly in the technical field of volume reduction and reuse of waste FRP.

従来のFRPの加熱、加温処理は樹脂を反応硬化させる手段に多く(例えば、特許文献1、特許文献2参照。)。
FRP熱処理で層間樹脂の処理に利用したものもある(例えば、特許文献3参照。)。
FRPの加温処理は切断、破断、剥離、整形、圧縮減容、等の手段には見られない。
現在、廃FRPのほとんどは切断又は破断等して埋め立て処分され、一部は粉砕して、さまざまな樹脂等の充填材として再利用されている。また現在、熱分解やセメント製造工程での原料や燃料として再利用が研究されている。
Conventional heating and heating treatments for FRP are often used as a means for reaction-curing resin (see, for example, Patent Document 1 and Patent Document 2).
Some are used for the treatment of the interlayer resin by FRP heat treatment (see, for example, Patent Document 3).
FRP warming treatment is not found in cutting, breaking, peeling, shaping, compression and volume reduction.
Currently, most of the waste FRP is disposed of in landfills by cutting or breaking, and part of it is crushed and reused as fillers for various resins. At present, reuse is studied as a raw material and fuel in pyrolysis and cement manufacturing processes.

特開2002−307465号公報(要約)JP 2002-307465 A (summary) 特開平8−112860号公報(要約)JP-A-8-112860 (summary) 特許番号2679477号(作用)Patent No. 2679477 (action)

しかし、FRPは廃材となっても耐久性に優れ強靭さを保っていて、FRPの高剛性、高強度は切断や破断等に大きな動力を要し、FRPの熱伝導の悪さは切断機や破断機の刃先の熱を逃がさず熱による損傷を与えている。また、切断や破断等処理時の騒音が大きく粉塵の発生等の問題を抱えている。更に、この廃FRPを切断や破断等して埋め立て処分する場合は、中空の状態でなく最大径おおむね15cm以下と規定されていて、多大な動力と労力を要することとなる。 However, even if FRP becomes a waste material, it has excellent durability and toughness, and the high rigidity and high strength of FRP require a large amount of power for cutting and breaking, etc. The heat from the blade of the machine is not released and it is damaged by heat. In addition, there are problems such as generation of dust due to large noise during processing such as cutting and breaking. Furthermore, when this waste FRP is disposed of by landfill by cutting or breaking, it is prescribed that the maximum diameter is not more than 15 cm, not a hollow state, which requires a great deal of power and labor.

このような廃FRPの処理において、薬品等での溶解や過熱による熱分解、及び燃焼させることなく、この熱硬化性樹脂が変質劣化する事のない高温域の軟化状態(実施例3以降で示す状態。)で、騒音や粉塵を抑え少ない動力で廃FRPを切断又は破断又は強化繊維束の剥離又は加圧破断等の処理(破断処理と略記する。)をして、圧縮減容又は再利用することを目的に創案された方法で、その目的は耐久性に優れ強靭な廃FRPを熱硬化性樹脂の持つ性質を保った状態で再利用又は減容して、埋め立て処分量を極力少なくする。また、FRPを加温し整形して成形品及び構造物の作製等に用いる、FRPの加温処理方法を提供する事にある。 In such waste FRP treatment, the thermosetting resin is not deteriorated and deteriorated without being dissolved or dissolved in chemicals or by overheating, and softened in a high temperature range (shown in and after Example 3). In this state, the waste FRP is cut or ruptured or peeled off the reinforcing fiber bundle or pressed and ruptured (abbreviated as rupture treatment) with a small amount of power while suppressing noise and dust. The purpose was to reduce the amount of landfill disposal as much as possible by reusing or reducing the volume of durable and tough waste FRP while maintaining the properties of thermosetting resin. . Another object of the present invention is to provide a method for heating FRP, which is used for manufacturing molded products and structures by heating and shaping FRP.

以上の目的を達成するために、請求項1に係るFRPの加温処理方法は、硬化したFRPをこの熱硬化性樹脂の変質劣化しない所定温度に加温した状態でFRPの硬度や剛性が低下する現象を利用して、切断又は破断又は加圧破断等の破断処理又は加圧し圧縮して常温まで戻して硬化させ減容固化する手段による。 In order to achieve the above object, the FRP heating method according to claim 1 reduces the hardness and rigidity of the FRP in a state where the cured FRP is heated to a predetermined temperature at which the thermosetting resin does not deteriorate. By utilizing the phenomenon of cutting, rupture treatment such as cutting or rupture or pressure rupture, or by means of pressurizing and compressing, returning to room temperature, curing and volume-reducing solidification.

また、請求項2に係るFRPの加熱処理方法は、硬化したFRPをこの熱硬化性樹脂の持つ性質を失わない適宜な高温域に加温した軟化状態で、強化繊維の引張り強さを利用し強化繊維束の層間と束間の樹脂を破断して、強化繊維束を剥離し切断等の破断処理又はこの破断処理物を圧縮して常温まで戻して硬化させ減容固化する手段による。 In addition, the FRP heat treatment method according to claim 2 utilizes the tensile strength of the reinforcing fiber in a softened state in which the cured FRP is heated to an appropriate high temperature range without losing the properties of the thermosetting resin. By rupturing the resin between the reinforcing fiber bundles and between the bundles, peeling the reinforcing fiber bundles and rupturing such as cutting, or compressing the ruptured product to normal temperature and curing it to reduce the volume and solidify.

また、請求項3に係るFRPの加温処理方法は、FRP製の廃船及び建設廃材等長大な構造物の全体又は一部を保温シート等の気密材で覆い外気と遮へいし、この構造物をこの樹脂の変質劣化しない適宜な温度に加温し、熱硬化性樹脂が剛性を失した状態で切断機又は建機等の遠隔操作で解体等の粗破断処理又はこの粗破断処理片を加温状態で再破断処理又は圧縮して常温まで戻して硬化させ減容固化する手段による。 Further, the FRP heating method according to claim 3 covers the whole or part of a long structure such as a waste ship and construction waste made of FRP with an airtight material such as a heat insulation sheet, and shields it from the outside air. Is heated to an appropriate temperature that does not cause deterioration and deterioration of the resin, and the rough rupture treatment such as dismantling or this rough rupture treatment piece is applied by remote control of a cutting machine or construction machine in a state where the thermosetting resin loses rigidity. By means of re-breaking treatment in a warm state or compression and returning to room temperature to cure and volume-reducing and solidifying.

また、請求項4に係るFRPの加温処理方法は、上記減容固化したFRPを所定温度に加温することにより圧縮前の状態に復元する現象を利用して、再破断処理又は大きさを変えて圧縮し常温まで戻して硬化させ再減容固化又は加工品を製作する手段による。 In addition, the FRP warming method according to claim 4 uses a phenomenon in which the reduced volume and solidified FRP is warmed to a predetermined temperature to restore the pre-compression state. By changing and compressing, returning to normal temperature and curing, re-volume reduction solidification or by means of manufacturing a processed product.

また、請求項5に係るFRPの加温処理方法は、不活性ガス及び樹脂成分雰囲気のもとで上記加温処理する手段による。 Further, the FRP warming method according to claim 5 is based on the above-mentioned warming treatment under an inert gas and resin component atmosphere.

また、請求項6に係るFRPの加温処理方法は、大気圧力より高圧の燃焼ガスに水を適量噴霧し蒸発の潜熱を利用して温度を調整した概ね不活性の加温ガスにより加温する手段による。 Further, in the FRP warming method according to claim 6, the water is sprayed in an appropriate amount to the combustion gas having a pressure higher than the atmospheric pressure, and the temperature is adjusted by using the latent heat of evaporation, and the warming is performed by the generally inert warming gas. By means.

また、請求項7に係るFRPの加温処理方法は、硬化したFRPを加温し温度が低下した加温ガスを送風機等で吸引して再加熱し循環送風させて加温処理する手段による。 Further, the FRP warming method according to claim 7 is based on a means for warming the cured FRP by sucking a heated gas whose temperature is lowered by a blower or the like, reheating it, and circulatingly blowing it.

また、請求項8に係るFRPの加温処理方法は、硬化したFRPを加温し軟化させ高温液又は飽和液等の存在のもと、破断処理する手段による。   Further, the FRP warming method according to claim 8 is based on a means for heating and softening the cured FRP to break it in the presence of a high temperature liquid or a saturated liquid.

また、請求項9に係るFRPの加温処理方法は、硬化したFRP又は硬化した熱硬化性樹脂を所定温度に加温した状態で硬質の型に加圧圧着して造形又は加圧圧着して模様等の表面処理又は加圧して物体の埋め込み等の加工をして常温まで戻して硬化固化させる手段による。 Further, the FRP heating method according to claim 9 is a method in which a hardened FRP or a cured thermosetting resin is heated to a predetermined temperature and pressure-bonded to a hard mold, and then shaped or pressure-bonded. By means of surface treatment of a pattern or the like, or processing such as embedding of an object by applying pressure, and returning to room temperature to cure and solidify.

また、請求項10に係るFRPの加温処理方法は、上記請求項9記載の造形又は表面処理又は固体の埋め込み等の加工時又は硬化固化した造形品の間隙に液状の樹脂等を浸透させて硬化させ強固な造形品を製作する手段による。 Further, in the FRP heating method according to claim 10, a liquid resin or the like is infiltrated into the gap between the shaped article or the surface treatment or solid embedding according to claim 9 or a cured and solidified shaped article. By means of curing and producing a solid shaped product.

また、請求項11に係るFRPの加温処理方法は、硬化したFRP板及び設定形状に硬化させたFRPを所定温度に加温し軟化させ、この樹脂の破断限界以内の応力で形状を変え常温まで戻して硬化し固化する成形品の作製及びこの成形品を組み付けた後に所定温度に加温して整形前の形状に復元させ接合及び解体できる構造物を作製する手段による。 Further, the FRP heating method according to claim 11 is such that the hardened FRP plate and the FRP hardened to a set shape are heated and softened to a predetermined temperature, and the shape is changed by the stress within the fracture limit of the resin. This is based on the production of a molded product that is cured and solidified by returning to a predetermined temperature, and a means for producing a structure that can be joined and disassembled by assembling the molded product and heating it to a predetermined temperature to restore the shape before shaping.

即ち、本発明は熱可塑性がないとされている熱硬化性樹脂も温度の上昇につれ軟化現象(実施例に示す現象を言う。)が見られ、温度の上昇とともにFRPの硬度や剛性が低下し、汎用不飽和ポリエステル樹脂の場合概ね70℃〜100℃を過ぎると低下が顕著に現れる(樹脂の特性や強化繊維の組成にもよるが曲げ強さが1/10以下に低下する実験データが、社団法人強化プラスチック技術協会発行FRP設計便覧にも見られる。)、温度が高すぎると(上記汎用樹脂の場合耐熱温度は概ね150℃程とされている。)組成成分の結合が切れて樹脂自体が変質劣化して熱分解し、温度が低過ぎると軟化現象が充分に得られない。 That is, in the present invention, the thermosetting resin, which is considered to have no thermoplasticity, also has a softening phenomenon (referred to as a phenomenon shown in the examples) as the temperature rises, and as the temperature rises, the hardness and rigidity of the FRP decrease. In the case of a general-purpose unsaturated polyester resin, a decrease appears remarkably after approximately 70 ° C. to 100 ° C. (Experimental data indicating that the bending strength decreases to 1/10 or less depending on the characteristics of the resin and the composition of the reinforcing fiber, (It can also be found in the FRP Design Handbook issued by the Japan Association for Reinforced Plastics.) If the temperature is too high (in the case of the above-mentioned general-purpose resin, the heat-resistant temperature is about 150 ° C.), the bonding of the composition components breaks and the resin itself When the temperature is too low, the softening phenomenon cannot be sufficiently obtained.

このFRPを構成する熱硬化性樹脂の種類によって異なる、変質劣化しない高温域の所定温度に加温する事によりFRPの硬度や高剛性を失する状態を利用して廃FRPの破断処理又は加圧し圧縮減容してこの温度の下で圧縮応力をかけたまま常温に戻すと硬化(硬度が常温時に戻る、厳密には加温により未硬化部が架橋して硬度が増加傾向にある。)してほぼ圧縮状態で固まる現象を利用し減容固定化(減容固化と略記する。)する。 Depending on the type of thermosetting resin that constitutes this FRP, waste FRP is ruptured or pressurized using the state that loses the hardness and high rigidity of FRP by heating to a predetermined temperature in a high temperature range that does not deteriorate and deteriorate. When the volume is reduced and the temperature is returned to room temperature with a compressive stress applied at this temperature, the material hardens (the hardness returns to room temperature, strictly speaking, the uncured part is cross-linked by heating and the hardness tends to increase). The volume is reduced and fixed (abbreviated as volume reduction and solidification) using the phenomenon of solidifying in a compressed state.

常温でFRPの強化繊維束を剥離させると高硬度、高剛性のため大きな動力を要し、強化繊維束自体も樹脂と共に破断し易いため、熱硬化性樹脂の持つ性質を失わない適宜な高温域に加温した軟化状態で、強化繊維の引張り強さを利用して、強化繊維束が破断しにくい方向(強化繊維の引っ張り方向。)に応力をかけ、強化繊維の層間及び束間の樹脂層を破断して強化繊維束を剥離し切断等の破断処理をする、また破断処理され体積(見かけの体積。)が増大した強化繊維束等を加温し軟化した状態で圧縮し応力をかけ常温まで戻して減容固化する。
強化繊維(ガラス繊維等。)の軟化溶融温度は上記汎用樹脂に比べて高温域にあり軟化する温度との差は大きい。また、加温温度によってこの樹脂の軟化状態が異なり強化繊維束の剥離状態に変化が生じるため再利用の用途に応じて剥離状態を調整することもできる。
When the FRP reinforcing fiber bundle is peeled off at room temperature, it requires high power due to its high hardness and rigidity, and the reinforcing fiber bundle itself is easily broken with the resin, so an appropriate high temperature range that does not lose the properties of the thermosetting resin. Resin layer between the reinforcing fiber layers and between the bundles by applying stress in the direction in which the reinforcing fiber bundle is difficult to break (stretching direction of the reinforcing fiber) using the tensile strength of the reinforcing fiber in the softened state heated to The reinforced fiber bundle is peeled off and subjected to a rupture treatment such as cutting, and the reinforced fiber bundle and the like whose volume (apparent volume) has been increased by the rupture treatment is warmed and compressed in a softened state and subjected to stress to apply Return to volume and solidify.
The softening and melting temperature of the reinforcing fiber (glass fiber or the like) is in a higher temperature range than the general-purpose resin, and the difference from the softening temperature is large. Further, the softened state of the resin varies depending on the heating temperature, and the peeled state of the reinforcing fiber bundle changes, so that the peeled state can be adjusted according to the reuse application.

また、FRP製の廃船等長大な構造物の解体等破断処理する場合、運搬コストや大きな動力を要し粉塵の飛散や騒音の発生等が生ずるため、現場及び現場付近で保温シート等の気密材でこの構造物の全体又は一部に作業空間を確保して覆い外気と遮へいし、圧力と温度が調整可能な加温手段等でこの樹脂の変質劣化しない適宜な温度60℃〜150℃程の所定温度(経済的には大気圧のもとで水蒸気の凝縮温度の100℃程。)に加温し熱硬化性樹脂(汎用不飽和ポリエステル樹脂。)が剛性を失した状態で切断機や建機等の遠隔操作で解体等の祖破断処理をする。また同時に、FRPの熱伝導が悪いためこの粗破断処理し選別した廃FRP片を常温に戻る前の加温状態で細かく再破断処理又は加圧圧縮して常温に戻し減容固化することが経済的である。 Also, when dismantling such as dismantling a large structure such as an FRP abandoned ship, transportation costs and large power are required, causing dust scattering and noise generation. Appropriate temperature of 60 ° C to 150 ° C that prevents the deterioration of this resin by heating means that covers the whole or part of the structure with a material, covers and shields the outside air, and adjusts the pressure and temperature. In a state in which the thermosetting resin (general-purpose unsaturated polyester resin) loses its rigidity after being heated to a predetermined temperature (economically, about 100 ° C., the condensation temperature of water vapor under atmospheric pressure). Disruption and other dismantling processing is performed by remote control of construction machinery. At the same time, because the heat conduction of FRP is poor, it is economical that the waste FRP pieces selected after rough rupture treatment are finely re-ruptured or compressed in the warmed state before returning to room temperature to return to room temperature and solidify. Is.

また、上記減容固化したFRPの破断処理片を所定温度(上記汎用樹脂の場合100℃前後。)に加温するとほぼ圧縮する前の状態に復元する現象を利用して、減容固化した状態を解くことができ再破断処理又は大きさを変えて圧縮し応力をかけ常温まで戻し再減容固化する。また、このFRPの加温処理による減容固化又はこの復元現象を利用して、新しい樹脂等で接着硬化固化し様々な加工品を創ることができる。 In addition, when the fractured piece of FRP with reduced volume and solidification is heated to a predetermined temperature (around 100 ° C for the above-mentioned general-purpose resin), the volume is reduced and solidified by utilizing the phenomenon that it is almost restored to the state before compression. It can be solved by re-breaking or changing the size, compressing, applying stress, returning to normal temperature and solidifying again. In addition, the FRP can be reduced in volume by heating treatment, or by utilizing this restoration phenomenon, it is possible to create various processed products by bonding and curing with a new resin or the like.

空気等酸素の存在する中でFRPを加熱し加温処理すると酸化や着火燃焼の可能性が生じるため不活性ガス(水蒸気や燃焼ガス等。)雰囲気又は樹脂成分の蒸発や酸化を抑え樹脂の変質劣化を防ぐため樹脂成分液や樹脂成分ガス等の極力酸素や他の反応成分が少ない状況で加温処理する。 Heating and heating FRP in the presence of oxygen, such as air, may cause oxidation and ignition combustion, so the atmosphere of an inert gas (water vapor, combustion gas, etc.) or resin component is suppressed by suppressing evaporation and oxidation of the resin component. In order to prevent deterioration, heat treatment is performed in a situation where oxygen and other reaction components such as a resin component liquid and a resin component gas are as little as possible.

また、送風機付きバーナー等の大気圧より高圧の燃焼ガスに水(常温水〜高温水。)を適量噴霧し蒸発の潜熱を利用することで温度調整(特に大気圧のもと100℃程での温度を安定させ易い。)が容易になり、概ね不活性な加温ガス(水蒸気、燃焼ガス、少量の残留空気や過剰空気等。)によりFRPを加温する。 Moreover, temperature adjustment (especially at about 100 ° C. under atmospheric pressure) by spraying an appropriate amount of water (room temperature water to high temperature water) to combustion gas higher than atmospheric pressure, such as a burner with a blower, and utilizing the latent heat of evaporation. It is easy to stabilize the temperature), and the FRP is warmed by a generally inert warming gas (water vapor, combustion gas, a small amount of residual air, excess air, etc.).

更に、FRP等を加温し温度の低下した加温ガスを送風機等で吸引し燃焼ガス等で再加熱して循環送風させることによりFRP加温の熱効率を高くでき、吸引や送風により全体を均等に加温し易く、FRPへの熱伝達率を高くすることもできる。 Furthermore, the heat efficiency of FRP heating can be increased by sucking the heated gas with a reduced temperature by sucking it with a blower, etc., reheating it with combustion gas, etc., and circulating it. The heat transfer rate to the FRP can be increased.

また、廃FRP片を連続破断処理する場合、加温し剛性を失したFRPといえども熱伝導が悪く破断処理装置の刃先が熱による損傷を受け易いため、飽和液又は高温液(100℃ほどの場合は飽和水又は高温水等。)が存在する状態で破断処理することで、飽和液又は高温液の蒸発の潜熱を利用して刃先の熱をにがし、刃先の損傷を抑えることができる。 In addition, when continuously breaking the waste FRP piece, even if the FRP is heated and loses rigidity, the heat conduction is poor and the cutting edge of the breaking device is easily damaged by heat. In the case of saturating water or high-temperature water, etc.), it is possible to remove the heat of the blade edge by using the latent heat of evaporation of the saturated liquid or high-temperature liquid to suppress damage to the blade edge. it can.

硬化したFRP又は熱硬化性樹脂(破断処理したFRP片等。)を所定温度に加温した軟化状態で硬質の型に加圧圧着して造形する、また型の模様等に加圧圧着し転写させて表面処理、更に加圧して固体(金属、プラスチック、セメント、木材、鉱物、セラミックス等耐圧の固体。)の埋め込みや包み込み等の加工をして常温に戻し硬化固化させ様々な造形品を製作する。更に又、この造形品に強度を要する場合、加温造形時又は硬化固化した造形品に硬化前の熱硬化性樹脂や熱可塑性樹脂等液状のバインダーを間隙に浸透させ強固に硬化(接着。)させることもできる。 Molded by pressing and pressing a hardened FRP or thermosetting resin (breaking FRP piece, etc.) to a hard mold in a softened state heated to a predetermined temperature, or pressing and pressing to a mold pattern Surface treatment, pressurization and solid (metal, plastic, cement, wood, mineral, ceramics, etc. pressure-resistant solids) embedding and wrapping, etc. to return to room temperature and solidify to produce various shaped products To do. Furthermore, when strength is required for this shaped article, a liquid binder such as a thermosetting resin or a thermoplastic resin before curing is permeated into the gap at the time of warm shaping or the solidified shaped article is hardened (adhered). It can also be made.

硬化したFRP板及び用途に応じて設定形状に硬化させたFRPを加温した軟化状態で、熱硬化性樹脂の破断限界以内の応力をかけ形状を変え常温に戻して硬化させ固定化(固化。)して成形品を作製する。また、この成形品を加温する事による復元現象を利用して接合及び解体できる組み立て構造物を作製することも可能となる。 In the softened state where the hardened FRP plate and the FRP hardened to the set shape according to the application are heated, the stress is changed within the rupture limit of the thermosetting resin, and the shape is changed to normal temperature to be cured and fixed (solidified. ) To produce a molded product. It is also possible to produce an assembly structure that can be joined and disassembled using the restoration phenomenon caused by heating the molded product.

強化繊維の種類(金属、無機、有機等の繊維。)や組成(繊維の組み合わせ)又は熱硬化性樹脂の種類(不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂等加温する事により一時軟化現象を大きく示す常温で硬質の架橋型樹脂。)を加温温度に合わせて選定し、成形時の応力に対して柔軟性を持たせて上記成形品を作製する、また破断し難い設定形状(コーナー部に湾曲状の遊び部や切り欠き部を設ける等。)に成型硬化させ加温軟化状態での変形や復元現象の変位を大きく採って上記組み立て構造物を作製する。 Temporary softening phenomenon by heating the type of reinforcing fiber (metal, inorganic, organic, etc.) and composition (combination of fibers) or thermosetting resin (unsaturated polyester resin, epoxy resin, polyurethane resin, etc.) The cross-linked resin that is hard at room temperature is selected according to the heating temperature, and the above-mentioned molded product is produced with flexibility against the stress during molding. The above-mentioned assembled structure is manufactured by taking a large amount of deformation and deformation in the warming and softening state by forming and curing the curved play portion or notch portion.

1) 廃FRPを加温処理することによりFRPの高剛性、高強度が低下するため破断処理に要する動力を少なくする事ができ騒音や粉塵の発生を抑えることができ切断機や破断機の刃先の損傷も抑えることができる。
2) FRPの廃棄処分に於いて、加温処理する事により破断処理したFRP片を圧縮し見かの比重を大きくして、任意の大きさ(最大径15cm以下のブロック状等。)に減容固化する事ができる。
3) 廃FRPを加温処理することで、常温より長い強化繊維束を剥離することが可能となり、強化繊維の高強度を再利用し易くなる。
4) 破断処理した廃FRP片は常温において少ない動力で粉砕する事もできる。
5) 粉砕されたFRP片を加温処理することで減容固化することができる。
6) 廃FRPの加温処理により、曲げや捻りに要する力を少なくする事ができ、整形加工して成形品を作製し再利用する事ができ再利用率を高くできる。
7) 加温処理し減容固化した廃FRP片を再加温することにより原状に復元する事ができ、再破断処理又は大きさを変えて圧縮し再減容固化する事ができる。
8) FRPの加温処理による整形又は復元する現象を使い、様々な形状の加工品や成形品や組み立て構造物等を作製することができる。
9) 廃FRP片素材の変質劣化がないため、新しい同種樹脂を使用して成型加工する事により再加温処理ができ、再成型加工して再利用することができる。
10) 破断処理した強化繊維束等と熱可塑性樹脂とを加圧成形し素材樹脂が変質劣化しない温度に加温することで何度でも自由に成型加工ができる。
11) 60℃〜150℃程の加温で済み熱分解に比べてエネルギーコストが少なく、加温し破断処理し減容固化と効率よく一連処理する事ができる。
12) 廃FRP船等の長大な構造物を保温シート等で外気と遮へいし100℃程に加温する事で現場及び現場近くで粉塵や騒音を抑え少ない動力で解体し破断処理することができる。
13) バーナー等の燃焼ガスに温水等を適量噴霧し蒸発の潜熱を利用して温度を調整して加温する事によって燃料の熱量を効率良く使う事が出来、不活性雰囲気のガスにより加温処理することで火災等の危険を避けることができる。
14) 送風機等で加温ガスを吸引再加熱循環送風させる事によって熱伝導の悪い廃FRPを効率良く加温することができる。
1) Heat treatment of the waste FRP reduces the high rigidity and strength of the FRP, so the power required for the breaking process can be reduced, noise and dust generation can be suppressed, and the cutting edge of the cutting machine or breaking machine Can also reduce damage.
2) At the disposal of FRP, compress the FRP piece that has been ruptured by heating to increase the apparent specific gravity and reduce it to any size (block shape with a maximum diameter of 15 cm or less, etc.) It can solidify.
3) By heating waste FRP, it becomes possible to peel a bundle of reinforcing fibers longer than room temperature, making it easy to reuse the high strength of the reinforcing fibers.
4) The waste FRP pieces that have been ruptured can be pulverized with less power at room temperature.
5) Volume reduction and solidification can be achieved by heating the crushed FRP pieces.
6) By heating the waste FRP, the force required for bending and twisting can be reduced, and the molded product can be made and reused by shaping and the reuse rate can be increased.
7) The waste FRP piece that has been heat-treated and reduced in volume and solidified can be restored to its original state by re-heating, and it can be re-ruptured or changed in size and compressed and re-reduced and solidified.
8) Various shapes of processed products, molded products, assembled structures, etc. can be produced by using the phenomenon of shaping or restoring by heating processing of FRP.
9) Since there is no deterioration and deterioration of the waste FRP piece material, it can be reheated by molding using a new similar resin, and can be reused after being remolded.
10) The molding process can be freely performed any number of times by press-molding the reinforced fiber bundle and the like that have been subjected to the fracture treatment and the thermoplastic resin, and heating the material resin to a temperature at which the material resin does not deteriorate.
11) Heating at about 60 ° C. to 150 ° C. is sufficient, and energy cost is lower than that of thermal decomposition. Heating and breaking treatment can be carried out, and volume reduction solidification and efficient series treatment can be performed.
12) A large structure such as a waste FRP ship is shielded from the outside air with a heat insulation sheet, etc., and heated to about 100 ° C to dismantle and break with less power at the site and near the site while suppressing dust and noise. .
13) A suitable amount of hot water can be sprayed on the combustion gas such as a burner, and the temperature of the fuel can be adjusted and heated using the latent heat of evaporation. The danger of fire etc. can be avoided by processing.
14) Waste FRP with poor heat conduction can be efficiently heated by sucking, reheating and circulating the heated gas with a blower or the like.

廃船等のFRPを水蒸気等の加温ガスで所定温度に加温することにより軟化(実施例3以降に示す現象を言う。)させ、騒音や粉塵の発生を抑え、少ない動力で破断処理する、また加温状態で整形及び圧縮し応力をかけて常温まで戻す事により成形加工及び減容固化する、更に再加温することによって応力をかける前の状態にほぼ復元する現象を利用して構造物や造形品の製作及び再破断処理又は再減容固化する。 FRP of abandoned ships, etc. is softened by heating to a predetermined temperature with a heating gas such as water vapor (refers to the phenomenon shown in the third and subsequent examples), suppresses the generation of noise and dust, and breaks with less power In addition, it is shaped and compressed in a warmed state, and it is molded and volume-reduced and solidified by returning to room temperature by applying stress, and the structure is restored to the state before applying stress by further reheating. Manufacturing and re-breaking or re-volume solidification of objects and shaped articles.

図1において、適宜な量の廃FRP材を加温容器1の充填室2に投入し水蒸気供給口4より水蒸気を供給して所定温度に加温して、図中矢示方向に摺動する一次加圧装置3で加圧方向に圧縮し、図中矢示方向に摺動する加圧送り装置5で、図中矢示方向に回転する加圧調整ローラー6に送り一部加圧破断された廃FRP材を押え板7を介して、図中矢示方向に回転する切断等の破断処理機8により適宜な大きさに破断処理し案内板9によって加圧減容室10に導入し破断処理され見かけの体積が増大した適宜な量のFRP片を図中矢示方向に摺動する加圧装置11で加圧圧縮し、次に図中矢示方向に摺動する加圧押し出し装置12により加圧し圧縮減容して、冷却手段13により常温まで戻して硬化させ固定化(減容固化。)し、排出口14を開き加圧押し出し装置12の行程を伸ばして破断処理され減容固化したFRP片を取り出す、一次加圧装置3と加圧送り装置5と加圧装置11と加圧押し出し装置12と排出口14を図中矢示方向の実線位置まで戻して同一の処理を繰り返す。また、加圧減容室10を水蒸気供給口4Aより水蒸気を供給して加温温度を調整する。
また、加圧減容室10の加圧装置11と加圧押し出し装置12ともう一方の三次元方向(図示省略。)からも加圧し圧縮する事でより均等にFRP片に応力をかけて減容固化する事もできる。
In FIG. 1, an appropriate amount of waste FRP material is put into a filling chamber 2 of a heating container 1, steam is supplied from a steam supply port 4, heated to a predetermined temperature, and slid in the direction indicated by an arrow in the figure. Waste FRP partially compressed and broken by the pressure feeding device 5 that is compressed in the pressure direction by the pressure device 3 and that is slid in the direction indicated by the arrow in the pressure feeding device 5 that rotates in the direction indicated by the arrow in the drawing. The material is ruptured to an appropriate size by a breaker 8 such as cutting rotating in the direction indicated by the arrow through the presser plate 7 and introduced into the pressure reducing chamber 10 by the guide plate 9 to be ruptured and apparent. An appropriate amount of FRP piece having an increased volume is compressed and compressed by a pressure device 11 that slides in the direction of the arrow in the figure, and then pressurized and compressed by a pressure extrusion device 12 that slides in the direction of the arrow in the figure. Then, it is returned to room temperature by the cooling means 13 and cured and fixed (volume reduction solidification), and the discharge port 14 is opened and pressed. The primary pressurizing device 3, the pressurizing feed device 5, the pressurizing device 11, the pressurizing extruding device 12, and the discharge port 14 are shown by arrows in the figure. Return to the solid line position in the direction and repeat the same process. Further, the heating and cooling chamber 10 is supplied with water vapor from the water vapor supply port 4A to adjust the heating temperature.
In addition, the FRP piece is more evenly stressed by pressurizing and compressing from the pressurizing device 11 and pressurizing and extruding device 12 of the pressurizing volume reducing chamber 10 and the other three-dimensional direction (not shown). It can be solidified.

図2において、図中矢示方向は廃FRP処理の流れを示す、加温手段1aに廃FRP板を充填し過熱水蒸気等の温度を調整して熱硬化性樹脂の持つ性質を失わない高温域に加温して軟化させ、送り手段2aで厚さと量を調整しながら送り出し、加圧調整可能な算盤玉状回転ローラーで構成された算盤玉状破断手段3aと加圧調整可能な歯車状回転ローラーで構成された歯車状破断手段4aの間を通過する廃FRP板の縦繊維と横繊維へそれぞれ引っ張り応力をかけ強化繊維束の層間又は束間の樹脂部を破断して剥離し破断処理手段5aで適宜な長さに切断又は解きほぐし、実施例1と同様に加圧圧縮手段6aにより圧縮減容して冷却手段7aで常温に戻し硬化させ減容固化した廃FRP片を取り出す。また、図中矢示方向、加温手段1a乃至加圧圧縮手段6aまでは加温状態にある。 In FIG. 2, the direction of the arrow in the figure indicates the flow of waste FRP treatment. The heating means 1a is filled with a waste FRP plate and the temperature of superheated steam is adjusted to a high temperature range that does not lose the properties of the thermosetting resin. Warming and softening, feeding and adjusting the thickness and amount by the feeding means 2a, and the abacus ball breaking means 3a composed of an abacus ball-shaped rotating roller capable of adjusting pressure and a gear-shaped rotating roller capable of adjusting pressure. A tensile treatment is applied to the longitudinal fibers and the transverse fibers of the waste FRP plate passing between the gear-shaped breaking means 4a constituted by the above, and the resin part between or between the reinforcing fiber bundles is broken and peeled to break the breaking treatment means 5a. In the same manner as in Example 1, the volume is compressed and reduced by the pressure compression means 6a, and returned to normal temperature by the cooling means 7a and cured to reduce the volume and solidified waste FRP pieces. In addition, the directions indicated by the arrows in the figure and the heating means 1a to the pressure compression means 6a are in a heated state.

長さ220mm幅20mm厚さ5mmほどの廃FRP船より切出した平板を沸騰水に浸け、加温状態で両端をプライヤーで掴み180度ほど手捻りし常温まで戻す(水冷する。)と捻れた状態で硬化し固化(固定化。)する、この状態を常温で数日間放置しても捻れに変化は見られず、この状態での剛性や硬度等も原状時と大きな変化は見られない。また、この捻れたFRP板は60℃ほどより復元し始め、沸騰水に浸すと50秒ほどでほぼ平板状に復元した。更に、細く剥離したガラス繊維束を加温しコイル状にして水冷し硬化固化させ、同様に沸騰水に浸すと短時間で復元する、樹脂層が剥離破断しない限り何回繰り返しても同じ現象を呈する。更に、廃FRPを100℃ほどに加温するとカッターナイフで削ることができ140℃ほどになると幅20mm厚さ5mmほどの廃FRP板は切断することができる。 A flat plate cut out from a waste FRP ship with a length of 220 mm, a width of 20 mm, and a thickness of about 5 mm is immersed in boiling water. Curing and solidifying (fixing) in this state, even if it is allowed to stand at room temperature for several days, no change in torsion is observed, and the rigidity and hardness in this state are not significantly changed from the original state. Further, the twisted FRP plate began to recover from about 60 ° C., and when it was immersed in boiling water, it recovered to a substantially flat plate shape in about 50 seconds. In addition, the thinly peeled glass fiber bundle is heated, coiled, cooled with water, solidified, and similarly restored in a short time when immersed in boiling water. Present. Further, when the waste FRP is heated to about 100 ° C., it can be cut with a cutter knife, and when about 140 ° C., a waste FRP plate having a width of 20 mm and a thickness of about 5 mm can be cut.

内径32mmの金属パイプに破断処理したFRP片をつめ100℃程に加温し直径30mmの金属実軸に60Kgほどの重量(588N。)をかけ加圧し圧縮して常温に戻し固化した状態でパイプより取り出して計測すると、見かけの比重(FRP片の重量/固化体積。)0.9程で減容固化している。また、この固化状態を100℃程に加温するとFRP片がそれぞれ圧縮前の状態にほぼ復元し固化状態が解け膨張解体して原形(減容固化状態。)を留めない。 FRP pieces that have been fractured are packed into a metal pipe with an inner diameter of 32 mm, heated to about 100 ° C., applied to a metal shaft with a diameter of 30 mm with a weight of about 60 kg (588 N), pressurized and compressed to return to room temperature and solidified. When taken out and measured, the volume is reduced and solidified with an apparent specific gravity (weight of FRP piece / solidification volume) of about 0.9. Further, when this solidified state is heated to about 100 ° C., the FRP pieces are almost restored to the state before compression, the solidified state is dissolved, and the expanded state is dismantled and the original shape (volume-reduced solidified state) is not retained.

汎用の舶用不飽和ポリエステル樹脂(日立ポリセットNR2907PT―S製造番号B30073。)硬化剤(日本油脂パーメックN製造番号2501。)1%で(日東紡ガラス繊維。)マットM450、クロスR570番手でFRP船のガラス繊維主構成であるM+R+M+R+Mに鉄ローラで脱泡して厚さ3mmほどに常温(23℃)で積層硬化し6ヵ月以上経過したFRP(以後2907・MRと略記する。)平板を幅18.5mm長さ100mmに切リ揃えた加圧テスト片を内径30mmの垂直に立てた金属パイプに上下端を傾斜(垂直より13度ほどの傾き。)をつけてパイプに両端を接触させ直径28.2mmの金属実軸を乗せ油圧ピストン(直径35mm)で垂直方向に加圧し破損する迄のピストン抵抗を差し引いた最大油圧圧力を長野計器製2.5MPa(メガパスカル)レンジの製造番号3015203の圧力計で計測すると常温(24℃)での平均圧力は約2.32MPaでテスト片の1/3程の部位で破断した、100℃(沸騰水中10分ほど。)に加温すると0.35MPaでほぼ中央部より白化屈曲した。これにより破損応力は6分の1以下に低下していることになる。 General-purpose marine unsaturated polyester resin (Hitachi Polyset NR2907PT-S production number B30073.) Curing agent (Nippon Yushi Permek N production number 2501) 1% (Nittobo Glass Fiber.) Matt M450, Cross R570, FRP ship The FRP (hereinafter abbreviated as 2907 · MR) flat plate, which has been defoamed with an iron roller to M + R + M + R + M, which is the main composition of glass fiber, and laminated and cured at a room temperature of about 3 mm at room temperature (23 ° C.) (hereinafter abbreviated as 2907 · MR. A pressure test piece trimmed to a length of 0.5 mm and a length of 100 mm is placed on a metal pipe with an inner diameter of 30 mm, and the upper and lower ends are inclined (inclination of about 13 degrees from the vertical). The maximum hydraulic pressure, which is obtained by subtracting the piston resistance until it is damaged by applying a hydraulic piston (diameter 35mm) in a vertical direction with a 2mm metal shaft, is 2.5MPa. When measured with a pressure gauge of the manufacturing number 3015203 of the megapascal range, the average pressure at room temperature (24 ° C.) is about 2.32 MPa, and breaks at about 1/3 of the test piece, 100 ° C. (about 10 minutes in boiling water) When heated to 0.35 MPa, it was whitened and bent from the center. As a result, the failure stress is reduced to 1/6 or less.

上記汎用不飽和ポリエステル樹脂でガラス繊維構成を等方性確保のため上記マットM450番手でM+M+M+M+Mに上記同様に積層硬化させた厚さ3.3mmのFRP(以後2907・5Mと略記する。)平板の上記寸法加圧テスト片で同様に最大油圧圧力を計測すると常温(21℃。)では平均2.44MPaで1/3程の部位で破断した、100℃では0.33MPaでほぼ中央部より白化屈曲した。 A 3.3 mm thick FRP (hereinafter abbreviated as 2907 · 5M) flat plate obtained by laminating and curing in the same manner as described above to M + M + M + M + M with the mat M450 in order to ensure isotropic glass fiber composition with the general-purpose unsaturated polyester resin. When the maximum hydraulic pressure was measured in the same way with the above-mentioned dimension pressurization test piece, it broke at about 1/3 of the average at 2.44 MPa at normal temperature (21 ° C.), 0.33 MPa at 100 ° C. did.

せん断での破断処理が主流と考えられるため、実施例5の2907・MR板を長さ115mm幅15.5mmに切り揃え傾斜を付けて中央部に幅12.5mm長さ50mmの中細部を設けたねじりテスト片で一端を固定し自由端にトルクレンチ(前田金属株式会社製T3FN6。)と回転角度計を取り付け、長手方向を軸心に86mmのスパン(固定端から自由端までのテスト片の空間長さ。)でねじり破断、破損する最大トルク(力のモーメントを言う。)を計測すると常温23℃で180度ほど回転した位置で高音を発し3.5N・m(ニュートンメートル。)で中央部が斜め破断した、100℃(沸騰水中。)に加温すると180度〜190度ほど回転した位置で0.5N・mを示し中央部がねじれた状態で白化破損した。破損時の音を確認するため空中に引き上げ190度ほどねじると極小の低音を発して白化破損した、ねじり破損最大トルクも100℃に加温する事により7分の1ほどに低下している。
温水中70℃では2.0N・m、80℃では1.4N・m、90℃では0.7N・m、また150℃(植物油中。)では0.3N・mほどで中央部がねじれた状態で白化破損した(廃FRP船等は90℃〜100℃ほどで加温処理することが安全で経済的と考える。)。
また、実施例の2907・5M板の上記寸法ねじりテストでは常温18℃で50度〜60度ほど回転した位置で平均4.05N・mの最高値を示し次第に低下し90度ほど回転した位置で中央破断した、100℃(沸騰水中。)では150度〜170度ほど回転した位置で平均0.53N・mの最高値を示し中央部がねじれた状態で白化破損した、このねじり破損最大トルクも7分の1以下に低下している。
温水中70℃では160度〜180度ほど回転した位置で2.1N・m、80℃では1.3N・m、90℃では0.8N・mほどを示しそれぞれ中央部がねじれた状態で白化破損した。
Since the fracture treatment by shearing is considered to be the mainstream, the 2907 · MR plate of Example 5 was cut to 115 mm length and 15.5 mm width and inclined, and the middle part was provided with medium details of 12.5 mm width and 50 mm length One end is fixed with a twisted torsion test piece, a torque wrench (T3FN6 manufactured by Maeda Metals Co., Ltd.) and a rotation angle meter are attached to the free end, and a 86 mm span (fixed end to free end of the test piece from the fixed end to the free end) When measuring the maximum torque (referred to as the moment of force) torsional breakage and breakage in space length), it emits a high tone at a position rotated by 180 degrees at room temperature 23 ° C, and is centered at 3.5 N · m (Newton meter). When heated to 100 ° C. (boiling water) where the part was diagonally broken, it showed 0.5 N · m at a position rotated by 180 ° to 190 °, and whitening broke with the center portion twisted. To confirm the sound at the time of breakage, when it is pulled up in the air and twisted to about 190 degrees, the torsional breakage maximum torque that is whitened and damaged by whitening is reduced to about 1/7 by heating to 100 ° C.
At 70 ° C in warm water, the center was twisted at 2.0 N · m at 80 ° C, 1.4 N · m at 90 ° C, 0.7 N · m at 90 ° C, and 0.3 N · m at 150 ° C (in vegetable oil). (The waste FRP ships etc. are considered to be safe and economical to heat at about 90-100 ° C).
Further, in the above-described dimensional torsion test of the 2907 / 5M plate of Example 5 , the average value of 4.05 N · m was shown at a position rotated by 50 ° to 60 ° at room temperature of 18 ° C., and the position gradually decreased and rotated by 90 °. The torsional breakage maximum torque that broke at 100 ° C (boiling water) at 150 ° C to 170 ° and showed an average maximum value of 0.53 N · m at the position rotated at 150 ° C to 170 ° C. Is also reduced to 1/7 or less.
When heated at 70 ° C in warm water, it is 2.1 N · m at a position rotated by 160 ° to 180 °, 1.3 N · m at 80 ° C, 0.8 N · m at 90 ° C, and whitening with the center part twisted. Damaged.

更にまた、2907・5Mの上記寸法(常温硬化)ねじりテスト片とこのテスト片を植物油中130℃ほどで2時間ほど再硬化させた再硬化テスト片との温水中60℃、70℃、80℃、90℃、100℃までのねじり角度に対応するトルクN・m(力のモーメント。)の比較を表1に示す。
上段に常温硬化テスト片の常温20℃でのトルクと後尾に破損した最大トルクを示す。ただし、各温度にそれぞれ1本のテスト片を使用し破損までの加温時間は10分ほどを要した。
Furthermore, the above-mentioned 2907-5M (normal temperature curing) torsion test piece and the recured test piece obtained by re-curing the test piece in vegetable oil at about 130 ° C. for about 2 hours at 60 ° C., 70 ° C., 80 ° C. in warm water Table 1 shows a comparison of torque N · m (moment of force) corresponding to torsion angles up to 90 ° C and 100 ° C.
The upper part shows the torque at room temperature 20 ° C. and the maximum torque damaged at the tail of the room temperature cured test piece. However, one test piece was used for each temperature, and the heating time until breakage took about 10 minutes.

Figure 0004122299
Figure 0004122299

表1により不飽和ポリエステル樹脂(熱硬化性樹脂)は加温することにより未硬化(不飽和)の部位が架矯して硬化し化学的に剛性が増加していることが推測できる。
また、常温硬化した樹脂も架橋して再硬化した樹脂も加温温度を昇温させることによって剛性が大きく低下していることも判る。
It can be inferred from Table 1 that the unsaturated polyester resin (thermosetting resin) is heated and uncured (unsaturated) sites are cured and cured, and the rigidity is chemically increased.
It can also be seen that the rigidity of the resin cured at room temperature and the resin cured by crosslinking and recuring are greatly reduced by raising the heating temperature.

更にまた、上記(2907・5M及び・MR)ねじりテスト片は両方とも100℃(沸騰水中。)に加温し120度ねじった状態で常温に戻す(水冷する。)と115度ほどねじれた状態で固化する(固まる。)再度100℃に加温すると2度〜4度ほどねじれた状態まで復元した。 Furthermore, both of the above (2907 · 5M and · MR) torsion test pieces were heated to 100 ° C. (boiling water), twisted by 120 degrees, returned to room temperature (cooled in water), and twisted by 115 degrees. When it was heated again to 100 ° C., it was restored to a twisted state of 2 to 4 degrees.

汎用の舶用不飽和ポリエステル樹脂(日立ポリセット2915PT―L製造番号G30293)硬化剤(日本油脂パーメックN製造番号2501)1%程で実施例6と同様に常温(30℃)で5Mに積層硬化し4ヶ月以上経過した厚さ3.9mmのFRP(2915・5Mと略記する。)平板の上記寸法ねじりテスト片では常温(18℃)で50度ほど回転した位置で平均5.75N・mの最高値を示し80度ほど回転した位置で中央破断した、100℃(沸騰水中。)では150度〜170度ほど回転した位置で平均0.96Nmを示し中央部がねじれた状態で白化破損した。
温水中70℃では3.2N・m、80℃では2.4N・m、90℃では1.3N・mほどで中央部がねじれた状態でそれぞれが白化破損した。150℃(植物油中。)ほどに加温すると0.4N・mで白化破損した。
また、100℃(沸騰水中。)に加温し120度ねじった状態で常温に戻す(水冷する。)と112度ほどねじれた状態で固化する(固まる。)再度100℃に加温すると3度〜4度ほどねじれた状態まで復元した。
General-purpose marine unsaturated polyester resin (Hitachi Polyset 2915PT-L Production No. G30293) Curing agent (Nippon Yushi Permek N Production No. 2501) 1% is laminated and cured to 5M at room temperature (30 ° C) as in Example 6. 3.9 mm thick FRP (abbreviated as 2915 / 5M) after 4 months. The above-mentioned dimensional torsion test piece has an average maximum of 5.75 N · m at a position rotated about 50 degrees at room temperature (18 ° C). The value was shown and the center fractured at a position rotated about 80 degrees. At 100 ° C. (boiling water), the average rotated 0.95 Nm at a position rotated about 150 degrees to 170 degrees and whitened and damaged in a state where the center portion was twisted.
At 70 ° C in warm water, it was 3.2 N · m at 80 ° C, 2.4 N · m at 90 ° C, and 1.3 N · m at 90 ° C. When heated to about 150 ° C. (in vegetable oil), whitening breakage occurred at 0.4 N · m.
Also, when heated to 100 ° C. (boiling water) and returned to room temperature (twisted by water) after being twisted by 120 degrees, it solidifies (hardens) at a twist of about 112 degrees, and when heated to 100 ° C. again, it is 3 degrees. Restored to a twisted state of ~ 4 degrees.

更に、2915・5Mに硬化熱を避けるため3時間ほど置いて同じ樹脂とマットでさらに5M積層硬化させ4ヶ月以上経過した厚さ7.3mmのFRP(M・10)平板を長さ115mm幅15.5mmに切り揃え傾斜を付けて中央部に幅7.3mm長さ50mmの中細部(7.3×7.3mm)を設けたねじりテスト片では常温(18℃)で4.5N・m、70℃で2.2N・m、80℃で1.5N・m、90℃で1.0N・m、100℃で0.9N・mほどで破損した、このテスト片では二次接着面に剥離が発生した。 Furthermore, in order to avoid the heat of curing at 2915.5M, the FRP (M.10) flat plate with a thickness of 7.3 mm, which was left for about 3 hours with the same resin and mat and further cured for 5 months with a thickness of 4 months, was 115 mm wide and 15 mm wide. A torsional test piece with a trimming slope of 0.5 mm and a center of 7.3 mm wide and 50 mm long details (7.3 x 7.3 mm) is 4.5 N · m at room temperature (18 ° C). The test piece was damaged at 2.2 N · m at 70 ° C, 1.5 N · m at 80 ° C, 1.0 N · m at 90 ° C, and 0.9 N · m at 100 ° C. There has occurred.

また、フェロー製三液型ゲルコート(不飽和ポリエステル樹脂64.5%、酸化チタン12.3%、スチレンモノマー13.6%、体質顔料7.9%、他増粘剤。)にナフテン酸コバルト0.4%上記硬化剤1.2%で上記5Mガラス繊維組成の積層板厚さ3.3mm(ゲルコート5Mと略記する。)に常温硬化させ、同様に上記寸法の捻りテスト片の破断最大トルクを計測平均すると常温では4.8N・mで60度程回転した位置で高音を発し中央斜め破断した、100℃(沸騰水中。)に加温すると2.2N・m70度ほど回転した位置で中央破断した。
また、植物油中150℃ほどに加温すると0.8N・mで70度〜80度程回転した位置でねじれた状態で剥離破損した。
更に、100℃(沸騰水中。)に加温し70度ねじった状態で常温に戻す(水冷する。)と60度ほどねじれた状態で固化する(固まる。)再度100℃に加温すると7度ほどねじれた状態まで復元した。
In addition, a three-component gel coat made by a fellow (64.5% unsaturated polyester resin, 12.3% titanium oxide, 13.6% styrene monomer, 7.9% extender pigment, other thickener), cobalt naphthenate 0 Cured at room temperature to a thickness of 3.3 mm (abbreviated as gel coat 5M) with the above 5M glass fiber composition with 1.2% of the curing agent and the maximum breaking torque of the torsion test piece having the above dimensions. On average, at normal temperature, the sound was emitted at a position rotated about 60 ° at 4.8 N · m, and the center was broken diagonally. When heated to 100 ° C (boiling water), the center was broken at a location rotated about 2.2 N · m 70 °. did.
Moreover, when it heated to about 150 degreeC in vegetable oil, it peeled and broke in the state twisted in the position rotated about 70 to 80 degree | times at 0.8 N * m.
Further, when heated to 100 ° C. (boiling water) and returned to room temperature after being twisted by 70 degrees (cooled with water), it is solidified while being twisted by about 60 degrees (solidifies). When heated to 100 ° C. again, it is 7 degrees. It was restored to a twisted state.

以上、剛性は汎用樹脂においても種類と硬化条件により違いを示し、加温温度により大きく変動し温度が高くなると剛性は低下することが判る。 As described above, the rigidity of the general-purpose resin varies depending on the type and the curing conditions, and it can be seen that the rigidity is greatly varied depending on the heating temperature, and the rigidity is lowered when the temperature is increased.

ガラスクロス11プライ強化エポキシ樹脂基板厚さ3.1mm(Gエポと略記する。)で上記寸法のねじりテスト片の場合常温27℃で180度ねじるとトルクは6.5N・mほどを示し1分ほど180度を保持すると5.0N・mに低下し粘弾性体の挙動を示した、またこのねじり応力を開放し数日間放置しても60度ほどの残留歪みを示した。また、このテスト片を100℃に加温すると歪みは8度ほどに復元し180度までねじるとトルクは1.2N・mを示し、360度ねじると中央部がねじれた状態で白化剥離破損している、この時の最大トルクは1.8N・mを示した。
さらに別の上記寸法ねじりテスト片を植物油中150℃ほどに加温し180度ねじると0.6N・mを示し360度ねじると中央部がねじれた状態で白化剥離破損している、最大トルクは0.7N・mを示した。
また、別の上記寸法ねじりテスト片を植物油中150℃ほどに加温し120度ねじりった状態で常温に戻すと115度ほどねじれた状態で固化する(固まる。)。このねじれた状態を再度150℃に加温すると4度ほどねじれた状態まで復元した。
A glass cloth 11-ply reinforced epoxy resin substrate with a thickness of 3.1 mm (abbreviated as G epoch) and a torsional test piece with the above dimensions shows a torque of 6.5 N · m when twisted 180 degrees at a room temperature of 27 ° C. When the angle was kept at about 180 °, it decreased to 5.0 N · m, indicating the behavior of a viscoelastic body, and even after releasing this torsional stress and leaving it for several days, it showed a residual strain of about 60 °. Also, when this test piece is heated to 100 ° C, the strain is restored to about 8 degrees, and when it is twisted to 180 degrees, the torque is 1.2 N · m, and when it is twisted 360 degrees, whitening peeling damage occurs with the center portion twisted. The maximum torque at this time was 1.8 N · m.
When another torsion test piece with the above dimensions is heated to about 150 ° C in vegetable oil and twisted 180 degrees, it shows 0.6 N · m, and when it is twisted 360 degrees, the center part is twisted and whitening peels and breaks. The maximum torque is 0.7 N · m was indicated.
In addition, when another dimensional torsion test piece is heated to about 150 ° C. in vegetable oil and returned to room temperature after being twisted by 120 degrees, it is solidified (set) by twisting by about 115 degrees. When this twisted state was heated again to 150 ° C., it was restored to a twisted state of about 4 degrees.

フェノール樹脂製単板(強化繊維不使用の厚さ3.1mm配電基板。)で上記寸法のねじりテスト片では、大気中常温21℃で70度〜75度ねじった位置で平均3.05N・mを示し高音を発して中央より剥離斜め破断した、また植物油中で100℃に加温すると70度ねじった位置では平均1.30N・mを示し110度ねじれた位置で平均1.60N・mを示し破損した、更に150℃程では70度ねじった位置では平均0.5N・mを示し110度では0.7N・mを示し200度程で1.0N・mを示し縦方向に剥離破損した。
上記ねじりテスト片を150℃に加温し120度ねじった状態で常温に戻す(水冷する。)と110度ほどねじれた状態で固化する(固まる。)。このねじれたテスト片を再度150℃に加温すると35度ほどねじれた状態まで復元した。
また、別の同一形状及び厚さの配電基板での上記寸法ねじりテスト片では常温20℃では2.9N・m、植物油中100℃では1.6N・m、150℃では1・1N・mで70度〜80度ねじった位置ですべて破損した。破断トルクに大きな違いはないが強化繊維不使用のためか硬化条件の違いか破断ねじり角度に大きな違いを示した、このテスト片を150℃に加温し70度ねじり常温に戻すと62度ほどで固化し再度150℃に加温すると15度ほどねじれた状態まで復元した。
In the twisted test piece of the above dimensions with a single plate made of phenolic resin (thickness 3.1 mm power distribution board without reinforcing fiber), an average of 3.05 N · m at a position twisted at 70 ° C. to 75 ° C. at ambient temperature of 21 ° C. A high-pitched tone was emitted and the film was peeled diagonally from the center, and when heated to 100 ° C in vegetable oil, it showed an average of 1.30 N · m at a position twisted 70 degrees, and an average of 1.60 N · m at a position twisted 110 degrees At about 150 ° C, it was broken by 70 degrees and showed an average of 0.5 N · m. At 110 degrees, it showed 0.7 N · m, and at 200 degrees, it showed 1.0 N · m. .
When the torsion test piece is heated to 150 ° C. and twisted to 120 ° C. and returned to room temperature (water-cooled), it solidifies (sets) in a twisted state of about 110 °. When this twisted test piece was heated again to 150 ° C., it was restored to a twisted state of about 35 degrees.
In addition, the above-mentioned torsional test piece on another distribution board of the same shape and thickness is 2.9 N · m at room temperature of 20 ° C, 1.6 N · m at 100 ° C in vegetable oil, and 1.1 N · m at 150 ° C. All were damaged at a twisted position of 70 to 80 degrees. There is no big difference in breaking torque, but because of the use of no reinforcing fiber, a difference in curing conditions, or a big difference in breaking torsion angle. When this test piece is heated to 150 ° C. and returned to normal temperature by 70 degrees, it is about 62 degrees. When it was solidified and heated again to 150 ° C., it was restored to a twisted state of about 15 degrees.

実施例と同じ様に内径30mm金属パイプに破断処理したFRP片をつめ100℃に加温し直径28.2mmの金属実軸に油圧ピストンで3000Nほどの荷重を駆け常温に戻して固化すると、見かけの比重1.2ほどに減容固化させる事ができる。また、同様に10000Nほどの荷重では比重1.35ほどに減容固化させる事ができた。更に、集塵機で収集したFRPの粉体も同様に3000Nで加圧すると見かけの比重1.23ほどで同様に固化している。
また、ウレタン発泡体(FRPの心材)直径30mm高さ80mm重量5gを上記金属パイプにつめ100℃ほどに加温し上記金属実軸に油圧ピストンで3000Nほどの荷重を駆け常温に戻すと高さ(厚さ)6.6mm見かけの比重1.07ほどに減容固化させる事ができる、体積は12分の1ほどに減容固化している。
また、100℃に再加温すると減容固化状態が解け膨張してほぼ元の状態に復元した。
As in Example 4 , when a FRP piece fractured into a metal pipe with an inner diameter of 30 mm was packed and heated to 100 ° C., a solid piston with a diameter of 28.2 mm was subjected to a load of about 3000 N with a hydraulic piston, returned to room temperature and solidified. The volume can be reduced to an apparent specific gravity of 1.2. Similarly, the volume could be reduced to a specific gravity of about 1.35 at a load of about 10,000 N. Further, the FRP powder collected by the dust collector is similarly solidified with an apparent specific gravity of about 1.23 when pressurized with 3000 N.
Also, urethane foam (FRP core material) diameter 30mm, height 80mm, weight 5g is packed into the above metal pipe and heated to about 100 ° C, and the metal shaft is driven to about 3000N by a hydraulic piston and returned to room temperature. (Thickness) 6.6 mm The volume can be reduced and solidified to an apparent specific gravity of about 1.07, and the volume is reduced and solidified to about 1/12.
In addition, when the temperature was reheated to 100 ° C., the volume-reduced solidified state was melted and expanded to restore the original state.

上記FRPテスト片と熱硬化性樹脂単体片(フェノール基板。)の常温と100℃との硬さをベアリング鋼球7.9mmに187.23kgf(1836.1N。)ほどの一定荷重をかけた(ブリネル硬さP/D=3で。)くぼみ直径をmm単位で表2に示す。だだし、鏡面に常温では5分ほど荷重をかけ、100℃では10分ほど加温し荷重をかけたまま水冷し常温に戻したときの値である、直径はルーペとノギスを用いて計測した。再硬化とは常温硬化テスト片を140℃で2時間ほど加温して再硬化させたテスト片である。また、2915・MRは2915・5Mと同様にガラス繊維構成をM+R+M+R+Mとしたテスト片である。 The FRP test piece and the thermosetting resin single piece (phenol substrate) were subjected to a constant load of about 187.23 kgf ( 1836.1 N. ) on a bearing steel ball of 7.9 mm with a hardness of 100 ° C. ( Brinell hardness P / D 2 = 3.) The indentation diameter is shown in Table 2 in mm. However, the diameter was measured using a magnifying glass and a vernier caliper when a load was applied to the mirror surface at room temperature for about 5 minutes, and at 100 ° C. for about 10 minutes. . Re-curing is a test piece obtained by heating a room-temperature-curing test piece at 140 ° C. for about 2 hours and re-curing it. Further, 2915 · MR is a test piece in which the glass fiber constitution is M + R + M + R + M as in 2915 · 5M.

Figure 0004122299
Figure 0004122299

以上表1と表2により熱硬化性樹脂も加温する事により化学的に硬化が見られ、また加温温度の上昇により再硬化した樹脂も硬度や剛性が大きく低下している事が判る、本発明ではこの現象を軟化と表現する。 From Table 1 and Table 2, it can be seen that the thermosetting resin is also chemically cured by heating, and that the resin recured by increasing the heating temperature has greatly reduced hardness and rigidity. In the present invention, this phenomenon is expressed as softening.

1) 温容器1や一次加圧装置3や加圧送り装置5等の容量を大きくする事によって廃FRP船の処理等で生じる粗大な廃FRPも加温処理する事が可能となる。
2) 加温容器1と一次加圧装置3と加圧送り装置5までの装置で加圧し圧縮して常温に戻し減容固化する事ができる。
3) 一次加圧装置3と加圧送り装置5ともう一方の三次元方向からも加圧し圧縮することでより廃FRP全体に均等に応力をかけて減容固化させる事ができる。
4) 実施例1、等で粗く破断処理し減容固化した廃FRPを保管又は運搬等して再加温して実施例2、等で細かく破断処理して再利用する事も出来る。
5) FRP船や建築FRP廃材から切り取った単板を100℃程に加温し、樹脂の破断限界以内の応力を単板全体にかけて整形し常温に戻して固化し常温域で再利用することができる。
6) 長大な廃FRP船等の汎用熱硬化性樹脂製品を保温シート等で覆い100℃ほどに加温する事で常温破断処理に比べて1/6以下の動力で粉塵や騒音の発生が少なく現場で解体、破断処理することで廃船処理コストを抑える事ができる。
7) FRPを加温することによる成形及び復元現象を利用して加工品や構造物を製作することができる。



1) coarse waste FRP caused by processing of waste FRP boats by increasing the capacity of such heating container 1 and the primary pressing device 3 and pressure圧送Ri device 5 also becomes possible to process heating.
2) It can be pressurized and compressed by the apparatus up to the heating container 1, the primary pressurizing device 3, and the pressurizing and feeding device 5 to return to room temperature and solidify.
3) By pressurizing and compressing from the primary pressurizing device 3, the pressurizing and feeding device 5 and the other three-dimensional direction, the waste FRP can be evenly stressed and volume-reduced and solidified.
4) The waste FRP which has been roughly ruptured and reduced in volume in Example 1, etc., can be stored, transported, etc., reheated and finely broken in Example 2, etc. to be reused.
5) A veneer cut from FRP ship or building FRP waste material is heated to about 100 ° C, and the stress within the fracture limit of the resin is applied to the entire veneer, shaped back to room temperature, solidified, and reused at room temperature. it can.
6) Cover general-purpose thermosetting resin products such as long waste FRP ships with heat-insulating sheets, etc., and heat them to about 100 ° C to reduce dust and noise with less than 1/6 power compared to room temperature fracture treatment. By dismantling and rupturing on-site, it is possible to reduce the cost of scrapping ships.
7) Workpieces and structures can be manufactured using the molding and restoration phenomenon caused by heating the FRP.



加温処理方法の横断面説明図である。(実施例1)It is a cross-sectional explanatory drawing of a heating processing method. Example 1 加温処理方法のフロー説明図である。(実施例2)It is flow explanatory drawing of a heating process method. (Example 2)

符号の説明Explanation of symbols

1:加温容器
2:充填室
3:一次加圧装置
4、4A:水蒸気供給口
5:加圧送り装置
6:加圧調整ローラー
7:押え板
8:破断処理機
9:案内板
10:加圧減容室
11:加圧装置
12:加圧押し出し装置
13:冷却手段
14:排出口
1a:加温手段
2a:送り手段
3a:算盤玉状破断手段
4a:歯車状破断手段
5a:破断処理手段
6a:加圧圧縮手段
7a:冷却手段
1: Heating container 2: Filling chamber
3: Primary pressure device 4, 4A: Water vapor supply port 5: Pressure feed device 6: Pressure adjusting roller 7: Presser plate 8: Breaking device 9: Guide plate 10: Pressure reduction chamber 11: Pressure device 12: Pressurizing and extruding device 13: Cooling means 14: Discharge port 1a: Heating means 2a: Feeding means 3a: Abacus ball breaking means 4a: Gear-like breaking means 5a: Breaking treatment means 6a: Pressure compression means 7a: Cooling means

Claims (3)

汎用不飽和ポリエステル樹脂の繊維強化熱硬化性樹脂製の廃船及び建設廃材等長大な構造物の全体又は一部を保温シート等の気密材で覆い外気と遮へいし、この構造物をこの樹脂の組成成分の結合が切れて樹脂自体が変質劣化しない60℃〜耐熱温度の150℃の熱硬化性樹脂の持つ性質を保った所定温度に加温し熱硬化性樹脂が剛性を失した状態で切断機又は建機等で粗破断処理又はこの粗破断処理片を上記所定温度の加温状態で細かく再破断処理し圧縮減容して圧縮応力をかけたまま常温まで戻して硬化させ減容固化することを特徴とする繊維強化熱硬化性樹脂の加温処理方法。
Cover all or part of a long structure such as waste ship and construction waste made of fiber-reinforced thermosetting resin of general-purpose unsaturated polyester resin with an airtight material such as a heat insulating sheet, and shield this structure from the outside air. in a state where the binding composition component 60 ° C. ~ heat resistant temperature of 0.99 ° C. thermoset at a constant temperature of keeping the nature of the resin warmed thermosetting resin resin itself is not altered degrade off-deleted rigidity Roughly ruptured with a cutting machine or construction machine, or this ruptured piece is finely re-ruptured in the heated state of the above-mentioned temperature, compressed and reduced in volume, and cured by returning to room temperature while applying compression stress to reduce volume and solidify A method for heating a fiber-reinforced thermosetting resin, characterized by comprising:
上記請求項記載の圧縮応力をかけたまま減容固化した繊維強化熱硬化性樹脂を保管又は運搬して上記請求項記載の所定温度に加温し圧縮前の状態に復元させて減容固化した状態を解き、再破断処理又は任意の大きさのブロック状に圧縮し常温まで戻して再減容固化することを特徴とする請求項1記載の繊維強化熱硬化性樹脂の加温処理方法。
The claim 1 volume reduction solidified fiber reinforced thermosetting resin while applying a compressive stress according storage or transportation to by restored to the state before heating compression to a predetermined temperature according to the first aspect volume reduction solve the solidified state, the re-breaking process or any size claim 1 Symbol placement of fiber reinforced thermosetting resin, characterized in that re-reduced in volume and solidified back to room temperature and compressed into block-like warming Processing method.
大気圧力より高圧の燃焼ガスに水を適量噴霧し蒸発の潜熱を利用して温度を調整した不活性雰囲気の加温ガスにより加温処理することを特徴とする請求項1又は請求項2記載の繊維強化熱硬化性樹脂の加温処理方法。
Claim, characterized in that more heating process to the pressurizing Yutakaga scan inert atmosphere to adjust the temperature by using the latent heat of appropriate amount sprayed water into high-pressure combustion gas from the atmospheric pressure evaporation 1 or claim 2 heating treatment method of the serial mounting of the fiber-reinforced thermosetting resin.
JP2004000117A 2003-01-06 2004-01-05 A method for heating fiber-reinforced thermosetting resin. Expired - Fee Related JP4122299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000117A JP4122299B2 (en) 2003-01-06 2004-01-05 A method for heating fiber-reinforced thermosetting resin.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003000057 2003-01-06
JP2004000117A JP4122299B2 (en) 2003-01-06 2004-01-05 A method for heating fiber-reinforced thermosetting resin.

Publications (3)

Publication Number Publication Date
JP2004148841A JP2004148841A (en) 2004-05-27
JP2004148841A5 JP2004148841A5 (en) 2007-09-27
JP4122299B2 true JP4122299B2 (en) 2008-07-23

Family

ID=32473770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000117A Expired - Fee Related JP4122299B2 (en) 2003-01-06 2004-01-05 A method for heating fiber-reinforced thermosetting resin.

Country Status (1)

Country Link
JP (1) JP4122299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264508A1 (en) 2021-06-16 2022-12-22 三菱重工業株式会社 Moving body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328779B (en) * 2019-07-15 2021-03-26 江苏食品药品职业技术学院 Degradation device of medical plastics for hospital

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264508A1 (en) 2021-06-16 2022-12-22 三菱重工業株式会社 Moving body

Also Published As

Publication number Publication date
JP2004148841A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
Manalo et al. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites
US6821638B2 (en) Shaped contoured crushable structural members and methods for making the same
AU2003303991B2 (en) Connection between members
JP2007517687A (en) High impact strength elastic mixed fiber metal laminate
Kamath et al. A review on natural areca fibre reinforced polymer composite materials
WO1997016303A1 (en) Pin-reinforced sandwich structure and method for its manufacture
Dorey Carbon fibres and their applications
TW200404657A (en) Method for making dimensionally stable composite products from lignocelluloses
JP4122299B2 (en) A method for heating fiber-reinforced thermosetting resin.
Sivakumar et al. Influence of kenaf fabric on the tensile performance of environmentally sustainable fibre metal laminates
WO2011018903A1 (en) Composite material roller
US5182166A (en) Wear-resistant composite structure of vitreous carbon containing convoluted fibers
Yeganeh et al. Experimental investigation of quasi-static perforation on laminated glass epoxy composites by indenters with different geometries.
Demir et al. Selectively reinforced functionally graded composite-like glass/carbon polymer nanocomposites: designed for efficient bending and impact performance
WO2020011617A1 (en) Fan blade containment
JP2016510271A (en) Method for producing highly crystalline molded parts from PET or PEN
JP2001114915A5 (en)
Alsubari et al. Effect of foam filling on the energy absorption behaviour of flax/polylactic acid composite interlocking sandwich structures
JP2002307046A (en) Method of treating fiber reinforced plastic waste and method of reutilizing reinforcing fibers recovered by the treatment method
JP5629863B2 (en) Heat-pressed wood and method for producing the same
US20210362383A1 (en) Thermoset porous composites and methods thereof
Ehsana et al. Effectiveness of prolonged air-recuring on strength of fire damaged RC columns
Joshy et al. Studies on short isora fibre-reinforced polyester composites
JP6752612B2 (en) Fiber reinforced molded product and its manufacturing method
JP2004148841A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees