JP4121853B2 - Retinoid agonist - Google Patents

Retinoid agonist Download PDF

Info

Publication number
JP4121853B2
JP4121853B2 JP2002556194A JP2002556194A JP4121853B2 JP 4121853 B2 JP4121853 B2 JP 4121853B2 JP 2002556194 A JP2002556194 A JP 2002556194A JP 2002556194 A JP2002556194 A JP 2002556194A JP 4121853 B2 JP4121853 B2 JP 4121853B2
Authority
JP
Japan
Prior art keywords
compound
mmol
ethyl acetate
mixture
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002556194A
Other languages
Japanese (ja)
Other versions
JPWO2002055525A1 (en
Inventor
辰夫 永野
智美 早乙女
昭子 板井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEMPHYS Ltd
Original Assignee
KEMPHYS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEMPHYS Ltd filed Critical KEMPHYS Ltd
Publication of JPWO2002055525A1 publication Critical patent/JPWO2002055525A1/en
Application granted granted Critical
Publication of JP4121853B2 publication Critical patent/JP4121853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Nutrition Science (AREA)
  • Pain & Pain Management (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

技術分野
本発明は、新規化合物に関するものであり、レチノイン酸やレチノイン酸様の生理活性を有する化合物(レチノイド)に代表される核内レセプターリガンドの生理作用を増強する新規化合物に関するものである。
背景技術
レチノイン酸(ビタミンA酸)はビタミンAの活性代謝産物であり、発生途上にある未熟な細胞を特有な機能を有する成熟細胞へと分化させる作用や、細胞の増殖促進作用や生命維持作用などの極めて重要な生理作用を有している。これまでに合成された種々のビタミンA誘導体、例えば、特開昭61−22047号公報や特開昭61−76440号公報記載の安息香酸誘導体、及びジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry,1988,Vol.31,No.11,p.2182)に記載の化合物なども、同様な生理作用を有することが明らかにされている。レチノイン酸及びレチノイン酸様の生物活性を有する上記化合物は「レチノイド」と総称されている。
例えば、オール・トランス(all−trans)・レチノイン酸は、細胞核内に存在する核内レセプター・スーパーファミリー(Evans,R.M.,Science,240,p.889,1988)に属するレチノイン酸レセプター(RAR)にリガンドとして結合して、動物細胞の増殖・分化あるいは細胞死などを制御することが明らかにされている(Petkovich,M.,et al.,Nature,330,pp.444−450,1987)。レチノイン酸様の生物活性を有する上記化合物(例えば、4−[(5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフタレニル)カルバモイル]安息香酸:Am80など)も、レチノイン酸と同様にRARに結合して生理活性を発揮することが示唆されている(Hashimoto,Y.,Cellstruct.Funct.,16,pp.113−123,1991;Hashimoto,Y.,et al.,Biochem.Biophys.Res.Commun.,166,pp.1300−1307,1990を参照)。これらの化合物は、臨床的には、ビタミンA欠乏症、上皮組織の角化症、リウマチ、遅延型アレルギー、骨疾患、及び白血病やある種の癌の治療や予防に有用であることが見出されている。
このようなレチノイドに対して拮抗的に作用し、上記レチノイドの代表的な作用を減弱する化合物が知られている(Eyrolles,L.,et al.,Journal of Medicinal Chemistry,37(10),pp.1508−1517,1994)。しかしながら、それ自体はレチノイド作用を有しないか、あるいはそのレチノイド作用が微弱であるにもかかわらず、レチノイン酸などのレチノイドの作用を増強する物質は、ほとんど知られていない。例えば、EP 694,301 A1には、RXRレセプターに対する特異的リガンド化合物が、RAR−αレセプターに対する特異的なリガンド化合物であるAm80の作用を増強する作用を有することが示唆されている。また、特開平10−59951号公報にはレチノイドの作用を増強する化合物が開示されている。
発明の開示
本発明の課題は、レチノイン酸などのレチノイドと同様の作用を有する化合物、及びレチノイドの作用を増強する化合物を提供することにある。より具体的にいうと、それ自体がレチノイド作用を有する化合物、及びレチノイドの作用を顕著に増強することができる化合物を提供することが本発明の課題である。
本発明者は上記の課題を解決すべく鋭意努力した結果、下記の一般式で示される化合物がレチノイドとして有用であり、かつレチノイドの作用を増強する性質を有することを見いたし、本発明を完成するに至った。
すなわち、本発明によれば、下記の式(I):

Figure 0004121853
〔式中、Rは水素原子又はC1−6アルキル基を示し;R及びRはそれぞれ独立に水素原子又はC1−6アルキル基を示すか、あるいはR及びRは一緒になってそれらが結合するベンゼン環上の炭素原子とともに5又は6員環を形成してもよく(上記の環は環上に1又は2以上のC1−4アルキル基を有していてもよい);R、R、及びRはそれぞれ独立に水素原子、ハロゲン原子、C1−6アルキル基、又はハロゲン化C1−6アルキル基を示し;Yはフェニレン基又はピリジンジイル基を示し;Xは−S−又は−N(R)−(Rは水素原子又はC1−6アルキル基を示す)を示し;ZはC−R(Rは水素原子、ハロゲン原子、C1−6アルキル基、又はハロゲン化C1−6アルキル基を示す)、又はNを示す〕において、
(1)ZがNである化合物又はその塩;
(2)Rが水素原子又はC1−6アルキル基であり、R及びRが一緒になってそれらが結合するベンゼン環上の炭素原子とともに環上に1又は2以上のC1−4アルキル基を有する6員環を形成し、R、R、及びRが水素原子であり、Yがピリジンジイル基であり、Xが−S−であり、ZがCHである化合物又はその塩;
(3)Rが水素原子又はC1−6アルキル基であり、R及びRが一緒になってそれらが結合するベンゼン環上の炭素原子とともに環上に1又は2以上のC1−4アルキル基を有する6員環を形成し、R及びRが水素原子であり、Rがハロゲン原子であり、Yがフェニレン基であり、ZがCHである化合物又はその塩;
(4)R、R、R、及びRのうち少なくとも2以上の基が水素原子以外の基である化合物又はその塩;あるいは
(5)R、R、R、及びRのうち少なくとも1つの基がハロゲン化C1−6アルキル基である化合物又はその塩;
を提供するものである。
別の観点からは、本発明により、上記の化合物又は生理学的に許容されるその塩を有効成分として含む医薬、上記の化合物又は生理学的に許容されるその塩を有効成分として含むレチノイド作用増強剤;及び上記の化合物又は生理学的に許容されるその塩を有効成分として含む核内レセプターリガンド作用増強剤が提供される。
さらに別の観点からは、本発明により、上記の医薬の製造のための上記の化合物又は生理学的に許容されるその塩の使用;ヒトを含む哺乳類動物の体内においてレチノイドの作用を増強する方法であって、上記の化合物又は生理学的に許容されるその塩の有効量をヒトを含む哺乳類動物に投与する工程を含む方法;ヒトを含む哺乳類動物の体内において核内レセプターリガンドの作用を増強する方法であって、上記の化合物又は生理学的に許容されるその塩の有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。
発明を実施するための最良の形態
は水素原子又はC1−6(炭素数1ないし6の)アルキル基を示す。本明細書において、アルキル基は直鎖状、分枝鎖状、環状、又はそれらの組み合わせのいずれでもよく、アルキル部分を有する置換基(例えばハロゲン化アルキル基など)のアルキル部分についても同様である。アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などを挙げることができ、好ましくはメチル基を用いることができる。
及びRは、それぞれ独立に水素原子又はC1−6アルキル基を示す。アルキル基としては、例えば上記に例示したものを用いることができるが、好ましくは、エチル基、イソプロピル基、tert−ブチル基などを用いることができる。R及びRの置換位置は特に限定されず、それぞれ独立に任意の位置に置換することができる。例えば、R及びRがXに対してそれぞれパラ位及びメタ位であるか、R及びRがXに対してそれぞれメタ位及びオルト位であってもよく、あるいはR及びRがXに対してそれぞれパラ位及びメタ位であってもよい。
また、R及びRが一緒になって、R及びRがそれぞれ結合するベンゼン環上の2個の炭素原子とともに、5又は6員環を形成することができる。形成される環は1個または2個以上のC1−4アルキル基を有していてもよく、例えば、2〜4個のメチル基、好ましくは4個のメチル基を有していてもよい。例えば、R及びRが置換するベンゼン環とR及びRとにより、5,6,7,8−テトラヒドロナフタレン環や5,5,8,8−テトラメチル−5,6,7,8−テトラヒドロナフタレン環などが形成されることが好ましい。
、R、及びRは、それぞれ独立に水素原子、ハロゲン原子、C1−6アルキル基、又はハロゲン化C1−6アルキル基を示す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれを用いてもよいが、フッ素原子であることが好ましい。C1−6アルキル基としては、例えば上記に例示したものを用いることができるが、好ましくはメチル基、エチル基などである。ハロゲン化アルキル基を構成するハロゲン原子としてはフッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれでもよいが、フッ素原子又は塩素原子が好ましく、フッ素原子がより好ましい。ハロゲン化アルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基、ジクロロフルオロメチル基、テトラフルオロエチル基などを挙げることができる。
XはRで置換された窒素原子(−NR−)又は硫黄原子(−S−)を示す。Rは水素原子、C1−6アルキル基を示す。C1−6アルキル基としては上記に例示したものを用いることができ、例えば、メチル基が好ましい。窒素原子又は硫黄原子はそれぞれN−オキシド又はスルホキシドであってもよい。
Yはフェニレン基またはピリジンジイル基を示す。例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、ピリジン−2,4−ジイル基、ピリジン−2,5−ジイル基、ピリジン−3,5−ジイル基など、任意のフェニレン基またはピリジンジイル基を用いることができる。好ましくは、p−フェニレン基またはピリジン−2,5−ジイル基を用いることができる。ピリジン−2,5−ジイル基を用いる場合、ピリジンの2−位または5−位のいずれの位置に−COORで示される基が置換していてもよい。
本発明の化合物は、上記の式(I)において、
(1)ZがNである化合物;
(2)Rが水素原子又はC1−6アルキル基であり、R及びRが一緒になってそれらが結合するベンゼン環上の炭素原子とともに環上に1又は2以上のC1−4アルキル基を有する6員環を形成し、R、R、及びRが水素原子であり、Yがピリジンジイル基であり、Xが−S−であり、ZがCHである化合物;
(3)Rが水素原子又はC1−6アルキル基であり、R及びRが一緒になってそれらが結合するベンゼン環上の炭素原子とともに環上に1又は2以上のC1−4アルキル基を有する6員環を形成し、R及びRが水素原子であり、Rがハロゲン原子であり、Yがフェニレン基であり、ZがCHである化合物;
(4)R、R、R、及びRのうち少なくとも2以上の基が水素原子以外の基である化合物;あるいは
(5)R、R、R、及びRのうち少なくとも1つの基がハロゲン化C1−6アルキル基である化合物;
のいずれかである。
上記の(1)〜(5)の化合物において、R及びRは一緒になってそれらが結合するベンゼン環上の炭素原子とともに6員環を形成することが好ましく、上記の環は環上に2〜4個のC1−4アルキル基を有することが好ましい。環上に存在するアルキル基としてはメチル基が好ましい。最も好ましいのは環上に4個のメチル基が存在する場合である。
上記(1)の化合物において、R、R、及びRは水素原子であることが好ましく、Yはフェニレン基であることが好ましく、Xは−S−であることが好ましい。
上記(2)の化合物においてYが2,5−ピリジンジイル基であることが好ましい。
上記(3)の化合物において、Rがフッ素原子であり、Yがp−フェニレン基であり、Xが−N(R)−(Rは水素原子又はメチル基である)又は−S−であることが好ましい。
上記(4)の化合物において、R及びRが水素原子以外の基であることが好ましく、さらに好ましいのはR及びRがともに水素原子又はハロゲン原子であり、かつR及びRが水素原子以外の基である場合である。R及びRがともにハロゲン原子であることがさらに好ましく、R及びRがともにフッ素原子である場合が最も好ましい。R、R、R、及びRがすべてフッ素原子である場合も好ましい。
上記(5)の化合物において、Yがフェニレン基であり、Xが−S−であることが好ましい。R、R、R、及びRのうち少なくとも1つの基がトリフルオロメチル基であることが好ましい。Rがトリフルオロメチル基である場合がさらに好ましく、さらに好ましいのはRがトリフルオロメチル基であり、かつR、R、及びRが水素原子の場合である。
本発明の化合物は、酸付加塩または塩基付加塩として存在する場合があり、塩の形態の物質も本発明の範囲に包含される。酸付加塩としては、塩酸塩若しくは臭化水素酸塩などの鉱酸塩、又はp−トルエンスルホン酸塩、メタンスルホン酸塩、シュウ酸塩、若しくは酒石酸塩などの有機酸塩を挙げることができる。塩基付加塩はRが水素原子を示す場合に形成され、ナトリウム塩、カリウム塩、マグネシウム塩、若しくはカルシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩若しくはエタノールアミン塩などの有機アミン塩などを挙げることができる。
本発明の化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があるが、このような不斉炭素に基づく純粋な形態の光学異性体やジアステレオ異性体などの立体異性体のほか、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。また、遊離化合物又は塩の形態の化合物の任意の水和物又は溶媒和物も本発明の範囲に包含されることはいうまでもない。
本発明の化合物の製造方法は特に限定されないが、例えば特開平10−59951号公報に記載された製造方法に準じて製造することができる。本明細書の実施例には、本発明の化合物の製造方法が具体的かつ詳細に説明されているので、上記の刊行物及び本明細書の実施例を参照しつつ、これらの方法において用いられた出発原料、試薬、及び反応条件などを適宜変更し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えることにより、本発明の範囲に包含される化合物をいずれも製造可能である。
本発明の化合物は、それ自体はレチノイド様の作用を実質的に有していないか、あるいは微弱又は中程度のレチノイド様作用を有する化合物であるが、本発明の化合物をレチノイン酸などのレチノイドと共存させた場合には、レチノイドの生理活性(代表的なものとして細胞分化作用、細胞増殖促進作用、及び生命維持作用など)が顕著に増強される。いかなる特定の理論に拘泥するわけではないが、本発明の化合物はレチノイドレセプター(本明細書において用いられる「レチノイドレセプター」という用語は、レチノイン酸レセプターRAR及びRXRを包含しており、レチノイン酸などのレチノイドが相互作用可能なレセプターの1種又は2種以上を意味している。)に対して相互作用することができ、それ自体がアゴニストとしてレチノイド様の生理活性を発揮するか、あるいはレチノイドの生理活性を増強する作用を有している。また、いかなる特定の理論に拘泥するわけではないが、本発明の化合物自体がレチノイド作用を有する場合には、その作用は相乗的作用である。
従って、本発明の化合物は、レチノイン酸やレチノイン酸様の生物活性を有する上記化合物(例えば、4−[(5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフタレニル)カルバモイル]安息香酸:Am80など)と同様にビタミンA欠乏症、上皮組織の角化症、乾癬、アレルギー疾患、リウマチなどの免疫性疾患、骨疾患、白血病、糖尿病、又は癌などの疾患の予防・治療のための医薬として投与することができ、あるいはレチノイドを上記の疾患の予防・治療のために投与するに際して本発明の化合物を該レチノイドの作用増強剤として用いることができる。
また、本発明の化合物は、レチノイドを上記疾患の治療・予防のために投与しない場合においても、生体内に既に存在するレチノイン酸の作用を増強するので、上記疾患の治療・予防の目的で本発明の化合物自体を投与することも可能である。さらに、本発明の化合物は、レチノイドに対しての作用増強効果のみならず、細胞の核内に存在する核内レセプター・スーパーファミリー(Evans,R.M.,Science,240,p.889,1988)に属するレセプターに結合して生理作用を発揮するステロイド化合物、ビタミンDなどのビタミンD化合物、又はチロキシンなどの生理活性物質の作用増強に用いることもできる。
本発明の化合物又は生理学的に許容されるその塩からなる医薬は、それ自体を投与してもよいが、好ましくは、当業者に周知の方法によって製造可能な経口用あるいは非経口用の医薬組成物として投与することが好ましい。また、レチノイン酸などのレチノイドを有効成分として含む医薬に配合して、いわゆる合剤の形態の医薬組成物として用いることもできる。経口投与に適する医薬用組成物としては、例えば、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、及びシロップ剤等を挙げることができ、非経口投与に適する医薬組成物としては、例えば、注射剤、坐剤、吸入剤、点眼剤、点鼻剤、軟膏剤、クリーム剤、経皮吸収剤、経粘膜吸収剤、及び貼付剤等を挙げることができる。本発明の医薬の有効成分としては、遊離形態の化合物又は生理学的に許容されるその塩のほか、その水和物や溶媒和物を用いてもよい。
上記の医薬組成物は、薬理学的、製剤学的に許容しうる添加物を加えて製造することができる。薬理学的、製剤学的に許容しうる添加物の例としては、例えば、賦形剤、崩壊剤ないし崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤ないし溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、及び粘着剤等を挙げることができる。本発明の医薬の有効成分としては、遊離形態の化合物及び生理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる1または2種以上の物質を用いることができる。
本発明の医薬の投与量は特に限定されず、レチノイン酸などのレチノイドを有効成分として含む医薬と本発明の医薬とを併用してレチノイドの作用を増強する場合、あるいは、レチノイドを含む医薬を併用せずに、生体内に既に存在するレチノイン酸の作用増強のために本発明の医薬を投与する場合など、あらゆる投与方法において適宜の投与量が容易に選択できる。例えば、経口投与の場合には成人一日あたり0.01〜1,000mg程度の範囲で用いることができる。レチノイドを有効成分として含む医薬と本発明の医薬とを併用する場合には、レチノイドの投与期間中、あるいはその前後のいずれの期間においても本発明の医薬を投与することが可能である。
実施例
以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例の範囲に限定されることはない。なお、実施例中の化合物番号は、下記のスキーム中の化合物番号に対応している。
例1:HX900の合成
Figure 0004121853
NaH(351mg,8.78mmol)の乾燥ジメチルホルムアミド(DMF,25mL)懸濁液に、塩−氷浴冷却下0−5℃で5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチルナフタレン−2−チオール(化合物1−1:J.Med.Chem.,38,pp.3163−3173,1995,1.935g,8.78mmol)の乾燥DMF(5mL)溶液を滴下した。室温まで徐々に昇温し1時間攪拌後、塩−氷浴冷却下0−5℃で2−クロロ−3−ニトロピリジン(1.325g,8.36mmol)の乾燥DMF(5mL)溶液を滴下した。室温まで徐々に昇温し2時間攪拌した後、反応液を水にあけ酢酸エチルで抽出した。有機相を水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=40/1)で精製し化合物1−2(2.755g,96.2%)を得た。
H−NMR(CDCl)δ8.52(dd,1H,J=1.8,4.8Hz),8.48(dd,1H,J=1.8,8.4Hz),7.46(d,1H,J=1.8Hz),7.37(d,1H,J=8.1Hz),7.29(dd,1H,J=1.8,8.4Hz),7.17(dd,1H,J=4.5,8.1Hz),1.71(s,4H),1.32(s,6H),1.28(s,6H).
化合物1−2(2.687g,7.85mmol)をエタノール(2.6mL)および水(2.61mL)に懸濁し、濃塩酸(6.5mL)を加えた。この混合物に鉄粉(2.192g,39.25mmol)を加えて1時間加熱還流した。室温まで冷却後、反応液をNaOH(10.0g,250mmol)、ジクロルメタン(125mL)および水(250mL)の混合液にあけ、セライト15gを加えて攪拌した後セライト濾過した。濾液の水相をジクロルメタンで抽出し、合わせた有機相を水および飽和食塩水で洗浄しNaSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し化合物1−3(1.056g,43.0%)を得た。
H−NMR(CDCl)δ8.20(dd,1H,J=1.5,4.5Hz),7.27(d,1H,J=2.4Hz),7.19(d,1H,J=8.1Hz),7.06(dd,1H,J=4.5,7.8Hz),7.00(dd,2H,J=1.8,8.1Hz),4.20(brs,2H),1.64(s,4H),1.23(s,6H),1.21(s,6H).
化合物1−3(183mg,0.586mmol)およびトリエチルアミン(65.2mg,0.645mmol)を乾燥ジクロルメタン(5mL)に溶解し、塩−氷浴冷却下0−5℃でテレフタル酸モノメチルクロライド(128mg,0.645mmol)の乾燥ジクロルメタン(2mL)溶液を滴下した。室温まで徐々に昇温し15時間攪拌した。反応液をジクロルメタンで希釈し、水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製し化合物1−4(216mg,77.7%)を得た。
H−NMR(CDCl)δ8.84(brs and dd,1H+1H,J=1.5,8.4Hz),8.38(dd,1H,J=1.5,4.5Hz),8.12(d,2H,J=8.4Hz),7.74(d,2H,J=8.7Hz),7.35(dd,1H,J=4.5,8.1Hz),7.26(d,1H,J=1.5Hz),7.23(d,1H,J=8.1Hz),7.04(dd,1H,J=1.8,8.4Hz),3.96(s,3H),1.63(s,4H),1.21(s,6H),1.15(s,6H).
化合物1−4(192mg,0.405mmol)をジクロルメタン(1mL)に溶解しポリリン酸(PPA,4.50g)を加え120℃で1時間加熱攪拌した。反応液に水を加えジクロルメタンで抽出した。有機相を水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し化合物1−5(93.4mg,50.5%)を得た。
H−NMR(CDCl)δ8.32(dd,1H,J=1.8,4.5Hz),8.11(d,2H,J=8.7Hz),7.90(d,2H,J=8.7Hz),7.66(dd,1H,J=1.8,8.1Hz),7.57(s,1H),7.29(dd,1H,J=4.5,8.4Hz),7.08(s,1H),3.96(s,3H),1.66(s,4H),1.31(s,3H),1.28(s,3H),1.15(s,3H),1.09(s,3H).
化合物1−5(80.8mg,0.175mmol)をテトラヒドロフラン(THF,3mL)およびMeOH(1mL)に溶解し2N NaOH(0.88mL,1.76mL)を加え室温で2時間加熱攪拌した。反応液を減圧下濃縮し残渣に2N HCl(1mL)を加えた後水で希釈し酢酸エチルで抽出した。有機相を水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去しHX900(71.0mg,91.7%)を得た。トルエンから再結晶して精製体を得た。m.p.>300℃。
H−NMR(DMSO−d)δ8.31(dd,1H,J=1.5,4.5Hz),8.06(d,2H,J=8.4Hz),7.84(d,2H,J=8.4Hz),7.77(dd,1H,J=1.5,8.1Hz),7.59(s,1H),7.47(dd,1H,J=4.5,8.1Hz),7.19(s,1H),1.63(s,4H),1.28(s,6H),1.14(s,3H),1.07(s,3H).
例2:HX901の合成
Figure 0004121853
2−[(5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフチル)チオ]アニリン(化合物2−1:J.Med.Chem.,40,pp.4222−4243,1997,218mg,0.70mmol)および5−エチル−2,5−ピリジンジカルボキシレート(Nippon Kagaku Zasshi,88,pp.553−556,1967,273mg,1.40mmol)の乾燥ジクロルメタン(3.5mL)懸濁液に塩酸1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド(269mg,1.40mmol)を加え室温で4時間攪拌した。反応液をジクロルメタンで希釈し、水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製し化合物2−2(306mg,89.5%)を得た。
H−NMR(CDCl)δ11.14(brs,1H),9.20(d,1H,J=1.8Hz),8.66(dd,1H,J=1.2,8.1Hz),8.46(dd,1H,J=1.8,8.1Hz),8.31(d,1H,J=8.1Hz),7.65(dd,1H,J=1.8,7.5Hz),7.43−7.49(m,1H),7.26−7.27(m,1H),7.13−7.18(m,1H),7.12(d,1H,J=8.4Hz),6.95(dd,1H,J=1.8,8.1Hz),4.45(q,2H,J=7.2Hz),1.59(s,4H),1.44(t,3H,J=7.2Hz),1.16(s,6H),1.12(s,6H).
化合物2−2(280mg,0.572mmol)をジクロルメタン(1mL)に溶解し、PPA(5.28g)を加え120℃で4時間加熱攪拌した。反応液に水を加え酢酸エチルで抽出した。有機相を水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロルメタン/メタノール/酢酸=380/20/1)で精製しHX901(153mg,60.4%)を得た。トルエンから再結晶して精製体を得た。m.p.283℃。
H−NMR(DMSO−d)δ9.03(dd,1H,J=1.2,2.1Hz),8.51(dd,1H,J=1.2,8.1Hz),8.47(dd,1H,J=2.1,8.4Hz),7.52(dd,1H,J=0.9,7.8Hz),7.46(s,1H),7.37−7.44(m,2H),7.20−7.26(m,1H),7.15(s,4H),1.61(s,4H),1.26(s,6H),1.13(s,3H),1.04(s,3H).
例3:HX902の合成
Figure 0004121853
2−[(5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフチル)チオ]アニリン(化合物2−1,202mg,0.65mmol)および2−エチル−2,5−ピリジンジカルボキシレート(Nippon Kagaku Zasshi,88,pp.553−556,1967,253mg,1.30mmol)の乾燥ジクロルメタン(3.5mL)懸濁液に塩酸1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド(249mg,1.30mmol)を加え室温で15時間攪拌した。反応液をジクロルメタンで希釈、水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し化合物3−2(300mg,94.4%)を得た。
H−NMR(CDCl)δ9.10(brs,1H),9.03(d,1H,J=2.4Hz),8.62(d,1H,J=8.4Hz),8.15(d,1H,J=7.8Hz),7.99(dd,1H,J=2.4,8.1Hz),7.67(dd,1H,J=1.5,7.8Hz),7.49−7.55(m,1H),7.22(dd,1H,J=1.5,7.8Hz),7.18(d,1H,J=8.1Hz),7.07(d,1H,J=1.8Hz),6.81(dd,1H,J=2.1,8.4Hz),4.50(q,2H,J=7.2Hz),1.61(s,4H),1.46(t,3H,J=7.2Hz),1.19(s,6H),1.13(s,6H).
化合物3−2(258mg,0.527mmol)をジクロルメタン(1mL)に溶解し、PPA(6.05g)を加え120℃で4時間加熱攪拌した。反応液に水を加え酢酸エチルで抽出した。有機相を水および飽和食塩水で洗浄しMgSOで乾燥後溶媒を減圧留去した。得られた残渣(140mg)をヘキサン−酢酸エチルから再結晶してHX902(110mg,47.2%)を得た。m.p.154−155℃。
H−NMR(CDCl)δ9.07(dd,1H,J=0.9,2.1Hz),8.37(dd,1H,J=2.1,8.1Hz),8.28(dd,1H,J=0.9,7.8Hz),7.48−7.53(m,1H),7.47(s,1H),7.37−7.38(m,2H),7.14−7.20(m,1H),7.01(s,1H),1.66(s,4H),1.31(s,3H),1.29(s,3H),1.16(s,3H),1.08(s,3H).
例4:HX903の合成
Figure 0004121853
6−ブロモ−1,2,3,4−テトラヒドロ−1,1,4,4−テトラメチルナフタレン1.00g(3.74mmol)、4−フルオロ−2−ニトロアニリン(化合物4−1a)0.58g(3.71mmol)、KCO 0.57g(4.12mmol)、CuI 0.04g(0.21mmol)にo−キシレン20mLを加え、9時間加熱還流した。減圧下にキシレンを留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:15)で精製し、化合物4−2aを得た(1.04g,81%)。
H−NMR(CDCl)9.35(s,1H),7.90(dd,J=9.2,2.4Hz,1H),7.33(d,J=8.4Hz,1H),7.14−7.21(m,3H),7.01(dd,J=8.4,2.4Hz,1H),1.71(s,4H),1.30(s,6H),1.28(s,6H)
NaH(60% in oil)0.18g(4.5mmol)をn−ヘキサンで洗い、DMF 3mLに懸濁し、氷浴で冷却した後、化合物4−2a 1.04g(3.03mmol)を30mLのDMFに溶解して加え、室温で30分間撹拌した。この混合物にCHI 0.4mL(6.42mmol)を加えて5時間撹拌した。反応混合物を氷水にあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、化合物4−3aを得た(1.05g,98%)。
H−NMR(CDCl)7.57(dd,J=7.6,2.8Hz,1H),7.35(dd,J=9.2,4.8Hz,1H),7.29(m,1H),7.12(d,J=8.4Hz,1H),6.58(d,J=2.4Hz,1H),6.51(dd,J=8.4,2.4Hz,1H),3.25(s,3H),1.63(s,4H),1.22(s,6H),1.18(s,6H)
化合物4−3a 1.05g(2.98mmol)を酢酸エチル30mLに溶解し、10% Pd/C 0.1gを加え、水素雰囲気下1時間激しく撹拌した。反応混合物をセライトを通して濾過し、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:10)で精製し、化合物4−4aを得た(0.61g,63%)。
H−NMR(CDCl)7.11(d,J=8.8Hz,1H),6.97(dd,J=8.4,6.0Hz,1H),6.58(d,J=2.4Hz,1H),6.50(dd,J=10.4,2.8Hz,1H),6.43(dd,J=8.8,2.4Hz,1H),6.41(dd,J=6.0,2.8Hz,1H),3.95(brs,2H),3.14(s,3H),1.65(s,4H),1.23(s,6H),1.22(s,6H)
化合物4−4a 0.61g(1.87mmol)を乾燥ベンゼン15mLに溶解し、ピリジン1.5mLを加えた。氷浴で冷却後、テレフタル酸モノメチルエステルクロリド0.41g(2.06mmol)を加え、室温で16時間撹拌した。反応混合物を2N HClにあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:4)で精製し、化合物4−5aを得た(0.91g,quant)。
H−NMR(CDCl)8.58(brs,1H),8.44(dd,J=10.8,2.8Hz,1H),8.00(d,J=8.4Hz,2H),7.48(d,J=8.4Hz,2H),7.21(d,J=8.8Hz,1H),7.18(dd,J=8.8,5.6Hz,1H),6.87(dt,J=8.0,3.2Hz,1H),6.65(d,J=2.8Hz,1H),6.57(dd,J=8.8,2.8Hz,1H),3.93(s,3H),3.27(s,3H),1.65(s,4H),1.25(s,6H),1.17(s,6H)
化合物4−5a 0.91g(1.86mmol)を少量の乾燥ジクロロメタンに溶解し、PPA 10gを加えて110℃で1時間撹拌した。冷却後、反応混合物に氷水を加え、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:4)で精製し、化合物4−6aを得た(0.71g,81%)
H−NMR(CDCl)8.08(d,J=8.8Hz,2H),7.86(d,J=8.8Hz,2H),7.01(dd,J=9.6,2.8Hz,1H),6.92(s,1H),6.88(s,1H),6.81−6.69(m,2H),3.95(s,3H),3.23(s,3H),1.63−1.68(m,4H),1.32(s,3H),1.27(s,3H),1.13(s,3H),1.05(s,3H)
化合物4−6a 0.71g(1.50mmol)をエタノール10mL及び20% NaOH 2mLに懸濁し、室温で5時間撹拌した。反応混合物を酸性にした後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をエタノールから再結晶することによりHX903を得た(0.62g,90%)。
H−NMR(DMSO−d)13.1(brs,1H),8.02(d,J=8.0Hz,2H),7.78(d,J=8.4Hz,2H),6.98−7.09(m,4H),6.86(s,1H),3.19(s,3H),1.59−1.61(m,4H),1.29(s,3H),1.25(s,3H),1.10(s,3H),1.01(s,3H)
Anal.Calcd for C2929FN,C:76.29%,H:6.40%,N:6.14%;Found C:76.00%,H:6.39%,N:6.02%
例5:HX904の合成
6−ブロモ−1,2,3,4−テトラヒドロ−1,1,4,4−テトラメチルナフタレン1.53g(7.52mmol)、2,4−ジフルオロ−6−ニトロアニリン(化合物4−1b)1.00g(5.74mmol)、KCO 0.90g(6.51mmol)、CuI 0.055g(0.29mmol)にo−キシレン20mL を加え、24時間加熱還流した。減圧下にキシレンを留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:50→1:10)で精製し、化合物4−2bを得た(1.82g,88%)。
H−NMR(CDCl)8.54(brs,1H),7.75(ddd,J=8.4,3.2,2.0Hz,1H),7.22(d,J=8.4Hz,1H),7.14(ddd,J=11.2,7.6,3.2Hz,1H),6.88(dd,J=2.8,2.4Hz,1H),6.74(ddd,J=8.4,2.8,2.4Hz,1H),1.68(s,4H),1.27(s,6H),1.25(s,6H)
NaH(60% in oil)0.33g(8.3mmol)をn−ヘキサンで洗い、DMF 5mLに懸濁し、化合物4−2b 1.97g(5.47mmol)を40mLのDMFに溶解して加え、室温で、30分間撹拌した。この混合物にCHI 0.7mL(11.2mmol)を加えて室温で1時間撹拌した。反応混合物を氷水にあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:7)で精製し、化合物4−3bを得た(2.04g,quant)。
H−NMR(CDCl)7.39(ddd,J=7.6,3.2,2.0Hz,1H),7.18(ddd,J=9.6,8.0,2.8Hz,1H),7.11(d,J=8.8Hz,1H),6.47(d,J=2.4Hz,1H),6.41(dd,J=8.8,2.8Hz,1H),3.24(s,3H),1.63(s,4H),1.22(s,6H),1.18(s,6H)
化合物4−3b 2.04g(5.44mmol)を酢酸エチル30mLに溶解し、10% Pd/C 0.8gを加え、水素雰囲気下13時間激しく撹拌した。反応混合物をセライトを通して濾過し、溶媒を減圧留去し、化合物4−4bを得た(1.19g,63%)。
H−NMR(CDCl)7.12(d,J=8.8Hz,1H),6.56(d,J=2.8Hz,1H),6.41(dd,J=8.8,2.8Hz,1H),6.28(ddd,J=10.0,2.8,1.6Hz,1H),6.23(ddd,J=10.4,9.2,2.8Hz,1H),4.10(brs,2H),3.18(s,3H),1.65(s,4H),1.23(s,12H)
化合物4−4b 1.19g(3.45mmol)を乾燥ベンゼン15mLに溶解し、ピリジン1.5mLを加えた。氷浴で冷却後、テレフタル酸モノメチルエステルクロリド0.75g(3.77mmol)を加え、室温で14時間撹拌した。反応混合物を2N HClにあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:7→1:4)で精製し、化合物4−5bを得た(1.66g,95%)。
H−NMR(CDCl)8.58(brs,1H),8.30(ddd,J=10.8,2.4,2.0Hz,1H),8.00(d,J=8.4Hz,2H),7.46(d,J=8.0Hz,2H),7.21(d,J=8.4Hz,1H),6.70(ddd,J=10.8,8.8,2.8Hz,1H),6.62(d,J=2.8Hz,1H),6.53(dd,J=8.4,2.8Hz,1H),3.93(s,3H),3.29(s,3H),1.65(s,4H),1.25(s,6H),1.18(s,6H)
化合物4−5b 1.66g(3.27mmol)を少量の乾燥ジクロロメタンに溶解し、PPA 15gを加えて110℃で2時間撹拌した。冷却後、反応混合物に氷水を加え、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:7)で精製し、化合物4−6bを得た(1.15g,72%)
H−NMR(CDCl)8.08(d,J=8.4Hz,2H),7.81(d,J=8.4Hz,2H),7.11(s,1H),6.87(s,1H),6.82(ddd,J=9.2,2.8,1.6Hz,1H),6.64(ddd,J=11.6,8.0,2.8Hz,1H),3.95(s,3H),3.37(d,J=4.8Hz,3H),1.64−1.72(m,4H),1.33(s,3H),1.30(s,3H),1.13(s,3H),1.06(s,3H)
化合物4−6b 0.88g(1.80mmol)をエタノール15mL及び20% NaOH 3mLに懸濁し、室温で5時間撹拌した。反応混合物を酸性にした後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をエタノールから再結晶することによりHX904を得た(0.81g,95%)。
H−NMR(DMSO−d)13.1(brs,1H),8.02(d,J=8.4Hz,2H),7.75(d,J=8.0Hz,2H),7.23(s,1H),7.08(ddd,J=11.6,8.8,3.2Hz,1H),6.92(dd,J=9.6,1.6Hz,1H),6.89(s,1H),3.33(d,J=5.2Hz,3H),1.60−1.62(m,4H),1.30(s,3H),1.27(s,3H),1.11(s,3H),1.01(s,3H)
Anal.Calcd for C2928,C:73.40%,H:5.95%,N:5.90%;Found C:73.27%,H:6.11%,N:5.87%
例6:HX905の合成
Figure 0004121853
5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチルナフタレン−2−チオール0.50g(2.27mmol)を10mlの乾燥ベンゼンに溶解し、氷浴で冷却し、tert−ブトキシカリウム0.27g(2.41mmol)を加え、室温で10分間撹拌した。この混合物を氷浴で冷却し、4−クロロ−3−ニトロベンゾトリフルオリド(化合物5−1a)0.51g(2.26mmol)を加え、室温で2時間撹拌した。反応混合物を氷水にあけ、中和後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:50→1:30)で精製し、化合物5−2aを得た(0.90g,97%)。
H−NMR(CDCl)8.51(d,J=0.8Hz,1H),7.56(dd,J−=8.8,2.0Hz,1H),7.51(d,J=2.0Hz,1H),7.44(d,J=8.0Hz,1H),7.28(dd,J=8.0,2.0Hz,1H),7.00(d,J=8.8Hz,2H),1.73(s,4H),1.33(s,6H),1.28(s,6H)
化合物5−2a 0.90g(2.19mmol)を水3mL及びエタノール15mLに懸濁し、濃塩酸0.8mLを加えた。この混合物に鉄粉0.9gを加えて1時間加熱還流した。冷却後反応混合物をセライトを通して濾過し、濾液を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:10)で精製し、化合物5−3aを得た(0.54g,65%)。
H−NMR(CDCl)7.46(d,J=7.6Hz,1H),7.18(d,J=8.4Hz,1H),7.17(d,J=2.8Hz,1H),6.96(m,1H),6.93(d,J=8.4Hz,1H),6.82(dd,J=8.4,2.0Hz,1H),4.42(brs,2H),1.65(s,4H),1.23(s,6H),1.22(s,6H)
化合物5−3a 0.54g(1.42mmol)を乾燥ベンゼン10mLに溶解し、ピリジン1.0mLを加えた。これにテレフタル酸モノメチルエステルクロリド0.31g(1.56mmol)を加え、室温で14時間撹拌した。反応混合物を2N HClにあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:7)で精製し、化合物5−4aを得た(0.64g,84%)。
H−NMR(CDCl)8.97(brs,1H),8.95(s,1H),8.08(d,J=8.0Hz,2H),7.69(d,J=7.6Hz,1H),7.67(d,J=8.0Hz,2H),7.39(d,J=8.0Hz,1H),7.23(d,J=8.0Hz,1H),7.18(d,J=2.0Hz,1H),6.88(dd,J=8.0,2.0Hz,1H),3.95(s,3H),1.63(s,4H),1.22(s,6H),1.16(s,6H)
化合物5−4a 0.64g(1.18mmol)を少量の乾燥ジクロロメタンに溶解し、PPA 10gを加えて110℃で8時間撹拌した。冷却後、反応混合物に氷水を加え、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:10)で精製し、化合物5−5aを得た(0.22g,36%)
H−NMR(CDCl)8.11(d,J=8.4Hz,2H),7.90(d,J=8.4Hz,2H),7.60(d,J=1.2Hz,1H),7.57(d,J=8.0Hz,1H),7.44(s,1H),7.33(dd,J=8.0,2.0Hz,1H),7.05(s,1H),3.96(s,3H),1.64−1.65(m,4H),1.31(s,3H),1.29(s,3H),1.15(s,3H),1.08(s,3H)
化合物5−5a 0.22g(0.42mmol)をエタノール10mL及び2N NaOH 2mLに懸濁し、室温で16時間撹拌した。反応混合物を酸性にした後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をメタノールから再結晶することによりHX905を得た(0.10g,47%)。
H−NMR(DMSO−d)13.2(brs,1H),8.05(d,J=8.0Hz,2H),7.86(d,J=8.0Hz,2H),7.71(d,J=8.0Hz,1H),7.66(s,1H),7.54(s,1H),7.51(d,J=8.0Hz,1H),7.14(s,1H),1.61(brs,4H),1.27(s,3H),1.25(s,3H),1.13(s,3H),1.04(s,3H)
Anal.Calcd for C2926NOS,C:68.35%,H:5.14%,N:2.75%;Found C:68.54%,H:5.09%,N:2.77%
例7:HX906の合成
NaH(60% in oil)0.12g(3.0mmol)をn−ヘキサンで洗い、乾燥ベンゼン5mLに懸濁し、氷浴で冷却した後、5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチルナフタレン−2−チオール0.52g(2.36mmol)を5mLの乾燥ベンゼンに溶解して加え、室温で15分間撹拌した。この混合物にペンタフルオロニトロベンゼン(化合物5−1b)0.50g(2.35mmol)を3mLの乾燥ベンゼンに溶解して加え、室温で1時間撹拌した。反応混合物を氷水にあけ、中和後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(n−ヘキサン)で精製し、化合物5−2bを得た(0.53g,55%)。
H−NMR(CDCl)7.46(d,J=1.6Hz,1H),7.23(d,J=8.4Hz,1H),7.17(dd,J=8.4,2.0Hz,1H),1.66(s,4H),1.26(s,6H),1.24(s,6H)
化合物5−2b 0.81g(1.96mmol)をエタノール15mLに懸濁し、2N塩酸3mLを加えた。この混合物に鉄粉0.9gを加えて1時間加熱還流した。冷却後、反応混合物をセライトを通して濾過し、濾液を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:7)で精製し、化合物5−3bを得た(0.69g,92%)。
H−NMR(CDCl)7.19(d,J=2.0Hz,1H),7.17(d,J=8.4Hz,1H),6.93(dd,J=8.4,2.0Hz,1H),4.52(brs,2H),1.64(s,4H),1.22(s,12H)
化合物5−3b 0.69g(1.80mmol)を乾燥ベンゼン15mLに溶解し、ピリジン1.5mLを加えた。これにテレフタル酸モノメチルエステルクロリド0.39g(1.96mmol)を加え、室温で14時間撹拌した後、2時間加熱還流した。反応混合物を2N HClにあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:4)で精製し、化合物5−4bを粗生成物として得た。
H−NMR(CDCl)8.09(d,J=8.4Hz,2H),7.79(d,J=8.0Hz,2H),7.78(s,1H),7.14(d,J=8.4Hz,1H),7.14(d,J=2.4Hz,1H),6.83(dd,J=8.4,2.4Hz,1H),3.96(s,3H),1.61(s,4H),1.20(s,6H),1.10(s,6H)
粗生成物5−4bを少量の乾燥ジクロロメタンに溶解し、PPA 10gを加えて110℃で14時間撹拌した。冷却後、反応混合物に氷水を加え、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をメタノールで結晶化し、化合物5−5bを得た(0.61g,65%[2steps])
H−NMR(DMSO−d)8.09(d,J=8.4Hz,2H),7.86(d,J=8.8Hz,2H),7.58(s,1H),7.21(s,1H),3.89(s,3H),1.62(s,4H),1.28(s,3H),1.26(s,3H),1.13(s,3H),1.06(s,3H)
化合物5−5b 0.61g(1.15mmol)をエタノール20mL及び2N NaOH 5mLに懸濁し、室温で16時間撹拌した。反応混合物を酸性にした後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をメタノールから再結晶することによりHX906を得た(0.50g,83%)。
H−NMR(DMSO−d)13.2(brs,1H),8.06(d,J=8.4Hz,2H),7.83(d,J=8.4Hz,2H),7.58(s,1H),7.21(s,1H),1.62(s,4H),1.28(s,3H),1.26(s,3H),1.14(s,3H),1.07(s,3H)
Anal.Calcd for C2823NOS,C:65.49%,H:4.51%,N:2.73%;Found C:65.24%,H:4.63%,N:2.62%
例8:HX907の合成
5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチルナフタレン−2−チオール0.50g(2.27mmol)を乾燥ベンゼン20mLに溶解し、氷浴で冷却し、tert−ブトキシカリウム0.28g(2.50mmol)を加え、室温で15分間撹拌した。この混合物を氷浴で冷却し、5−フルオロ−2−ヨードニトロベンゼン(化合物5−1c)0.60g(2.25mmol)を加え、室温で5時間撹拌した。反応混合物を氷水にあけ、中和後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:20)で精製し、化合物5−2cを得た(0.57g,70%)。
H−NMR(CDCl)7.95(dd,J=8.4,2.8Hz,1H),7.49(d,J=2.0Hz,1H),7.39(d,J=8.4Hz,1H),7.27(dd,J=8.0,2.0Hz,1H),7.12(ddd,J=9.2,7.2,2.8Hz,1H),6.88(dd,J=9.2,5.6Hz,1H),1.72(s,4H),1.32(s,6H),1.27(s,6H)
化合物5−2c 0.56g(1.57mmol)をエタノール10mLに溶解し、2N塩酸3mL、鉄粉0.5gを加えて2時間加熱還流した。冷却後反応混合物をセライトを通して濾過し、濾液を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:20)で精製し、化合物5−3cを得た(0.37g,72%)。
H−NMR(CDCl)7.41(dd,J=8.4,6.4Hz,1H),7.14(d,J=8.4Hz,1H),7.05(d,J=2.0Hz,1H),6.74(dd,J=8.4,2.0Hz,1H),6.48(dd,J=10.8,2.8Hz,1H),6.45(td,J=8.4,2.4Hz,1H),4.40(brs,2H),1.64(s,4H),1.22(s,6H),1.20(s,6H)
化合物5−3c 0.37g(1.13mmol)を乾燥ベンゼン10mLに溶解し、ピリジン1mLを加えた。これにテレフタル酸モノメチルエステルクロリド0.25g(1.26mmol)を加え、室温で2時間撹拌した。反応混合物を2N塩酸にあけ、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:5)で精製し、化合物5−4cを得た(0.49g,88%)。
H−NMR(CDCl)9.12(brs,1H),8.52(dd,J=10.8,2.8Hz,1H),8.05(d,J=8.4Hz,2H),7.65(dd,J=8.8,6.4Hz,1H),7.63(d,J=8.8Hz,2H),7.19(d,J=8.4Hz,1H),7.07(d,J=2.4Hz,1H),6.90(td,J=8.0,2.8Hz,1H),6.80(dd,J=8.4,2.4Hz,1H),3.95(s,3H),1.62(s,4H),1.20(s,6H),1.14(s,6H)
化合物5−4c 0.49g(0.99mmol)を乾燥ジクロロメタン2mLに溶解し、PPA 10gを加えて110℃で8時間撹拌した。冷却後、反応混合物に氷水を加え、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル:n−ヘキサン=1:5)で精製し、化合物5−5cを得た(0.34g,72%)
H−NMR(CDCl)8.07(d,J=8.8Hz,2H),7.86(d,J=8.8Hz,2H),7.41(s,1H),7.40(dd,J=8.8,5.6Hz,1H),7.04(dd,J=10.0,2.8Hz,1H),7.01(s,1H),6.81(td,J=8.0,2.8Hz,1H),3.94(s,3H),1.63−1.67(m,4H),1.29(s,3H),1.27(s,3H),1.13(s,3H),1.06(s,3H)
化合物5−5c 0.34g(0.72mmol)をエタノール10mL及び2N NaOH 1.5mLに懸濁し、室温で16時間撹拌した。反応混合物を酸性にした後、酢酸エチルで抽出し、有機層を水、飽和食塩水で洗い、無水NaSOで乾燥した。溶媒を減圧留去し、得られた残渣を酢酸エチル/n−ヘキサンから再結晶することにより化合物HX907を得た(0.23g,71%)。
H−NMR(DMSO−d)13.1(brs,1H),8.04(d,J=8.0Hz,2H),7.82(d,J=8.4Hz,2H),7.52(dd,J=8.4,6.4Hz,1H),7.51(s,1H),7.19(dd,J=10.0,2.8Hz,1H),7.12(s,1H),7.04(td,J=8.4,2.8Hz,1H),1.61−1.62(m,4H),1.27(s,3H),1.25(s,3H),1.23(s,3H),1.05(s,3H)
Anal.Calcd for C2826FNOS,C:73.18%,H:5.70%,N:3.05%;Found C:72.92%,H:5.99%,N:2.95%
試験例1:HL−60細胞における細胞分化誘導検定
実施例で製造した各化合物を用いて、単独での細胞分化誘導作用および共存するレチノイドの細胞分化誘導作用に対する効果を検討した。比較および共存させるレチノイドとしてAm80[4−[(5,6,7,8−テトラヒドロ−5,5,8,8−テトラメチル−2−ナフタレニル)カルバモイル]安息香酸を用いた。特開昭61−76440号公報に記載された方法に準じて、前骨髄球性白血病細胞株HL−60を用いて、顆粒球系への分化を形態変化およびニトロブルーテトラゾリウム(NBT)の還元能測定により判定した。以下の表に示した分化した細胞の割合(%)はNBT還元能から算出したものである。結果を表1〜3に示す。試験に供した化合物の構造は下記のとおりである。
Figure 0004121853
Figure 0004121853
Figure 0004121853
Figure 0004121853
産業上の利用可能性
本発明の化合物はレチノイド作用を有する化合物、及びレチノイドの作用を顕著に増強することができる化合物として医薬の有効成分として有用である。Technical field
The present invention relates to a novel compound, and relates to a novel compound that enhances the physiological action of a nuclear receptor ligand typified by retinoic acid or a compound having a retinoic acid-like physiological activity (retinoid).
Background art
Retinoic acid (vitamin A acid) is an active metabolite of vitamin A, such as the action of differentiating immature cells in development into mature cells with unique functions, cell growth promoting action, life sustaining action, etc. It has extremely important physiological effects. Various vitamin A derivatives synthesized so far, for example, benzoic acid derivatives described in JP-A Nos. 61-22047 and 61-76440, and Journal of Medical Chemistry (Journal of Medicinal Chemistry). , 1988, Vol. 31, No. 11, p. 2182) and the like have also been clarified to have similar physiological effects. The above compounds having retinoic acid and retinoic acid-like biological activity are collectively referred to as “retinoids”.
For example, all-trans retinoic acid is a retinoic acid receptor belonging to the nuclear receptor superfamily (Evans, RM, Science, 240, p. 889, 1988) existing in the cell nucleus. RAR) binds as a ligand to control the proliferation / differentiation or cell death of animal cells (Petkovich, M., et al., Nature, 330, pp. 444-450, 1987). ). The above compounds having retinoic acid-like biological activity (for example, 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl) carbamoyl] benzoic acid: Am80, etc.) Has been suggested to bind to RAR and exert physiological activity similarly to retinoic acid (Hashimoto, Y., Cellstruct. Funct., 16, pp. 113-123, 1991; Hashimoto, Y., et al.). al., Biochem. Biophys. Res. Commun., 166, pp. 1300-1307, 1990). These compounds have been found clinically useful for the treatment and prevention of vitamin A deficiency, epithelial keratosis, rheumatism, delayed allergy, bone disease, and leukemia and certain cancers. ing.
Compounds that act antagonistically against such retinoids and attenuate the typical effects of the above retinoids are known (Eyrolls, L., et al., Journal of Medicinal Chemistry, 37 (10), pp. .1508-1517, 1994). However, few substances are known to enhance the action of retinoids such as retinoic acid, although they themselves have no retinoid action or their retinoid action is weak. For example, EP 694,301 A1 suggests that a specific ligand compound for the RXR receptor has an effect of enhancing the action of Am80, which is a specific ligand compound for the RAR-α receptor. JP-A-10-59951 discloses a compound that enhances the action of retinoid.
Disclosure of the invention
The subject of this invention is providing the compound which has the effect | action similar to retinoids, such as retinoic acid, and the compound which enhances the effect | action of a retinoid. More specifically, it is an object of the present invention to provide a compound that itself has a retinoid action and a compound that can significantly enhance the action of a retinoid.
As a result of diligent efforts to solve the above problems, the present inventor has found that the compound represented by the following general formula is useful as a retinoid and has the property of enhancing the action of the retinoid, thereby completing the present invention. It came to do.
That is, according to the present invention, the following formula (I):
Figure 0004121853
[In the formula, R 1 Is a hydrogen atom or C 1-6 Represents an alkyl group; R 2 And R 3 Each independently represents a hydrogen atom or C 1-6 Represents an alkyl group or R 2 And R 3 Together may form a 5- or 6-membered ring with the carbon atoms on the benzene ring to which they are attached (the above ring has one or more C on the ring). 1-4 May have an alkyl group); R 4 , R 5 And R 6 Are independently a hydrogen atom, halogen atom, C 1-6 Alkyl group or halogenated C 1-6 Y represents an alkyl group; Y represents a phenylene group or a pyridinediyl group; X represents —S— or —N (R 7 )-(R 7 Is a hydrogen atom or C 1-6 Z represents C—R; 8 (R 8 Is a hydrogen atom, halogen atom, C 1-6 Alkyl group or halogenated C 1-6 An alkyl group), or N].
(1) A compound wherein Z is N or a salt thereof;
(2) R 1 Is a hydrogen atom or C 1-6 An alkyl group, R 2 And R 3 Together with the carbon atom on the benzene ring to which they are attached, one or more C on the ring 1-4 Forming a 6-membered ring with an alkyl group, R 4 , R 5 And R 6 Or a salt thereof, wherein is a hydrogen atom, Y is a pyridinediyl group, X is —S—, and Z is CH;
(3) R 1 Is a hydrogen atom or C 1-6 An alkyl group, R 2 And R 3 Together with the carbon atom on the benzene ring to which they are attached, one or more C on the ring 1-4 Forming a 6-membered ring with an alkyl group, R 4 And R 6 Is a hydrogen atom and R 5 Is a halogen atom, Y is a phenylene group, and Z is CH or a salt thereof;
(4) R 4 , R 5 , R 6 And R 8 Or a salt thereof, wherein at least two of the groups are groups other than hydrogen atoms; or
(5) R 4 , R 5 , R 6 And R 8 At least one of the groups is halogenated C 1-6 A compound which is an alkyl group or a salt thereof;
Is to provide.
From another point of view, according to the present invention, a pharmaceutical comprising the above compound or a physiologically acceptable salt thereof as an active ingredient, or a retinoid action enhancer comprising the above compound or a physiologically acceptable salt thereof as an active ingredient. And a nuclear receptor ligand action enhancer comprising the above compound or a physiologically acceptable salt thereof as an active ingredient.
From yet another aspect, the present invention provides a method for enhancing the action of a retinoid in the body of a mammal, including a human, the use of the above compound or a physiologically acceptable salt thereof for the manufacture of the above medicament. A method comprising administering an effective amount of the above-mentioned compound or a physiologically acceptable salt thereof to a mammal including a human; a method of enhancing the action of a nuclear receptor ligand in the body of a mammal including a human; A method is provided comprising the step of administering to a mammal, including a human, an effective amount of a compound as described above or a physiologically acceptable salt thereof.
BEST MODE FOR CARRYING OUT THE INVENTION
R 1 Is a hydrogen atom or C 1-6 An alkyl group (having 1 to 6 carbon atoms); In this specification, the alkyl group may be linear, branched, cyclic, or a combination thereof, and the same applies to the alkyl part of a substituent having an alkyl part (such as a halogenated alkyl group). . Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, and a methyl group is preferably used. it can.
R 2 And R 3 Are each independently a hydrogen atom or C 1-6 An alkyl group is shown. As the alkyl group, for example, those exemplified above can be used, and preferably, an ethyl group, an isopropyl group, a tert-butyl group and the like can be used. R 2 And R 3 The substitution position is not particularly limited, and each can be independently substituted at any position. For example, R 2 And R 3 Are respectively para and meta to X, or R 2 And R 3 May be meta and ortho respectively relative to X, or R 2 And R 3 May be in the para position and the meta position with respect to X, respectively.
R 2 And R 3 Together, R 2 And R 3 Can form a 5- or 6-membered ring with two carbon atoms on the benzene ring to which each is attached. The ring formed is one or more C 1-4 It may have an alkyl group, for example, may have 2 to 4 methyl groups, preferably 4 methyl groups. For example, R 2 And R 3 Substituted benzene ring and R 2 And R 3 Thus, a 5,6,7,8-tetrahydronaphthalene ring, a 5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene ring or the like is preferably formed.
R 4 , R 5 And R 6 Are each independently a hydrogen atom, halogen atom, C 1-6 Alkyl group or halogenated C 1-6 An alkyl group is shown. As a halogen atom, any of a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom may be used, but a fluorine atom is preferable. C 1-6 As the alkyl group, for example, those exemplified above can be used, and preferred are a methyl group, an ethyl group and the like. The halogen atom constituting the halogenated alkyl group may be any of a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, but is preferably a fluorine atom or a chlorine atom, and more preferably a fluorine atom. Examples of the halogenated alkyl group include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, a dichlorofluoromethyl group, and a tetrafluoroethyl group.
X is R 7 Substituted nitrogen atom (—NR 7 -) Or a sulfur atom (-S-). R 7 Is a hydrogen atom, C 1-6 An alkyl group is shown. C 1-6 As the alkyl group, those exemplified above can be used, and for example, a methyl group is preferable. The nitrogen or sulfur atom may be N-oxide or sulfoxide, respectively.
Y represents a phenylene group or a pyridinediyl group. For example, any phenylene group such as p-phenylene group, m-phenylene group, o-phenylene group, pyridine-2,4-diyl group, pyridine-2,5-diyl group, pyridine-3,5-diyl group or the like A pyridinediyl group can be used. Preferably, a p-phenylene group or a pyridine-2,5-diyl group can be used. When a pyridine-2,5-diyl group is used, -COOR at the 2-position or 5-position of pyridine 1 The group represented by may be substituted.
The compound of the present invention is represented by the above formula (I):
(1) A compound in which Z is N;
(2) R 1 Is a hydrogen atom or C 1-6 An alkyl group, R 2 And R 3 Together with the carbon atom on the benzene ring to which they are attached, one or more C on the ring 1-4 Forming a 6-membered ring with an alkyl group, R 4 , R 5 And R 6 Wherein Y is a hydrogen atom, Y is a pyridinediyl group, X is —S—, and Z is CH;
(3) R 1 Is a hydrogen atom or C 1-6 An alkyl group, R 2 And R 3 Together with the carbon atom on the benzene ring to which they are attached, one or more C on the ring 1-4 Forming a 6-membered ring with an alkyl group, R 4 And R 6 Is a hydrogen atom and R 5 Wherein Y is a halogen atom, Y is a phenylene group, and Z is CH;
(4) R 4 , R 5 , R 6 And R 8 A compound in which at least two of the groups are groups other than hydrogen atoms; or
(5) R 4 , R 5 , R 6 And R 8 At least one of the groups is halogenated C 1-6 A compound which is an alkyl group;
One of them.
In the compounds (1) to (5) above, R 2 And R 3 Preferably together form a 6-membered ring with the carbon atoms on the benzene ring to which they are attached, and the above ring contains 2-4 C on the ring. 1-4 It preferably has an alkyl group. As the alkyl group present on the ring, a methyl group is preferred. Most preferred is when there are 4 methyl groups on the ring.
In the compound of (1) above, R 4 , R 5 And R 6 Is preferably a hydrogen atom, Y is preferably a phenylene group, and X is preferably -S-.
In the compound (2), Y is preferably a 2,5-pyridinediyl group.
In the compound of the above (3), R 5 Is a fluorine atom, Y is a p-phenylene group, and X is —N (R 7 )-(R 7 Is a hydrogen atom or a methyl group) or -S-.
In the compound of the above (4), R 5 And R 8 Is preferably a group other than a hydrogen atom, more preferably R 4 And R 6 Are both hydrogen atoms or halogen atoms, and R 5 And R 8 Is a group other than a hydrogen atom. R 5 And R 8 Are more preferably halogen atoms, and R 5 And R 8 Is most preferably a fluorine atom. R 5 , R 6 , R 7 And R 8 It is also preferred that all are fluorine atoms.
In the compound (5), Y is preferably a phenylene group and X is preferably -S-. R 4 , R 5 , R 6 And R 8 Of these, at least one group is preferably a trifluoromethyl group. R 5 Is more preferably a trifluoromethyl group, more preferably R 5 Is a trifluoromethyl group and R 4 , R 6 And R 8 Is a hydrogen atom.
The compounds of the present invention may exist as acid addition salts or base addition salts, and salts of the substances are also encompassed within the scope of the present invention. Examples of acid addition salts include mineral acid salts such as hydrochloride or hydrobromide, or organic acid salts such as p-toluenesulfonate, methanesulfonate, oxalate, or tartrate. . Base addition salt is R 1 Is a hydrogen atom, and examples thereof include metal salts such as sodium salt, potassium salt, magnesium salt, and calcium salt, ammonium salts, and organic amine salts such as triethylamine salt and ethanolamine salt.
The compound of the present invention may have one or two or more asymmetric carbons depending on the type of substituent, and pure forms of optical isomers and diastereoisomers based on such asymmetric carbons. In addition to stereoisomers such as, any mixture of stereoisomers, racemates, and the like are included in the scope of the present invention. It goes without saying that any hydrate or solvate of the free compound or the compound in the form of a salt is also included in the scope of the present invention.
Although the manufacturing method of the compound of this invention is not specifically limited, For example, it can manufacture according to the manufacturing method described in Unexamined-Japanese-Patent No. 10-59951. The examples of the present specification describe the methods for producing the compounds of the present invention specifically and in detail, and are used in these methods with reference to the above-mentioned publications and examples of the present specification. Any of the compounds included in the scope of the present invention can be produced by appropriately changing the starting materials, reagents, reaction conditions and the like, and adding appropriate modifications or alterations to these methods as necessary.
The compound of the present invention itself has substantially no retinoid-like action, or a weak or moderate retinoid-like action. However, the compound of the present invention is used as a retinoid such as retinoic acid. When coexisting, physiological activities of retinoids (typically, cell differentiation action, cell growth promoting action, life sustaining action, etc.) are remarkably enhanced. Without being bound to any particular theory, the compounds of the present invention are retinoid receptors (the term “retinoid receptor” as used herein includes the retinoic acid receptors RAR and RXR, such as retinoic acid and the like). Retinoid means one or more of the receptors that can interact with each other.) Retinoid-like physiological activity as an agonist itself, or retinoid physiology Has the effect of enhancing activity. Further, without being bound by any particular theory, when the compound of the present invention itself has a retinoid action, the action is a synergistic action.
Therefore, the compound of the present invention is a compound having the retinoic acid or retinoic acid-like biological activity (for example, 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2). -Naphthalenyl) carbamoyl] benzoic acid: Am80 and the like, and vitamin A deficiency, epithelial keratosis, psoriasis, allergic diseases, immune diseases such as rheumatism, bone diseases, leukemia, diabetes or cancer It can be administered as a medicament for prevention / treatment, or when a retinoid is administered for prevention / treatment of the above-mentioned diseases, the compound of the present invention can be used as an action enhancer of the retinoid.
In addition, the compound of the present invention enhances the action of retinoic acid already present in the living body even when no retinoid is administered for the treatment or prevention of the above-mentioned diseases. It is also possible to administer the inventive compounds themselves. Furthermore, the compound of the present invention has not only the effect of enhancing the action on retinoids, but also the nuclear receptor superfamily (Evans, RM, Science, 240, p. 889, 1988) existing in the nucleus of cells. Vitamin D, a steroid compound that binds to receptors belonging to 3 It can also be used to enhance the action of vitamin D compounds such as, or physiologically active substances such as thyroxine.
The pharmaceutical comprising the compound of the present invention or a physiologically acceptable salt thereof may be administered as it is, but is preferably an oral or parenteral pharmaceutical composition that can be produced by methods well known to those skilled in the art. It is preferable to administer as a product. Moreover, it can mix | blend with the medicine containing retinoids, such as retinoic acid, as an active ingredient, and can also be used as a pharmaceutical composition of the form of what is called a mixture. Examples of the pharmaceutical composition suitable for oral administration include tablets, capsules, powders, fine granules, granules, liquids, and syrups. The pharmaceutical composition suitable for parenteral administration includes Examples include injections, suppositories, inhalants, eye drops, nasal drops, ointments, creams, transdermal absorbents, transmucosal absorbents, patches, and the like. As the active ingredient of the medicament of the present invention, a free form compound or a physiologically acceptable salt thereof, or a hydrate or solvate thereof may be used.
The above pharmaceutical composition can be produced by adding pharmacologically and pharmaceutically acceptable additives. Examples of pharmacologically and pharmaceutically acceptable additives include, for example, excipients, disintegrants or disintegration aids, binders, lubricants, coating agents, dyes, diluents, bases, and dissolution. Examples include agents or solubilizers, isotonic agents, pH adjusters, stabilizers, propellants, and pressure-sensitive adhesives. The active ingredient of the medicament of the present invention includes one or more substances selected from the group consisting of free form compounds and physiologically acceptable salts thereof, and hydrates and solvates thereof. Can be used.
The dosage of the medicament of the present invention is not particularly limited, and when a medicament containing a retinoid such as retinoic acid as an active ingredient is combined with the medicament of the present invention to enhance the action of the retinoid, or a medicament containing a retinoid is used in combination. Without administration, an appropriate dose can be easily selected in any administration method, such as when administering the medicament of the present invention to enhance the action of retinoic acid already present in the living body. For example, in the case of oral administration, it can be used in the range of about 0.01 to 1,000 mg per adult day. When a medicine containing a retinoid as an active ingredient is used in combination with the medicine of the present invention, it is possible to administer the medicine of the present invention during the retinoid administration period or any period before and after.
Example
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the scope of the following examples. In addition, the compound number in an Example respond | corresponds to the compound number in the following scheme.
Example 1: Synthesis of HX900
Figure 0004121853
To a suspension of NaH (351 mg, 8.78 mmol) in dry dimethylformamide (DMF, 25 mL) was added 5,6,7,8-tetrahydro-5,5,8,8 at 0-5 ° C. with salt-ice bath cooling. -A dry DMF (5 mL) solution of tetramethylnaphthalene-2-thiol (compound 1-1: J. Med. Chem., 38, pp. 3163-3173, 1995, 1.935 g, 8.78 mmol) was added dropwise. After gradually warming to room temperature and stirring for 1 hour, a dry DMF (5 mL) solution of 2-chloro-3-nitropyridine (1.325 g, 8.36 mmol) was added dropwise at 0-5 ° C. under cooling with a salt-ice bath. . After gradually warming to room temperature and stirring for 2 hours, the reaction mixture was poured into water and extracted with ethyl acetate. The organic phase is washed with water and brine and MgSO 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 40/1) to obtain Compound 1-2 (2.755 g, 96.2%).
1 H-NMR (CDCl 3 ) Δ 8.52 (dd, 1H, J = 1.8, 4.8 Hz), 8.48 (dd, 1H, J = 1.8, 8.4 Hz), 7.46 (d, 1H, J = 1) .8 Hz), 7.37 (d, 1 H, J = 8.1 Hz), 7.29 (dd, 1 H, J = 1.8, 8.4 Hz), 7.17 (dd, 1 H, J = 4. 5, 8.1 Hz), 1.71 (s, 4H), 1.32 (s, 6H), 1.28 (s, 6H).
Compound 1-2 (2.687 g, 7.85 mmol) was suspended in ethanol (2.6 mL) and water (2.61 mL), and concentrated hydrochloric acid (6.5 mL) was added. Iron powder (2.192 g, 39.25 mmol) was added to the mixture, and the mixture was heated to reflux for 1 hour. After cooling to room temperature, the reaction solution was poured into a mixed solution of NaOH (10.0 g, 250 mmol), dichloromethane (125 mL) and water (250 mL), added with 15 g of celite, stirred and filtered through celite. The aqueous phase of the filtrate is extracted with dichloromethane and the combined organic phases are washed with water and saturated brine and washed with Na. 2 SO 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 3/1) to obtain Compound 1-3 (1.056 g, 43.0%).
1 H-NMR (CDCl 3 ) Δ 8.20 (dd, 1H, J = 1.5, 4.5 Hz), 7.27 (d, 1H, J = 2.4 Hz), 7.19 (d, 1H, J = 8.1 Hz), 7.06 (dd, 1H, J = 4.5, 7.8 Hz), 7.00 (dd, 2H, J = 1.8, 8.1 Hz), 4.20 (brs, 2H), 1.64 (S, 4H), 1.23 (s, 6H), 1.21 (s, 6H).
Compound 1-3 (183 mg, 0.586 mmol) and triethylamine (65.2 mg, 0.645 mmol) were dissolved in dry dichloromethane (5 mL), and terephthalic acid monomethyl chloride (128 mg, 128 mg, at 0-5 ° C. with salt-ice bath cooling). A solution of 0.645 mmol) in dry dichloromethane (2 mL) was added dropwise. The temperature was gradually raised to room temperature and stirred for 15 hours. The reaction mixture was diluted with dichloromethane, washed with water and saturated brine, and washed with MgSO. 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 5/1) to obtain Compound 1-4 (216 mg, 77.7%).
1 H-NMR (CDCl 3 ) Δ 8.84 (brs and dd, 1H + 1H, J = 1.5, 8.4 Hz), 8.38 (dd, 1H, J = 1.5, 4.5 Hz), 8.12 (d, 2H, J = 8.4 Hz), 7.74 (d, 2H, J = 8.7 Hz), 7.35 (dd, 1H, J = 4.5, 8.1 Hz), 7.26 (d, 1H, J = 1.5 Hz), 7.23 (d, 1 H, J = 8.1 Hz), 7.04 (dd, 1 H, J = 1.8, 8.4 Hz), 3.96 (s, 3 H), 1. 63 (s, 4H), 1.21 (s, 6H), 1.15 (s, 6H).
Compound 1-4 (192 mg, 0.405 mmol) was dissolved in dichloromethane (1 mL), polyphosphoric acid (PPA, 4.50 g) was added, and the mixture was heated with stirring at 120 ° C. for 1 hour. Water was added to the reaction solution and extracted with dichloromethane. The organic phase is washed with water and brine and MgSO 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 4/1) to obtain Compound 1-5 (93.4 mg, 50.5%).
1 H-NMR (CDCl 3 ) Δ 8.32 (dd, 1H, J = 1.8, 4.5 Hz), 8.11 (d, 2H, J = 8.7 Hz), 7.90 (d, 2H, J = 8.7 Hz), 7.66 (dd, 1H, J = 1.8, 8.1 Hz), 7.57 (s, 1H), 7.29 (dd, 1H, J = 4.5, 8.4 Hz), 7.08 (S, 1H), 3.96 (s, 3H), 1.66 (s, 4H), 1.31 (s, 3H), 1.28 (s, 3H), 1.15 (s, 3H) , 1.09 (s, 3H).
Compound 1-5 (80.8 mg, 0.175 mmol) was dissolved in tetrahydrofuran (THF, 3 mL) and MeOH (1 mL), 2N NaOH (0.88 mL, 1.76 mL) was added, and the mixture was stirred with heating at room temperature for 2 hr. The reaction mixture was concentrated under reduced pressure, 2N HCl (1 mL) was added to the residue, and the mixture was diluted with water and extracted with ethyl acetate. The organic phase is washed with water and brine and MgSO 4 After drying, the solvent was distilled off under reduced pressure to obtain HX900 (71.0 mg, 91.7%). Recrystallization from toluene gave a purified product. m. p. > 300 ° C.
1 H-NMR (DMSO-d 6 ) Δ 8.31 (dd, 1H, J = 1.5, 4.5 Hz), 8.06 (d, 2H, J = 8.4 Hz), 7.84 (d, 2H, J = 8.4 Hz), 7.77 (dd, 1H, J = 1.5, 8.1 Hz), 7.59 (s, 1H), 7.47 (dd, 1H, J = 4.5, 8.1 Hz), 7.19 (S, 1H), 1.63 (s, 4H), 1.28 (s, 6H), 1.14 (s, 3H), 1.07 (s, 3H).
Example 2: Synthesis of HX901
Figure 0004121853
2-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl) thio] aniline (Compound 2-1: J. Med. Chem., 40, pp. 4222 -4243, 1997, 218 mg, 0.70 mmol) and 5-ethyl-2,5-pyridinedicarboxylate (Nippon Kagaku Zashi, 88, pp. 553-556, 1967, 273 mg, 1.40 mmol) in dry dichloromethane (3 0.5 mL) To the suspension was added 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (269 mg, 1.40 mmol) and stirred at room temperature for 4 hours. The reaction mixture was diluted with dichloromethane, washed with water and saturated brine, and washed with MgSO. 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 5/1) to obtain Compound 2-2 (306 mg, 89.5%).
1 H-NMR (CDCl 3 ) Δ 11.14 (brs, 1H), 9.20 (d, 1H, J = 1.8 Hz), 8.66 (dd, 1H, J = 1.2, 8.1 Hz), 8.46 (dd, 1H, J = 1.8, 8.1 Hz), 8.31 (d, 1H, J = 8.1 Hz), 7.65 (dd, 1H, J = 1.8, 7.5 Hz), 7.43 −7.49 (m, 1H), 7.26-7.27 (m, 1H), 7.13-7.18 (m, 1H), 7.12 (d, 1H, J = 8.4 Hz) 6.95 (dd, 1H, J = 1.8, 8.1 Hz), 4.45 (q, 2H, J = 7.2 Hz), 1.59 (s, 4H), 1.44 (t, 3H, J = 7.2 Hz), 1.16 (s, 6H), 1.12 (s, 6H).
Compound 2-2 (280 mg, 0.572 mmol) was dissolved in dichloromethane (1 mL), PPA (5.28 g) was added, and the mixture was heated with stirring at 120 ° C. for 4 hr. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic phase is washed with water and brine and MgSO 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / methanol / acetic acid = 380/20/1) to obtain HX901 (153 mg, 60.4%). Recrystallization from toluene gave a purified product. m. p. 283 ° C.
1 H-NMR (DMSO-d 6 ) Δ 9.03 (dd, 1H, J = 1.2, 2.1 Hz), 8.51 (dd, 1H, J = 1.2, 8.1 Hz), 8.47 (dd, 1H, J = 2) .1, 8.4 Hz), 7.52 (dd, 1 H, J = 0.9, 7.8 Hz), 7.46 (s, 1 H), 7.37-7.44 (m, 2 H), 7 20-7.26 (m, 1H), 7.15 (s, 4H), 1.61 (s, 4H), 1.26 (s, 6H), 1.13 (s, 3H), 1. 04 (s, 3H).
Example 3: Synthesis of HX902
Figure 0004121853
2-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl) thio] aniline (compounds 2-1 202 mg, 0.65 mmol) and 2-ethyl-2 , 5-pyridinedicarboxylate (Nippon Kagaku Zashi, 88, pp. 553-556, 1967, 253 mg, 1.30 mmol) in dry dichloromethane (3.5 mL) suspension in 1- (3-dimethylaminopropyl hydrochloride) -3-Ethylcarbodiimide (249 mg, 1.30 mmol) was added and stirred at room temperature for 15 hours. The reaction mixture was diluted with dichloromethane, washed with water and saturated brine, and washed with MgSO. 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 4/1) to obtain Compound 3-2 (300 mg, 94.4%).
1 H-NMR (CDCl 3 ) Δ 9.10 (brs, 1H), 9.03 (d, 1H, J = 2.4 Hz), 8.62 (d, 1H, J = 8.4 Hz), 8.15 (d, 1H, J = 7.8 Hz), 7.99 (dd, 1 H, J = 2.4, 8.1 Hz), 7.67 (dd, 1 H, J = 1.5, 7.8 Hz), 7.49-7.55. (M, 1H), 7.22 (dd, 1H, J = 1.5, 7.8 Hz), 7.18 (d, 1H, J = 8.1 Hz), 7.07 (d, 1H, J = 1.8 Hz), 6.81 (dd, 1H, J = 2.1, 8.4 Hz), 4.50 (q, 2H, J = 7.2 Hz), 1.61 (s, 4H), 1. 46 (t, 3H, J = 7.2 Hz), 1.19 (s, 6H), 1.13 (s, 6H).
Compound 3-2 (258 mg, 0.527 mmol) was dissolved in dichloromethane (1 mL), PPA (6.05 g) was added, and the mixture was stirred with heating at 120 ° C. for 4 hr. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic phase is washed with water and brine and MgSO 4 After drying, the solvent was distilled off under reduced pressure. The obtained residue (140 mg) was recrystallized from hexane-ethyl acetate to obtain HX902 (110 mg, 47.2%). m. p. 154-155 ° C.
1 H-NMR (CDCl 3 ) Δ9.07 (dd, 1H, J = 0.9, 2.1 Hz), 8.37 (dd, 1H, J = 2.1, 8.1 Hz), 8.28 (dd, 1H, J = 0) .9, 7.8 Hz), 7.48-7.53 (m, 1H), 7.47 (s, 1H), 7.37-7.38 (m, 2H), 7.14-7.20. (M, 1H), 7.01 (s, 1H), 1.66 (s, 4H), 1.31 (s, 3H), 1.29 (s, 3H), 1.16 (s, 3H) , 1.08 (s, 3H).
Example 4: Synthesis of HX903
Figure 0004121853
1.00 g (3.74 mmol) of 6-bromo-1,2,3,4-tetrahydro-1,1,4,4-tetramethylnaphthalene, 4-fluoro-2-nitroaniline (compound 4-1a) 58 g (3.71 mmol), K 2 CO 3 20 mL of o-xylene was added to 0.57 g (4.12 mmol) and CuI 0.04 g (0.21 mmol), and the mixture was heated to reflux for 9 hours. Xylene was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 15) to obtain Compound 4-2a (1.04 g, 81%).
1 H-NMR (CDCl 3 ) 9.35 (s, 1H), 7.90 (dd, J = 9.2, 2.4 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.14-7. 21 (m, 3H), 7.01 (dd, J = 8.4, 2.4 Hz, 1H), 1.71 (s, 4H), 1.30 (s, 6H), 1.28 (s, 6H)
NaH (60% in oil) 0.18 g (4.5 mmol) was washed with n-hexane, suspended in 3 mL of DMF, cooled in an ice bath, and then 1.04 g (3.03 mmol) of compound 4-2a was added to 30 mL. Dissolved in DMF and added and stirred at room temperature for 30 minutes. CH into this mixture 3 0.4 mL (6.42 mmol) of I was added and stirred for 5 hours. The reaction mixture was poured into ice water, extracted with ethyl acetate, the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure to obtain Compound 4-3a (1.05 g, 98%).
1 H-NMR (CDCl 3 ) 7.57 (dd, J = 7.6, 2.8 Hz, 1H), 7.35 (dd, J = 9.2, 4.8 Hz, 1H), 7.29 (m, 1H), 7. 12 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 2.4 Hz, 1H), 6.51 (dd, J = 8.4, 2.4 Hz, 1H), 3.25 (S, 3H), 1.63 (s, 4H), 1.22 (s, 6H), 1.18 (s, 6H)
Compound 5-3a (1.05 g, 2.98 mmol) was dissolved in ethyl acetate (30 mL), 10% Pd / C (0.1 g) was added, and the mixture was vigorously stirred in a hydrogen atmosphere for 1 hour. The reaction mixture was filtered through celite, and the solvent was removed under reduced pressure. The obtained residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 10) to obtain Compound 4-4a (0.61 g, 63%).
1 H-NMR (CDCl 3 ) 7.11 (d, J = 8.8 Hz, 1H), 6.97 (dd, J = 8.4, 6.0 Hz, 1H), 6.58 (d, J = 2.4 Hz, 1H), 6.50 (dd, J = 10.4, 2.8 Hz, 1H), 6.43 (dd, J = 8.8, 2.4 Hz, 1H), 6.41 (dd, J = 6.0, 2.8 Hz, 1H), 3.95 (brs, 2H), 3.14 (s, 3H), 1.65 (s, 4H), 1.23 (s, 6H), 1.22 (s, 6H) )
0.61 g (1.87 mmol) of compound 4-4a was dissolved in 15 mL of dry benzene, and 1.5 mL of pyridine was added. After cooling in an ice bath, 0.41 g (2.06 mmol) of terephthalic acid monomethyl ester chloride was added, and the mixture was stirred at room temperature for 16 hours. The reaction mixture was poured into 2N HCl and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 4) to obtain Compound 4-5a (0.91 g, quant).
1 H-NMR (CDCl 3 ) 8.58 (brs, 1H), 8.44 (dd, J = 10.8, 2.8 Hz, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.8 Hz, 1H), 7.18 (dd, J = 8.8, 5.6 Hz, 1H), 6.87 (dt, J = 8.0, 3.2 Hz, 1H), 6.65 (d, J = 2.8 Hz, 1H), 6.57 (dd, J = 8.8, 2.8 Hz, 1H), 3.93 ( s, 3H), 3.27 (s, 3H), 1.65 (s, 4H), 1.25 (s, 6H), 1.17 (s, 6H)
0.91 g (1.86 mmol) of compound 4-5a was dissolved in a small amount of dry dichloromethane, 10 g of PPA was added, and the mixture was stirred at 110 ° C. for 1 hour. After cooling, ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 4) to obtain compound 4-6a (0.71 g, 81%).
1 H-NMR (CDCl 3 ) 8.08 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.8 Hz, 2H), 7.01 (dd, J = 9.6, 2.8 Hz, 1H), 6.92 (s, 1H), 6.88 (s, 1H), 6.81-6.69 (m, 2H), 3.95 (s, 3H), 3.23 (s, 3H), 1 .63-1.68 (m, 4H), 1.32 (s, 3H), 1.27 (s, 3H), 1.13 (s, 3H), 1.05 (s, 3H)
Compound 4-6a (0.71 g, 1.50 mmol) was suspended in ethanol (10 mL) and 20% NaOH (2 mL), and the mixture was stirred at room temperature for 5 hours. The reaction mixture was acidified and extracted with ethyl acetate, and the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the obtained residue was recrystallized from ethanol to obtain HX903 (0.62 g, 90%).
1 H-NMR (DMSO-d 6 ) 13.1 (brs, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 6.98-7.09 (m, 4H), 6.86 (s, 1H), 3.19 (s, 3H), 1.59-1.61 (m, 4H), 1.29 (s, 3H), 1.25 (s, 3H) ), 1.10 (s, 3H), 1.01 (s, 3H)
Anal. Calcd for C 29 H 29 FN 2 O 2 , C: 76.29%, H: 6.40%, N: 6.14%; Found C: 76.00%, H: 6.39%, N: 6.02%
Example 5: Synthesis of HX904
6-bromo-1,2,3,4-tetrahydro-1,1,4,4-tetramethylnaphthalene 1.53 g (7.52 mmol), 2,4-difluoro-6-nitroaniline (compound 4-1b) 1.00 g (5.74 mmol), K 2 CO 3 20 mL of o-xylene was added to 0.90 g (6.51 mmol) and 0.055 g (0.29 mmol) of CuI, and the mixture was heated to reflux for 24 hours. Xylene was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 50 → 1: 10) to obtain compound 4-2b (1.82 g, 88%).
1 H-NMR (CDCl 3 ) 8.54 (brs, 1H), 7.75 (ddd, J = 8.4, 3.2, 2.0 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7. 14 (ddd, J = 11.2, 7.6, 3.2 Hz, 1H), 6.88 (dd, J = 2.8, 2.4 Hz, 1H), 6.74 (ddd, J = 8. 4, 2.8, 2.4 Hz, 1H), 1.68 (s, 4H), 1.27 (s, 6H), 1.25 (s, 6H)
NaH (60% in oil) 0.33 g (8.3 mmol) was washed with n-hexane, suspended in 5 mL of DMF, and 1.97 g (5.47 mmol) of compound 4-2b was dissolved in 40 mL of DMF and added. Stir at room temperature for 30 minutes. CH into this mixture 3 I 0.7mL (11.2mmol) was added and it stirred at room temperature for 1 hour. The reaction mixture was poured into ice water, extracted with ethyl acetate, the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 7) to obtain Compound 4-3b (2.04 g, quant).
1 H-NMR (CDCl 3 ) 7.39 (ddd, J = 7.6, 3.2, 2.0 Hz, 1H), 7.18 (ddd, J = 9.6, 8.0, 2.8 Hz, 1H), 7.11 (D, J = 8.8 Hz, 1H), 6.47 (d, J = 2.4 Hz, 1H), 6.41 (dd, J = 8.8, 2.8 Hz, 1H), 3.24 ( s, 3H), 1.63 (s, 4H), 1.22 (s, 6H), 1.18 (s, 6H)
Compound 4-3b (2.04 g, 5.44 mmol) was dissolved in ethyl acetate (30 mL), 10% Pd / C (0.8 g) was added, and the mixture was vigorously stirred in a hydrogen atmosphere for 13 hours. The reaction mixture was filtered through celite, and the solvent was distilled off under reduced pressure to give compound 4-4b (1.19 g, 63%).
1 H-NMR (CDCl 3 ) 7.12 (d, J = 8.8 Hz, 1H), 6.56 (d, J = 2.8 Hz, 1H), 6.41 (dd, J = 8.8, 2.8 Hz, 1H), 6.28 (ddd, J = 10.0, 2.8, 1.6 Hz, 1H), 6.23 (ddd, J = 10.4, 9.2, 2.8 Hz, 1H), 4.10 ( brs, 2H), 3.18 (s, 3H), 1.65 (s, 4H), 1.23 (s, 12H)
1.19 g (3.45 mmol) of compound 4-4b was dissolved in 15 mL of dry benzene, and 1.5 mL of pyridine was added. After cooling in an ice bath, 0.75 g (3.77 mmol) of terephthalic acid monomethyl ester chloride was added, and the mixture was stirred at room temperature for 14 hours. The reaction mixture was poured into 2N HCl and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 7 → 1: 4) to obtain compound 4-5b (1.66 g, 95%). .
1 H-NMR (CDCl 3 ) 8.58 (brs, 1H), 8.30 (ddd, J = 10.8, 2.4, 2.0 Hz, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7. 46 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 1H), 6.70 (ddd, J = 10.8, 8.8, 2.8 Hz, 1H) , 6.62 (d, J = 2.8 Hz, 1H), 6.53 (dd, J = 8.4, 2.8 Hz, 1H), 3.93 (s, 3H), 3.29 (s, 3H), 1.65 (s, 4H), 1.25 (s, 6H), 1.18 (s, 6H)
1.66 g (3.27 mmol) of compound 4-5b was dissolved in a small amount of dry dichloromethane, 15 g of PPA was added, and the mixture was stirred at 110 ° C. for 2 hours. After cooling, ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 7) to give compound 4-6b (1.15 g, 72%).
1 H-NMR (CDCl 3 ) 8.08 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.11 (s, 1H), 6.87 (s, 1H), 6 .82 (ddd, J = 9.2, 2.8, 1.6 Hz, 1H), 6.64 (ddd, J = 11.6, 8.0, 2.8 Hz, 1H), 3.95 (s , 3H), 3.37 (d, J = 4.8 Hz, 3H), 1.64-1.72 (m, 4H), 1.33 (s, 3H), 1.30 (s, 3H), 1.13 (s, 3H), 1.06 (s, 3H)
Compound 4-6b (0.88 g, 1.80 mmol) was suspended in ethanol (15 mL) and 20% NaOH (3 mL), and the mixture was stirred at room temperature for 5 hours. The reaction mixture was acidified and extracted with ethyl acetate, and the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was recrystallized from ethanol to obtain HX904 (0.81 g, 95%).
1 H-NMR (DMSO-d 6 13.1 (brs, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.23 (s, 1H), 7 .08 (ddd, J = 11.6, 8.8, 3.2 Hz, 1H), 6.92 (dd, J = 9.6, 1.6 Hz, 1H), 6.89 (s, 1H), 3.33 (d, J = 5.2 Hz, 3H), 1.60-1.62 (m, 4H), 1.30 (s, 3H), 1.27 (s, 3H), 1.11 ( s, 3H), 1.01 (s, 3H)
Anal. Calcd for C 29 H 28 F 2 N 2 O 2 , C: 73.40%, H: 5.95%, N: 5.90%; Found C: 73.27%, H: 6.11%, N: 5.87%
Example 6: Synthesis of HX905
Figure 0004121853
5,6,7,8-Tetrahydro-5,5,8,8-tetramethylnaphthalene-2-thiol 0.50 g (2.27 mmol) was dissolved in 10 ml of dry benzene, cooled in an ice bath, tert- 0.27 g (2.41 mmol) of butoxy potassium was added, and the mixture was stirred at room temperature for 10 minutes. The mixture was cooled in an ice bath, 0.51 g (2.26 mmol) of 4-chloro-3-nitrobenzotrifluoride (Compound 5-1a) was added, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was poured into ice water, neutralized, and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 50 → 1: 30) to obtain Compound 5-2a (0.90 g, 97%).
1 H-NMR (CDCl 3 ) 8.51 (d, J = 0.8 Hz, 1H), 7.56 (dd, J− = 8.8, 2.0 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H) , 7.44 (d, J = 8.0 Hz, 1H), 7.28 (dd, J = 8.0, 2.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H), 1.73 (s, 4H), 1.33 (s, 6H), 1.28 (s, 6H)
Compound 5-2a (0.90 g, 2.19 mmol) was suspended in water (3 mL) and ethanol (15 mL), and concentrated hydrochloric acid (0.8 mL) was added. To this mixture, 0.9 g of iron powder was added and heated to reflux for 1 hour. After cooling, the reaction mixture was filtered through celite, and the filtrate was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 10) to obtain Compound 5-3a (0.54 g, 65%).
1 H-NMR (CDCl 3 ) 7.46 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 2.8 Hz, 1H), 6.96 ( m, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.82 (dd, J = 8.4, 2.0 Hz, 1H), 4.42 (brs, 2H), 1. 65 (s, 4H), 1.23 (s, 6H), 1.22 (s, 6H)
Compound 5-3a (0.54 g, 1.42 mmol) was dissolved in dry benzene (10 mL), and pyridine (1.0 mL) was added. To this was added 0.31 g (1.56 mmol) of terephthalic acid monomethyl ester chloride, and the mixture was stirred at room temperature for 14 hours. The reaction mixture was poured into 2N HCl and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 7) to obtain Compound 5-4a (0.64 g, 84%).
1 H-NMR (CDCl 3 ) 8.97 (brs, 1H), 8.95 (s, 1H), 8.08 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7 .67 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 2.0 Hz, 1H), 6.88 (dd, J = 8.0, 2.0 Hz, 1H), 3.95 (s, 3H), 1.63 (s, 4H), 1.22 ( s, 6H), 1.16 (s, 6H)
0.64 g (1.18 mmol) of compound 5-4a was dissolved in a small amount of dry dichloromethane, 10 g of PPA was added, and the mixture was stirred at 110 ° C. for 8 hours. After cooling, ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 10) to obtain compound 5-5a (0.22 g, 36%).
1 H-NMR (CDCl 3 ) 8.11 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 1.2 Hz, 1H), 7.57 ( d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.33 (dd, J = 8.0, 2.0 Hz, 1H), 7.05 (s, 1H), 3. 96 (s, 3H), 1.64-1.65 (m, 4H), 1.31 (s, 3H), 1.29 (s, 3H), 1.15 (s, 3H), 1.08 (S, 3H)
Compound 5-5a (0.22 g, 0.42 mmol) was suspended in ethanol (10 mL) and 2N NaOH (2 mL), and the mixture was stirred at room temperature for 16 hours. The reaction mixture was acidified and extracted with ethyl acetate, and the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the obtained residue was recrystallized from methanol to obtain HX905 (0.10 g, 47%).
1 H-NMR (DMSO-d 6 ) 13.2 (brs, 1H), 8.05 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8. 0 Hz, 1 H), 7.66 (s, 1 H), 7.54 (s, 1 H), 7.51 (d, J = 8.0 Hz, 1 H), 7.14 (s, 1 H), 1.61 (Brs, 4H), 1.27 (s, 3H), 1.25 (s, 3H), 1.13 (s, 3H), 1.04 (s, 3H)
Anal. Calcd for C 29 H 26 F 3 NO 2 S, C: 68.35%, H: 5.14%, N: 2.75%; Found C: 68.54%, H: 5.09%, N: 2.77%
Example 7: Synthesis of HX906
NaH (60% in oil) 0.12 g (3.0 mmol) was washed with n-hexane, suspended in 5 mL of dry benzene, cooled in an ice bath, and then 5,6,7,8-tetrahydro-5,5, 8,8-Tetramethylnaphthalene-2-thiol 0.52 g (2.36 mmol) was dissolved in 5 mL of dry benzene and added, and the mixture was stirred at room temperature for 15 minutes. To this mixture, 0.50 g (2.35 mmol) of pentafluoronitrobenzene (compound 5-1b) was dissolved in 3 mL of dry benzene, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was poured into ice water, neutralized, and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (n-hexane) to obtain Compound 5-2b (0.53 g, 55%).
1 H-NMR (CDCl 3 ) 7.46 (d, J = 1.6 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.17 (dd, J = 8.4, 2.0 Hz, 1H), 1.66 (s, 4H), 1.26 (s, 6H), 1.24 (s, 6H)
0.81 g (1.96 mmol) of compound 5-2b was suspended in 15 mL of ethanol, and 3 mL of 2N hydrochloric acid was added. To this mixture, 0.9 g of iron powder was added and heated to reflux for 1 hour. After cooling, the reaction mixture was filtered through celite and the filtrate was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 7) to give compound 5-3b (0.69 g, 92%).
1 H-NMR (CDCl 3 ) 7.19 (d, J = 2.0 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 6.93 (dd, J = 8.4, 2.0 Hz, 1H), 4.52 (brs, 2H), 1.64 (s, 4H), 1.22 (s, 12H)
0.69 g (1.80 mmol) of compound 5-3b was dissolved in 15 mL of dry benzene, and 1.5 mL of pyridine was added. To this was added 0.39 g (1.96 mmol) of terephthalic acid monomethyl ester chloride, and the mixture was stirred at room temperature for 14 hours and then heated to reflux for 2 hours. The reaction mixture was poured into 2N HCl and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 4) to obtain compound 5-4b as a crude product.
1 H-NMR (CDCl 3 ) 8.09 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.78 (s, 1H), 7.14 (d, J = 8. 4 Hz, 1 H), 7.14 (d, J = 2.4 Hz, 1 H), 6.83 (dd, J = 8.4, 2.4 Hz, 1 H), 3.96 (s, 3 H), 1. 61 (s, 4H), 1.20 (s, 6H), 1.10 (s, 6H)
The crude product 5-4b was dissolved in a small amount of dry dichloromethane, 10 g of PPA was added, and the mixture was stirred at 110 ° C. for 14 hours. After cooling, ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was crystallized from methanol to obtain Compound 5-5b (0.61 g, 65% [2 steps]).
1 H-NMR (DMSO-d 6 ) 8.09 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.8 Hz, 2H), 7.58 (s, 1H), 7.21 (s, 1H), 3 .89 (s, 3H), 1.62 (s, 4H), 1.28 (s, 3H), 1.26 (s, 3H), 1.13 (s, 3H), 1.06 (s, 3H)
Compound 5-5b (0.61 g, 1.15 mmol) was suspended in ethanol (20 mL) and 2N NaOH (5 mL), and the mixture was stirred at room temperature for 16 hours. The reaction mixture was acidified and extracted with ethyl acetate, and the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was recrystallized from methanol to obtain HX906 (0.50 g, 83%).
1 H-NMR (DMSO-d 6 13.2 (brs, 1H), 8.06 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.58 (s, 1H), 7 .21 (s, 1H), 1.62 (s, 4H), 1.28 (s, 3H), 1.26 (s, 3H), 1.14 (s, 3H), 1.07 (s, 3H)
Anal. Calcd for C 28 H 23 F 4 NO 2 S, C: 65.49%, H: 4.51%, N: 2.73%; Found C: 65.24%, H: 4.63%, N: 2.62%
Example 8: Synthesis of HX907
0.56 g (2.27 mmol) of 5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalene-2-thiol was dissolved in 20 mL of dry benzene, cooled in an ice bath, and tert-butoxy. Potassium (0.28 g, 2.50 mmol) was added, and the mixture was stirred at room temperature for 15 minutes. The mixture was cooled in an ice bath, 0.60 g (2.25 mmol) of 5-fluoro-2-iodonitrobenzene (Compound 5-1c) was added, and the mixture was stirred at room temperature for 5 hours. The reaction mixture was poured into ice water, neutralized, and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 20) to obtain Compound 5-2c (0.57 g, 70%).
1 H-NMR (CDCl 3 ) 7.95 (dd, J = 8.4, 2.8 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.27 (dd, J = 8.0, 2.0 Hz, 1H), 7.12 (ddd, J = 9.2, 7.2, 2.8 Hz, 1H), 6.88 (dd, J = 9.2, 5.6 Hz, 1H), 1.72 (s, 4H), 1.32 (s, 6H), 1.27 (s, 6H)
0.56 g (1.57 mmol) of compound 5-2c was dissolved in 10 mL of ethanol, 3 mL of 2N hydrochloric acid and 0.5 g of iron powder were added, and the mixture was heated to reflux for 2 hours. After cooling, the reaction mixture was filtered through celite, and the filtrate was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 20) to obtain Compound 5-3c (0.37 g, 72%).
1 H-NMR (CDCl 3 ) 7.41 (dd, J = 8.4, 6.4 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 6.74 (dd, J = 8.4, 2.0 Hz, 1H), 6.48 (dd, J = 10.8, 2.8 Hz, 1H), 6.45 (td, J = 8.4, 2.4 Hz, 1H), 4.40 (brs, 2H), 1.64 (s, 4H), 1.22 (s, 6H), 1.20 (s, 6H)
0.37 g (1.13 mmol) of compound 5-3c was dissolved in 10 mL of dry benzene, and 1 mL of pyridine was added. To this was added 0.25 g (1.26 mmol) of terephthalic acid monomethyl ester chloride, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was poured into 2N hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 5) to obtain Compound 5-4c (0.49 g, 88%).
1 H-NMR (CDCl 3 ) 9.12 (brs, 1H), 8.52 (dd, J = 10.8, 2.8 Hz, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.65 (dd, J = 8.8, 6.4 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 6.90 (td, J = 8.0, 2.8 Hz, 1H), 6.80 (dd, J = 8.4, 2.4 Hz, 1H), 3.95 ( s, 3H), 1.62 (s, 4H), 1.20 (s, 6H), 1.14 (s, 6H)
0.45 g (0.99 mmol) of compound 5-4c was dissolved in 2 mL of dry dichloromethane, 10 g of PPA was added, and the mixture was stirred at 110 ° C. for 8 hours. After cooling, ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel chromatography (ethyl acetate: n-hexane = 1: 5) to obtain compound 5-5c (0.34 g, 72%).
1 H-NMR (CDCl 3 ) 8.07 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.8 Hz, 2H), 7.41 (s, 1H), 7.40 (dd, J = 8. 8, 5.6 Hz, 1 H), 7.04 (dd, J = 10.0, 2.8 Hz, 1 H), 7.01 (s, 1 H), 6.81 (td, J = 8.0, 2 .8 Hz, 1H), 3.94 (s, 3H), 1.63-1.67 (m, 4H), 1.29 (s, 3H), 1.27 (s, 3H), 1.13 ( s, 3H), 1.06 (s, 3H)
Compound 5-5c (0.34 g, 0.72 mmol) was suspended in ethanol (10 mL) and 2N NaOH (1.5 mL), and the mixture was stirred at room temperature for 16 hours. The reaction mixture was acidified and extracted with ethyl acetate, and the organic layer was washed with water and saturated brine, and anhydrous Na 2 SO 4 And dried. The solvent was distilled off under reduced pressure, and the obtained residue was recrystallized from ethyl acetate / n-hexane to obtain Compound HX907 (0.23 g, 71%).
1 H-NMR (DMSO-d 6 ) 13.1 (brs, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.4 Hz, 2H), 7.52 (dd, J = 8. 4, 6.4 Hz, 1 H), 7.51 (s, 1 H), 7.19 (dd, J = 10.0, 2.8 Hz, 1 H), 7.12 (s, 1 H), 7.04 ( td, J = 8.4, 2.8 Hz, 1H), 1.61-1.62 (m, 4H), 1.27 (s, 3H), 1.25 (s, 3H), 1.23 ( s, 3H), 1.05 (s, 3H)
Anal. Calcd for C 28 H 26 FNO 2 S, C: 73.18%, H: 5.70%, N: 3.05%; Found C: 72.92%, H: 5.99%, N: 2.95%
Test Example 1: Cell differentiation induction assay in HL-60 cells
Using each of the compounds produced in the examples, the effects of the cell differentiation inducing action alone and the coexisting retinoids on the cell differentiation inducing action were examined. Am80 [4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl) carbamoyl] benzoic acid was used as a retinoid to be compared and coexisted. According to the method described in JP-A-61-76440, the promyelocytic leukemia cell line HL-60 is used to differentiate into granulocytes and to reduce nitroblue tetrazolium (NBT). Judged by measurement. The proportion (%) of differentiated cells shown in the table below is calculated from the NBT reducing ability. The results are shown in Tables 1-3. The structure of the compound subjected to the test is as follows.
Figure 0004121853
Figure 0004121853
Figure 0004121853
Figure 0004121853
Industrial applicability
The compound of the present invention is useful as an active ingredient of a medicine as a compound having a retinoid action and a compound capable of remarkably enhancing the action of a retinoid.

Claims (1)

下記の式(I’):
Figure 0004121853
(式中、Yはp-フェニレン基又はピリジン-2,5-ジイル基を示し、R4、R5、及びR6はそれぞれ独立に水素原子、フッ素原子、又はトリフルオロメチル基を示し、ZはC-R8 (R8は水素原子又はフッ素原子を示す)又はNを示す。ただしZがNである場合にはR4、R5、及びR6は水素原子を示す)で表される化合物又はその塩。
Formula (I ′) below:
Figure 0004121853
(Wherein Y represents a p-phenylene group or a pyridine-2,5-diyl group, R 4 , R 5 and R 6 each independently represents a hydrogen atom, a fluorine atom or a trifluoromethyl group; Represents CR 8 (R 8 represents a hydrogen atom or a fluorine atom) or N. However, when Z is N, R 4 , R 5 , and R 6 represent a hydrogen atom) or Its salt.
JP2002556194A 2001-01-12 2002-01-10 Retinoid agonist Expired - Fee Related JP4121853B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001004992 2001-01-12
JP2001004992 2001-01-12
PCT/JP2002/000081 WO2002055525A1 (en) 2001-01-12 2002-01-10 Retinoid agonists

Publications (2)

Publication Number Publication Date
JPWO2002055525A1 JPWO2002055525A1 (en) 2004-05-13
JP4121853B2 true JP4121853B2 (en) 2008-07-23

Family

ID=18873095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002556194A Expired - Fee Related JP4121853B2 (en) 2001-01-12 2002-01-10 Retinoid agonist

Country Status (2)

Country Link
JP (1) JP4121853B2 (en)
WO (1) WO2002055525A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0308335D0 (en) * 2003-04-10 2003-05-14 Novartis Ag Organic compounds
JP2011162472A (en) * 2010-02-09 2011-08-25 Nippon Soda Co Ltd Nitrogen-containing heterocyclic compound or salt thereof, and germicide for agriculture and horticulture
CN102807574B (en) * 2011-05-30 2015-09-02 长春吉大天元化学技术股份有限公司 New pyridine sulphur nitrogen seven-membered ring derivative as antitumor drug, and its preparation method and application
CN103626761B (en) * 2012-08-24 2015-07-29 上海医药工业研究院 Benazepine compound and the application as antitumor drug thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3865829B2 (en) * 1995-09-21 2007-01-10 株式会社医薬分子設計研究所 Retinoid action potentiating compound

Also Published As

Publication number Publication date
WO2002055525A1 (en) 2002-07-18
JPWO2002055525A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4398585B2 (en) Retinoid receptor agonist
JP4691619B2 (en) Lexinoid compounds having an alkoxy group
JP4929472B2 (en) Carboxylic acid derivatives, methods for producing them, and agents containing them as active ingredients
KR100483442B1 (en) Aryl or heteroarylamides of tetrahydronaphtharene, chroman, thiochroman and 1,2,3,4-tetrahydrquinolinecarboxylic acid with retinoid-type physiological activity
EA002123B1 (en) Compounds potentiating retinoids
KR100450498B1 (en) Substituted arylheteroarylamides having retinoid physiological activity
JP4378597B2 (en) Carboxylic acid derivative compounds and agents containing them as active ingredients
JP5340745B2 (en) Anthranilamides / 2-amino-heteroarenecarboxamide derivatives
JPH10338658A (en) Retinoid action controller
JP4693247B2 (en) Heterocyclic carboxylic acid derivatives
JP3865829B2 (en) Retinoid action potentiating compound
JPH11263761A (en) New naphthalene compound, its production, and medicine composition containing the same compound
JP4121853B2 (en) Retinoid agonist
JP4005160B2 (en) Retinoid antagonist
KR20030077558A (en) Tropolone derivative
JP6758374B2 (en) Antitumor compounds targeting IDH2 mutations and how to use them
JPH0859458A (en) Therapeutic agent for hyperlipemia containing indane derivative
JPH09100270A (en) Retinoid antagosnist
JP2000273076A (en) Retinoid agonist
TW200927709A (en) Tricyclic amine compound
JP2953817B2 (en) Benzoic acid derivatives
CN101747327B (en) Aromatic amide thiazole derivative, preparation method and application thereof
JP2010202576A (en) Retinoid x receptor function regulator
CA2031027A1 (en) Substituted benzothiazolinones, preparation process thereof and pharmaceutical compositions containing the same
JPH10237050A (en) Retinoid compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees