JP4122192B2 - Control method of optical amplifier - Google Patents

Control method of optical amplifier Download PDF

Info

Publication number
JP4122192B2
JP4122192B2 JP2002241604A JP2002241604A JP4122192B2 JP 4122192 B2 JP4122192 B2 JP 4122192B2 JP 2002241604 A JP2002241604 A JP 2002241604A JP 2002241604 A JP2002241604 A JP 2002241604A JP 4122192 B2 JP4122192 B2 JP 4122192B2
Authority
JP
Japan
Prior art keywords
light source
optical
pumping light
pumping
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002241604A
Other languages
Japanese (ja)
Other versions
JP2004079937A (en
Inventor
樹寛 河村
久 澤田
忠彦 中井
昌俊 田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002241604A priority Critical patent/JP4122192B2/en
Publication of JP2004079937A publication Critical patent/JP2004079937A/en
Application granted granted Critical
Publication of JP4122192B2 publication Critical patent/JP4122192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、光増幅用ファイバを使用した光増幅器を用いた光伝送について有効な方法及び方法を具備した装置に関するものである。
【0002】
【従来の技術】
光伝送システムにおいては光増幅用ファイバを使用した光増幅器が汎用されており、この光増幅器には出力安定化のため自動出力一定化機能が付いているのが一般的である。ところで光伝送システムに何らかの障害が発生し光増幅器への入力光パワーが大幅に減少したときでも、光増幅器の自動出力一定化機能が動作すると、入力光パワーの減少を補償するため励起光パワーが増大する。一般に励起光源はその発する励起光パワーを増大させ高い負荷で動作させることによりその寿命が悪化するものであるため、このとき励起光源の寿命が悪化する。このため、光伝送システムの信頼性をより高めるよう、励起光源の寿命を悪化させないような制御方法及び装置が望まれている。
【0003】
【発明が解決しようとする課題】
この問題の解決方法の1つとして、入力光パワーが減少したとき該励起光のパワーを抑圧することが挙げられる(例えば、特許3050237号)。
【0004】
上記の方法によれば、入力光パワーが減少したとき一律に励起光パワーを抑圧し光伝送を止めてしまうこととなる。しかしながら、光伝送システムにおいて光伝送はできる限り維持すべきことであり、光伝送の停止は装置の保護などやむを得ない場合以外は回避すべき事態である。
【0005】
従って本発明は上記の問題に鑑み、光増幅器に励起光源の励起光パワー或いは動作電流つまり負荷に関する判定機能を設け、入力光パワーが減少した際に装置の保護としてやむを得ない場合以外は光伝送を停止させずに済む制御方法の提供を目的としている。
【0006】
【課題を解決するための手段】
上記の問題を解決するため、本発明の光増幅器の制御方法においては、波長多重合波器に2つの励起光源を接続させ、一方あるいは他方の励起光源を動作させて光増幅用ファイバへ励起光を供給してなり、増幅された出力光を一定出力に制御する光増幅器において、該光増幅用ファイバへの入力光のパワーが所定値以上であり、かつ前記一方の励起光源の動作電流値が所定値以上であるとき、該一方の励起光源を停止させて、前記他方の励起光源を動作させることにより、前記一方の励起光源から前記他方の励起光源へ動作させる励起光源を切り替えることを特徴としている。
【0013】
【作用】
本発明によれば、入力光パワーだけでなく励起光源の負荷、より具体的には励起光のパワー或いは動作電流値をモニタすることで、光増幅器への入力光パワーが減少した際に、光増幅器の自動出力一定化機能が動作しても、現に励起光源の動作電流が増大しており真に動作電流を抑圧しなければならない場合と、抑圧しなければならないほど動作電流が増大していない場合とを区別することができる。そして区別して制御することにより、光伝送をできる限り維持しつつ、励起光源の負荷が高くなりその結果励起光源の寿命が悪化することを防止することができる。
【0014】
【発明の実施の形態】
図1は、本発明の光増幅器の実施例を示すブロック図である。
図1において増幅すべき信号光である入力光は光分岐器11に入射され、そこで分岐され、その一部例えば全入力光の約5%が入力モニタ光としてO/E変換器15に入射され、残り大部分が波長多重合波器12に入射される。励起光は励起光源16から出力され波長多重合波器12により入力光と合波されて光増幅用ファイバ13に入射される。このとき光増幅用ファイバ13内で入力光が増幅され、光分岐器14に出力される。この出力光は光分岐器14により分岐され、その一部例えば該出力光の約3%が出力モニタ光としてO/E変換器17に入射され、残り大部分が該光増幅器の出力光として光増幅器外に出力されるよう構成されている。
【0015】
O/E変換器15に入射された入力モニタ光は、O/E変換器15において光から電気に変換され電気信号として電子回路である制御回路18に伝えられる。同様にO/E変換器17に入射された出力モニタ光も、O/E変換器17において光から電気に変換され電気信号として制御回路18に伝えられる。これらとは別に、励起光源16の負荷情報として励起光源の動作電流値或いは励起光パワーの値が電気信号として制御回路18に伝えられる。
【0016】
光分岐器11、光分岐器14、波長多重合波器12は具体的には光カプラであるが、光分岐器11、光分岐器14については入射光を2ポートへ分岐する機能、波長多重合波器12についてはそれぞれ波長の異なる信号光と励起光を合波する機能が得られれば、光ファイバを溶融延伸した光ファイバ型の光カプラであってもよいし、ミラーやプリズム等の微少な光学部品を用いたバルク型、或いは石英基板等に光回路を形成した光導波路型であってもよい。ただし、光増幅器を高効率、安定動作させる要求から、光カプラ内部の損失が小さく、環境温度が変わっても各ポートの出力光の出力変化が小さいものが必要とされる。励起光源16は小型、高出力、長寿命という使用上の要求を満たすものとして、半導体レーザーダイオードモジュールであることが望ましく、場合によっては励起光パワーをモニタするため、そのモジュール内にフォトダイオードが内蔵されているものを用いても良い。O/E変換器15、O/E変換器17としては特に制限はなく各種O/E変換器を用いることができ、例えばフォトダイオードを用いることができる。
【0017】
光増幅用ファイバ13は典型的にはエルビウムが添加されることによって誘導放出作用を得たエルビウムドープファイバであるが、誘導放出作用を得るため他の元素を添加した光ファイバでもよく、さらには励起光との合波によって光増幅作用を持つ光ファイバであれば誘導放出作用に限らず他の物理現象によって光増幅作用を持つ光ファイバでもよい。光増幅用ファイバ13へ入射される励起光に関する構成については、図1では増幅すべき信号光である入力光と励起光が光増幅用ファイバの同一端面から入射される前方励起の構成としたが、これは1例であるに過ぎず、入力光と励起光それぞれが光増幅用ファイバの異なる端面から入射される後方励起の構成でもよいし、励起光が光増幅用ファイバの両端から入射される双方向励起の構成でもよい。
【0018】
この光増幅器においては出力光を一定とし光伝送を安定化させるため、一般にオートレベルコントロールと呼ばれる自動出力一定化機能が動作している。励起光パワーつまり励起光源の動作電流値が自動的に増減して、出力光が常に一定となるように調整されている。つまり、図1において、O/E変換器17から制御回路18の一部である出力判定制御回路19に伝えられる電気信号によって出力判定制御回路19で励起光源16の動作電流を増減すべきか判定され、その判定結果に対応した動作電流の増減に関する電気信号が出力判定制御回路19からこれも制御回路18の一部である励起光源制御回路20に伝えられる。そして、励起光源制御回路20により動作電流が増減されることにより、出力一定制御されている。
【0019】
図2は、本発明の光増幅器の制御の実施例を示すフローチャートである。
自動出力一定化機能が動作している状態において入力光パワーが減少すると入力光パワーの減少を補償するため励起光源の励起光パワーを増大させる。つまり励起光源の動作電流値が増大する。ここで励起光パワーが所定値以上かつ入力光パワーが所定値以下である場合、励起光パワーを抑圧して励起光源の負荷を低減し励起光源の寿命が悪化することを防ぐ。励起光パワーが所定値以下である場合は、入力光パワーが所定値以下或いは以上であることに関わらず励起光パワーを維持する。このことにより、装置の保護としてやむを得ない場合以外にむやみに光伝送が停止されることを回避している。具体例としては、励起光パワーの所定値として100mW、入力光パワーの所定値として0.1mWが挙げられ、励起光パワーを例えば5mW以下に抑圧することが挙げられる。このとき、励起光源の動作電流値が約500mAから約50mA以下に減少する。
【0020】
なお、励起光パワーが所定値以上かつ入力光パワーが所定値以上である場合、励起光パワーは維持するが、励起光源の異常と判断して警報信号を発信する。警報信号を発信するとは具体的には光伝送システムの管理者が異常状態を認識できるように、ランプ等により異常を視覚的に示す、制御表示機器例えばコンピュータのモニタに異常表示を示す或いはその前段階として制御表示機器に対して該光増幅器から電気信号を発することが挙げられる。
【0021】
図3は、本発明の光増幅器の制御の別の実施例を示すフローチャートである。
ここで入力光パワーが減少すると自動出力一定化機能においては入力光パワーの減少を補償するため励起光パワーを増大させ、その結果励起光源の動作電流値が増大する。このとき励起光源の動作電流値が所定値以上かつ入力光パワーが所定値以下である場合は励起光源の動作電流を抑圧して励起光源の負荷を低減し励起光源の寿命が悪化することを防ぐ。
【0022】
入力光パワーが所定値以下に減少しておらず、励起光源の動作電流が所定値以上である場合は励起光源の異常と判断して、励起光源のバックアップ品、光増幅器のバックアップ品に切り替える。励起光源のバックアップ品に切り替える手段としては、例えば、図1において波長多重合波器12に接続される励起光源16が2つ以上あり、今まで動作していた励起光源を停止させ、別の励起光源が動作するように自動的に制御する手段が例示できる。また、光増幅器のバックアップ品に切り替える手段としては、例えば、図1に示した光増幅器が2セット以上あり、今まで動作していた光増幅器とは別の光増幅器に入力光が通じその光増幅器から増幅された出力光が得られるように自動的に制御する手段が例示できる。
【0023】
また、入力光パワーが所定値以下に減少しておらず、励起光源の動作電流が所定値以下の場合は正常状態であるとして励起光源の動作電流を維持する。さらに入力光パワーが所定値以下に減少し、励起光源の動作電流が所定値以下の場合は入力光の異常状態ではあるが光伝送を維持できる可能性があるため励起光源の動作電流を維持する。この場合、入力光が異常状態である旨警報信号を発信するよう光増幅器が制御されていることが望ましい。
【0024】
【発明の効果】
以上説明したように本発明によれば、入力光パワーが減少したとき励起光パワーが所定値以上であることを確認し励起光パワーを抑圧する。これにより励起光源の負荷を低減し励起光源の寿命が悪化することを防ぐ。 また、入力光パワーが減少したとき励起光パワーが所定値以下である場合は励起光パワーを維持するため、装置の保護によるやむを得ない場合以外に光伝送を止めてしまうことを回避する利点がある。
【図面の簡単な説明】
【図 1】本発明に係わる光増幅器の構成を示すブロック図である。
【図 2】本発明に係わる光増幅器の制御に関する1例を示すフローチャートである。
【図 3】本発明に係わる光増幅器の制御に関する別の1例を示すフローチャートである。
【符号の説明】
11 光分岐器
12 波長多重合波器
13 光増幅用ファイバ
14 光分岐器
15 O/E変換器
16 励起光源
17 O/E変換器
18 制御回路
19 出力判定制御回路
20 励起光源制御回路
[0001]
[Technical field to which the invention belongs]
The present invention relates to an effective method and an apparatus equipped with an optical transmission method using an optical amplifier using an optical amplification fiber.
[0002]
[Prior art]
In an optical transmission system, an optical amplifier using an optical amplifying fiber is widely used, and this optical amplifier generally has an automatic output stabilizing function for stabilizing the output. By the way, even if some kind of failure occurs in the optical transmission system and the input optical power to the optical amplifier is greatly reduced, if the automatic output stabilization function of the optical amplifier is activated, the pumping light power is reduced to compensate for the decrease in the input optical power. Increase. In general, the life of the pumping light source is deteriorated by increasing the power of the pumping light emitted and operating at a high load. At this time, the life of the pumping light source is deteriorated. Therefore, a control method and apparatus that does not deteriorate the lifetime of the pumping light source are desired so as to further improve the reliability of the optical transmission system.
[0003]
[Problems to be solved by the invention]
One solution to this problem is to suppress the power of the pumping light when the input light power is reduced (for example, Japanese Patent No. 3050237).
[0004]
According to the above method, when the input light power decreases, the pumping light power is uniformly suppressed and the optical transmission is stopped. However, the optical transmission should be maintained as much as possible in the optical transmission system, and the stop of the optical transmission is a situation that should be avoided unless it is unavoidable to protect the apparatus.
[0005]
Therefore, in view of the above problems, the present invention provides an optical amplifier with a function for determining the pumping light power or operating current of the pumping light source, that is, the load, and performs optical transmission except when it is unavoidable to protect the device when the input light power is reduced. The purpose is to provide a control method that does not require stopping.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, in the method for controlling an optical amplifier according to the present invention, two pumping light sources are connected to a wavelength multi-polymerizer, and one or the other pumping light source is operated to pump light into an optical amplification fiber. Ri Na supplies, in an optical amplifier for controlling the amplified output light constant output power of the input light to the optical amplifying fiber is not less than a predetermined value, and the operating current value of the one excitation light source Is switched over from one excitation light source to the other excitation light source by stopping the one excitation light source and operating the other excitation light source. It is said.
[0013]
[Action]
According to the present invention, when the input light power to the optical amplifier is reduced by monitoring not only the input light power but also the load of the pump light source, more specifically, the power of the pump light or the operating current value, Even if the automatic output stabilization function of the amplifier operates, the operating current of the pumping light source actually increases and the operating current must be suppressed, and the operating current does not increase so much that it must be suppressed. A case can be distinguished. By controlling the distinction, it is possible to prevent the excitation light source from being deteriorated as a result of increasing the load of the excitation light source while maintaining optical transmission as much as possible.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of an optical amplifier according to the present invention.
In FIG. 1, the input light, which is the signal light to be amplified, is incident on the optical branching device 11 and branched there, and a part of it, for example, about 5% of the total input light is incident on the O / E converter 15 as the input monitoring light. Most of the remaining light is incident on the wavelength multi-polymerizer 12. The pumping light is output from the pumping light source 16, is combined with the input light by the wavelength multi-polymerizer 12, and enters the optical amplification fiber 13. At this time, the input light is amplified in the optical amplification fiber 13 and output to the optical branching device 14. This output light is branched by the optical splitter 14, and a part of the output light, for example, about 3% of the output light is incident on the O / E converter 17 as output monitor light, and most of the remaining light is output as the output light of the optical amplifier. It is configured to be output outside the amplifier.
[0015]
The input monitor light incident on the O / E converter 15 is converted from light to electricity in the O / E converter 15 and transmitted as an electric signal to the control circuit 18 which is an electronic circuit. Similarly, the output monitor light incident on the O / E converter 17 is converted from light to electricity by the O / E converter 17 and transmitted to the control circuit 18 as an electric signal. Apart from these, as the load information of the pumping light source 16, the operating current value or pumping light power value of the pumping light source is transmitted to the control circuit 18 as an electrical signal.
[0016]
The optical branching unit 11, the optical branching unit 14, and the wavelength multi-polymerization wave unit 12 are specifically optical couplers. However, the optical branching unit 11 and the optical branching unit 14 have a function of branching incident light to two ports, and have a plurality of wavelengths. The superposition wave generator 12 may be an optical fiber type optical coupler obtained by melting and stretching an optical fiber, or may be a microscopic device such as a mirror or a prism, as long as the function of combining signal light and pumping light having different wavelengths can be obtained. It may be a bulk type using a simple optical component, or an optical waveguide type in which an optical circuit is formed on a quartz substrate or the like. However, because of the demand for high-efficiency and stable operation of the optical amplifier, it is necessary to have a small loss inside the optical coupler and a small change in the output light of each port even if the environmental temperature changes. The pumping light source 16 is preferably a semiconductor laser diode module that satisfies the usage requirements of small size, high output, and long life. In some cases, a photodiode is built in the module to monitor the pumping light power. You may use what is done. The O / E converter 15 and the O / E converter 17 are not particularly limited, and various O / E converters can be used. For example, a photodiode can be used.
[0017]
The optical amplifying fiber 13 is typically an erbium-doped fiber that obtains a stimulated emission effect by adding erbium, but it may be an optical fiber doped with other elements to obtain a stimulated emission effect, and it is also pumped. As long as it is an optical fiber having an optical amplifying action by combining with light, an optical fiber having an optical amplifying action by other physical phenomena is not limited to the stimulated emission action. As for the configuration relating to the pumping light incident on the optical amplification fiber 13, in FIG. 1, the input light and the pumping light, which are signal light to be amplified, are configured to be forward pumping in which they enter from the same end face of the optical amplification fiber. This is only an example, and it may be a configuration of backward pumping in which input light and pumping light are incident from different end faces of the optical amplifying fiber, or pumping light is incident from both ends of the optical amplifying fiber. A bidirectional excitation configuration may also be used.
[0018]
In this optical amplifier, an automatic output stabilization function generally called auto level control is operating in order to stabilize the output light while keeping the output light constant. The pumping light power, that is, the operating current value of the pumping light source is automatically increased / decreased so that the output light is always kept constant. That is, in FIG. 1, it is determined whether the operating current of the excitation light source 16 should be increased or decreased by the output determination control circuit 19 based on an electrical signal transmitted from the O / E converter 17 to the output determination control circuit 19 which is a part of the control circuit 18. Then, an electrical signal relating to increase / decrease of the operating current corresponding to the determination result is transmitted from the output determination control circuit 19 to the excitation light source control circuit 20 which is also a part of the control circuit 18. The output light is controlled to be constant by increasing or decreasing the operating current by the excitation light source control circuit 20.
[0019]
FIG. 2 is a flowchart showing an embodiment of the control of the optical amplifier of the present invention.
When the input light power decreases while the automatic output stabilization function is operating, the pumping light power of the pumping light source is increased to compensate for the decrease in input light power. That is, the operating current value of the excitation light source increases. Here, when the pumping light power is equal to or higher than a predetermined value and the input light power is equal to or lower than the predetermined value, the pumping light power is suppressed to reduce the load on the pumping light source, thereby preventing the life of the pumping light source from being deteriorated. When the pumping light power is less than or equal to a predetermined value, the pumping light power is maintained regardless of whether the input light power is less than or equal to the predetermined value. As a result, the optical transmission is prevented from being stopped unnecessarily except when it is unavoidable to protect the apparatus. As a specific example, the predetermined value of the pumping light power is 100 mW, the predetermined value of the input light power is 0.1 mW, and the pumping light power is suppressed to, for example, 5 mW or less. At this time, the operating current value of the excitation light source decreases from about 500 mA to about 50 mA or less.
[0020]
When the pumping light power is equal to or higher than the predetermined value and the input light power is equal to or higher than the predetermined value, the pumping light power is maintained, but it is determined that the pumping light source is abnormal and an alarm signal is transmitted. Specifically, the alarm signal is transmitted, so that the administrator of the optical transmission system can visually recognize the abnormal state, the abnormality is visually indicated by a lamp, etc. The step includes emitting an electrical signal from the optical amplifier to the control display device.
[0021]
FIG. 3 is a flowchart showing another embodiment of the control of the optical amplifier of the present invention.
Here, when the input light power decreases, the automatic output stabilization function increases the pumping light power to compensate for the decrease in the input light power, and as a result, the operating current value of the pumping light source increases. At this time, if the operating current value of the pumping light source is equal to or greater than a predetermined value and the input light power is equal to or lower than the predetermined value, the operating current of the pumping light source is suppressed to reduce the pumping light source load and prevent the pumping light source life from deteriorating. .
[0022]
If the input light power has not decreased below the predetermined value and the operating current of the pumping light source is equal to or higher than the predetermined value, it is determined that the pumping light source is abnormal, and the pumping light source backup product and the optical amplifier backup product are switched. As a means for switching to a backup product of the excitation light source, for example, in FIG. 1, there are two or more excitation light sources 16 connected to the wavelength multi-polymerizer 12, and the excitation light source that has been operating so far is stopped to perform another excitation. A means for automatically controlling the light source to operate can be exemplified. Further, as means for switching to a backup product of an optical amplifier, for example, there are two or more sets of optical amplifiers shown in FIG. 1, and the input light is passed through an optical amplifier different from the optical amplifier that has been operating so far. A means for automatically controlling so as to obtain output light amplified from can be exemplified.
[0023]
Further, when the input light power is not reduced below the predetermined value and the operating current of the pumping light source is lower than the predetermined value, the operating current of the pumping light source is maintained as a normal state. Furthermore, if the input light power decreases below the predetermined value and the operating current of the pumping light source is below the predetermined value, the operating current of the pumping light source is maintained because there is a possibility that the optical transmission can be maintained although the input light is in an abnormal state. . In this case, it is desirable that the optical amplifier is controlled so that an alarm signal indicating that the input light is in an abnormal state is transmitted.
[0024]
【The invention's effect】
As described above, according to the present invention, when the input light power is reduced, it is confirmed that the pumping light power is a predetermined value or more, and the pumping light power is suppressed. This reduces the load on the excitation light source and prevents the life of the excitation light source from deteriorating. In addition, when the input light power is reduced, the pump light power is maintained when the pump light power is below a predetermined value, so that there is an advantage of avoiding stopping the optical transmission except when it is unavoidable due to protection of the device. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an optical amplifier according to the present invention.
FIG. 2 is a flowchart showing an example of control of an optical amplifier according to the present invention.
FIG. 3 is a flowchart showing another example of the control of the optical amplifier according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Optical branching device 12 Wavelength multi-polymerization wave device 13 Optical amplification fiber 14 Optical branching device 15 O / E converter 16 Excitation light source 17 O / E converter 18 Control circuit 19 Output determination control circuit 20 Excitation light source control circuit

Claims (1)

波長多重合波器に2つの励起光源を接続させ、一方あるいは他方の励起光源を動作させて光増幅用ファイバへ励起光を供給してなり、増幅された出力光を一定出力に制御する光増幅器において、該光増幅用ファイバへの入力光のパワーが所定値以上であり、かつ前記一方の励起光源の動作電流値が所定値以上であるとき、該一方の励起光源を停止させて、前記他方の励起光源を動作させることにより、前記一方の励起光源から前記他方の励起光源へ動作させる励起光源を切り替えることを特徴とする光増幅器の制御方法。To connect the two excitation light sources to the wavelength division multiplexer multiplexer operates the one or the other excitation light source Ri name by supplying excitation light to the optical amplifier fiber, the light for controlling the amplified output light constant output In the amplifier, when the power of the input light to the optical amplification fiber is not less than a predetermined value and the operating current value of the one excitation light source is not less than the predetermined value, the one excitation light source is stopped, A method of controlling an optical amplifier, wherein the pumping light source to be operated is switched from the one pumping light source to the other pumping light source by operating the other pumping light source.
JP2002241604A 2002-08-22 2002-08-22 Control method of optical amplifier Expired - Fee Related JP4122192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241604A JP4122192B2 (en) 2002-08-22 2002-08-22 Control method of optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241604A JP4122192B2 (en) 2002-08-22 2002-08-22 Control method of optical amplifier

Publications (2)

Publication Number Publication Date
JP2004079937A JP2004079937A (en) 2004-03-11
JP4122192B2 true JP4122192B2 (en) 2008-07-23

Family

ID=32024038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241604A Expired - Fee Related JP4122192B2 (en) 2002-08-22 2002-08-22 Control method of optical amplifier

Country Status (1)

Country Link
JP (1) JP4122192B2 (en)

Also Published As

Publication number Publication date
JP2004079937A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP2649737B2 (en) Pumping light source drive method for optical amplifier
JP3854673B2 (en) Optical amplification medium control method, optical amplification device, and system using the same
US6320694B1 (en) Optical amplifier for use in optical communications equipment
JP2800715B2 (en) Optical fiber amplifier
JP3652804B2 (en) Optical transmission equipment
JPH1012954A (en) Optical amplifier
US5542011A (en) Optical amplifiers
JP2000277842A (en) Optical components, and optical amplifier and characteristics control method for the same
JPH05252116A (en) Optical amplifier
JP4499132B2 (en) Light source and WDM optical communication system
JP4122192B2 (en) Control method of optical amplifier
US9496676B2 (en) Optical amplifier and control method thereof
JP2001230480A (en) Excitation light source using raman amplification and optical fiber communication system
JPH10335722A (en) Light amplifier
JPH06252486A (en) Optical fiber amplifier
JP2007095768A (en) Method of controlling optical amplifier
JP2004014760A (en) Optical amplifier
JP3421182B2 (en) Optical fiber amplifier
JP3923060B2 (en) Optical amplifier
JP3670341B2 (en) Optical transmitter
JPH07253602A (en) Light amplifier circuit having exciting light source
KR20170013059A (en) Miniaturized optical fiber amplifier
JPH0437729A (en) Optical amplifying repeater
JP6273704B2 (en) Optical repeater
JP2003188443A (en) Optical amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees