JP4121814B2 - Hygroscopic exothermic fiber and method for producing the same - Google Patents

Hygroscopic exothermic fiber and method for producing the same Download PDF

Info

Publication number
JP4121814B2
JP4121814B2 JP2002280252A JP2002280252A JP4121814B2 JP 4121814 B2 JP4121814 B2 JP 4121814B2 JP 2002280252 A JP2002280252 A JP 2002280252A JP 2002280252 A JP2002280252 A JP 2002280252A JP 4121814 B2 JP4121814 B2 JP 4121814B2
Authority
JP
Japan
Prior art keywords
fiber
hygroscopic exothermic
graft polymerization
treatment
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002280252A
Other languages
Japanese (ja)
Other versions
JP2004115952A (en
Inventor
克美 坂本
金吾 田中
康宏 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2002280252A priority Critical patent/JP4121814B2/en
Publication of JP2004115952A publication Critical patent/JP2004115952A/en
Application granted granted Critical
Publication of JP4121814B2 publication Critical patent/JP4121814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充分な耐久性があり、染色された場合においても充分な耐光堅牢度をもつ吸湿発熱性繊維およびその製造方法に関するものである。
【0002】
【従来技術】
空気中の水蒸気や水を繊維内部に吸収することにより発熱をする吸湿発熱性を有する繊維としては、従来より羊毛、アクリロニトリル系繊維等が知られている。一方、ポリエステル、ポリアミド等の合成繊維は多くの優れた特性を有しているため、衣料や工業的用途に広く利用されている。しかしながら、これら合成繊維の多くは疎水性であるため吸湿性が極めて小さく、そのため発熱量も低く、羊毛、アクリロニトリル系繊維と比べて保温性に劣るものである。
【0003】
疎水性合成繊維を改質し吸湿性を与える方法としては、アクリル酸やメタクリル酸等の親水性ビニルモノマーを繊維にグラフト重合させる方法がある。(例えば、特許文献1−4参照。)
しかし、これらの方法で得られたグラフト物は、吸湿性が充分でないこと、また、衣料での用途を考えると繰り返し洗濯されることが前提となるが、その度に吸湿性の低下が著しく、耐久性に乏しいという問題もある。
【0004】
吸湿性を高めるためには、親水性ビニルモノマーのグラフト重合率を上げればよいが、このような高グラフト重合率のものを染色した場合、耐光堅牢度が極めて悪くなってしまうという新たな問題も生じる。
【0005】
【特許文献1】
特開昭54−99428号公報
【特許文献2】
特開昭63−196768号公報
【特許文献3】
特開2000−54262号公報
【特許文献4】
特開2000−226766号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記の如き従来技術の問題点を解決し、充分な耐久性があり、染色された場合においても充分な耐光堅牢度をもつ吸湿発熱性繊維の製造方法を提供せんとするものである。
【0007】
【課題を解決するための手段】
本発明の製造方法は、上記課題を解決するために次の構成を有する。
すなわち、(1)親水性ビニルモノマーがグラフト重合率5〜10%の割合で繊維にグラフト重合され、繊維表面が一般式〔1〕で示されるジグリシジルエチレングリコールで被覆されている吸湿発熱性繊維に存する。
【0008】
そして、(2)さらに赤外線吸収剤を含有している吸湿発熱性繊維に存する。
【0009】
そしてまた、(3)親水性ビニルモノマーをグラフト重合率5〜10%の割合で繊維にグラフト重合させた後、必要に応じて染色処理された後、一般式〔1〕で示されるジグリシジルエチレングリコールを含む処理液で処理される吸湿発熱性繊維の製造方法に存する。
【0010】
そしてまた、(4)一般式〔1〕で示されるジグリシジルエチレングリコールを含む処理液に、さらに赤外線吸収剤を含有させる吸湿発熱性繊維の製造方法に存する。
【0011】
【発明の実施の形態】
本発明に用いうる繊維材料としては、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル系繊維、ポリエステルに第3成分を共重合したポリエステル系繊維、ナイロン6やナイロン66等のポリアミド系繊維、ポリアミドに第3成分を共重合したポリアミド系繊維、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維、ポリアクリロニトリルを主成分とするアクリル系繊維、ポリ塩化ビニル系繊維、セルロース系繊維、タンパク質系繊維、等が挙げられ、これらの混紡、交織および交編した素材も含まれる。なかでも本発明は、ポリエステル系繊維、ポリアミド系繊維等の疎水性合成繊維を改質し吸湿発熱性繊維を製造する場合において好ましく用いられる。また、繊維の形態としては、フィラメント、ステープル、わた、トウ、織物、編物、不織布、等如何なる形態であってもよいが、作業性の面からは布帛類がよい。
【0012】
本発明においてはまず、前記したような繊維に親水性ビニルモノマーをグラフト重合させる。本発明に用いる親水性ビニルモノマーとしては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸、ブテントリカルボン酸等のエチレン性不飽和有機酸が例示され、これらを単独もしくは2種類以上用いてもよい。なかでも重合効率、コストの点からアクリル酸もしくはメタクリル酸が好ましい。
【0013】
また、好ましいグラフト重合率は5〜10%であり、グラフト重合率が5%より低いと吸湿発熱性の向上があまりみられず、10%より高いと繊維強度や耐光堅牢度の低下を招くおそれがある。
【0014】
該親水性ビニルモノマーを繊維にグラフト重合させる方法としては、従来公知の何れの方法を用いてもよく特に限定されない。一例を挙げると、液流染色機などを用いて、親水性ビニルモノマーを含む処理液中に繊維を浸漬し、50〜170℃で5〜180分処理すればよい。このとき使用されるグラフト重合触媒としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化ベンゾイル等が例示できる。また、処理中の雰囲気を窒素ガス雰囲気で処理を行うと、効率よく重合させることができるので好ましい。
【0015】
このような方法により親水性ビニルモノマーをグラフト重合させた繊維は、必要に応じて染色処理される。尚、染色処理については繊維の素材に応じて通常の手法で行えばよい。
また、染色処理後にグラフト重合処理をすることも可能であるが、グラフト重合時に発生するラジカルが染料を分解するおそれがあるため、グラフト重合処理は染色処理前に行う方がよい。
【0016】
本発明においては、親水性ビニルモノマーをグラフト重合させた繊維(必要に応じて染色された後)に、ジグリシジルエチレングリコールを付与する。
親水性ビニルモノマーをグラフト重合させた繊維の表面に、ジグリシジルエチレングリコールの親水性被膜を形成することにより、充分な耐久性のある吸湿発熱性繊維を製造することが出来る。
【0017】
本発明に使用するジグリシジルエチレングリコールであるが、下記一般式〔1〕で示されるエポキシ化合物であり、式中のnは1〜30の整数で、好ましくは2〜15である。ここでnが1未満では水に対する溶解性が低下するばかりでなく、十分な吸湿性を得ることが困難である。一方、nが30を越えると反応性に乏しく、耐久性も低下してしまう。
【0018】
【化2】

Figure 0004121814
【0019】
ジグリシジルエチレングリコールの繊維に対する付与量は、1〜20重量%であり、好ましくは2〜10重量%である。1重量%未満では、望まれる吸湿性能が得られない。また20重量%を超えると、風合いが硬くなり、且つ、使用濃度に見合った効果が得られなく、コスト高になり好ましくない。尚、本発明のジグリシジルエチレングリコールを反応させる触媒として、酸性触媒、塩基性触媒、アミン触媒等を使用しても良い。
【0020】
ジグリシジルエチレングリコールの繊維への付与方法としては、従来公知の何れの方法を用いてよく、浸漬法では、室温静置法や加熱撹拌法等、パディング法では、パッド・ロール法、パッド・ドライ法、パッド・ドライ・キュア法、パッド・スチーム法等が挙げられる。なかでも生産性を考えた場合、パッド・ドライ法、パッド・ドライ・キュア法が好ましい。例えば、繊維にジグリシジルエチレングリコールを含む溶液をパッドし、直ちに乾燥後、乾熱処理を行う。乾燥と乾熱処理を一工程で行っても良い。乾燥は風乾でもよいが、通常50〜120℃で1〜30分行う。乾熱処理は通常80℃以上、好ましくは100〜220℃で1〜20分間行う。また乾燥後、低温で時間をかけ反応をさせても良い。
【0021】
本発明において繊維へのジグリシジルエチレングリコールの付与処理は、染色処理を行う場合においては染色処理後におこなう。染色処理前に付与してしまうと、繊維表面に被覆されたジグリシジルエチレングリコールの被膜が、染色性を妨げてしまうためである。
【0022】
さらに、本発明の吸湿発熱性繊維に赤外線吸収剤を付与することがより好ましい。赤外線吸収剤を付与することによって、太陽光等の赤外線を吸収し繊維内部の温度を上昇させることができる。また上昇した温度を長時間維持でき、保温性も高められる。
【0023】
赤外線吸収剤としては、金属酸化物系微粒子、カーボンブラック、有機化合物の赤外線吸収色素等を挙げることができる。なかでも金属酸化物系微粒子は、赤外線吸収能と赤外線反射能を合わせ持つものが多く、具体的には、アンチモンドープ酸化錫やスズドープ酸化インジュームなどを用いることが好ましい。また、このような金属酸化物系微粒子は、可視光線を透過する透明な材料でもあり、色相に変化を与えない点でも好ましい。
【0024】
赤外線吸収剤の繊維に対する付与量としては、0.01重量%以上、10重量%以下である。赤外線吸収剤を繊維に付与する手段としては、特に限定はなく、本発明の吸湿発熱繊維に、更にバインダー樹脂を用いて赤外線吸収剤を付着させてもよいし、ジグリシジルエチレングリコールの処理溶液中に赤外線吸収剤を配合して同時に処理してもよい。
【0025】
【実施例】
本発明を更に詳しく説明するために以下に実施例を挙げるが、本発明は何等これらの実施例に限定されるものではない。なお、実施例における評価方法は以下の方法にて行った。
【0026】
(1)洗濯耐久性
JIS−L−0217−103法による繰り返し洗濯試験にて20回洗濯する。
【0027】
(2)グラフト重合率
グラフト重合率は、反応前の繊維の絶乾重量(W0)からグラフト重合し、洗浄した後の絶乾重量(W1)への重量増加率から計算した。
グラフト重合率(%)=(W1−W0)×100/W0
【0028】
(3)吸湿発熱性
▲1▼試料を二つ折りにした状態の中に、温度センサーを挿入し、20℃、20%RHの環境下で試料の水分率が平衡状態になるまで調湿を行う。
▲2▼十分に調湿した試料を20℃、90%RHの環境下に放置し、一定時間ごとに試料の温度を測定する。
▲3▼吸湿発熱温度上昇の値を、20℃との差として記録する。
吸湿発熱温度=(20℃、90%RH環境下での最高温度)−20℃
【0029】
(4)耐光堅牢度
JIS−L−0842(カーボンアーク灯光に対する染色堅牢度試験方法)に準拠した方法で実施した。測定機器は耐光堅牢度測定機(密閉式紫外線フェードメーター、スガ試験機株式会社製)を使用した。耐光3級照射、耐光4級照射を実施、退色させ、グレースケール基準で評価した。
【0030】
〔実施例1〕生地重量が200g/mであるポリエステル100%からなる編物を液流染色機を用いて窒素ガス雰囲気下、下記処方にて、浴比を1:20として105℃で1時間グラフト重合処理を行った。
Figure 0004121814
グラフト重合処理後、炭酸ナトリウム0.2重量%の水溶液にて80℃で20分間洗浄し、グラフト重合繊維布帛を得た。
【0031】
次に下記処方により、浴比1:20で、温度条件130℃で60分間染色を行った。
Figure 0004121814
染色後、ハイドロサルファイトを0.1重量%、炭酸ナトリウムを0.1重量%に調整し、浴比1:20、温度条件80℃で10分間、還元洗浄を行った。
【0032】
そして、染色されたグラフト重合繊維布帛を下記処方の処理液に浸漬し、ジグリシジルエチレングリコールの付与を行った。
Figure 0004121814
そして、絞り率100%で圧搾後、110℃で3分間乾燥する。次いで150℃で5分間乾熱処理を行った。更に、50℃の温水で10分間洗浄、乾燥して本発明の吸湿発熱性繊維を得た。
【0033】
〔実施例2〕実施例1のグラフト重合処理において、メタクリル酸を2重量%とし、ジグリシジルエチレングリコールの付与工程において、処理液にさらに赤外線吸収剤としてアンチモンドープ酸化錫水分散体(微粒子径50nm以下、固形分10%)を3重量%加えた以外は、実施例1と同様に処理を行い、本発明の吸湿発熱性繊維を得た。
【0034】
〔比較例1〕実施例1において染色処理のみ行い、グラフト重合処理及びジグリシジルエチレングリコールの付与は行わなかった。
【0035】
〔比較例2〕グラフト重合処理において、メタクリル酸を2重量%とし、ジグリシジルエチレングリコールの付与は行わなかった以外は、実施例1と同様に処理を行った。
【0036】
〔比較例3〕グラフト重合処理において、メタクリル酸を4重量%とし、ジグリシジルエチレングリコールの付与は行わなかった以外は、実施例1と同様に処理を行った。
【0037】
上記実施例および比較例で得られた繊維について、各評価項目について評価を行った。この結果を表1に示す。
【0038】
【表1】
Figure 0004121814
【0039】
表の実施例1と比較例2を比較すると、実施例1は比較例2のおおよそ半分のグラフト重合率であるが、洗濯0回の吸湿発熱性についてはほぼ同じ数値であり、このことから繊維表面を被覆しているジグリシジルエチレングリコールが繊維の吸湿発熱性に寄与していることがわかる。また、実施例1、2の洗濯0回と洗濯20回の吸湿発熱性の比較からジグリシジルエチレングリコールを付与するにより耐久性も向上している。
【0040】
また、実施例の耐光堅牢度の結果より、本発明の吸湿発熱性繊維は高い吸湿発熱性を持ちつつ耐光堅牢度にも優れていることがわかる。
【0041】
【発明の効果】
本発明の吸湿発熱性繊維は繊維表面にジグリシジルエチレングリコールが被覆されているため、高い吸湿発熱性を達成しており、かつ耐久性にも優れている。また、本発明の吸湿発熱性繊維が染色された場合においても、これまで問題とされてきた耐光堅牢度にも優れている。そのため、例えば、スポーツウェアーやインナーなどの衣料分野において好適に利用できる吸湿発熱性繊維を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hygroscopic exothermic fiber having sufficient durability and sufficient light fastness even when dyed, and a method for producing the same.
[0002]
[Prior art]
Conventionally, wool, acrylonitrile fiber, and the like have been known as hygroscopic exothermic fibers that generate heat by absorbing water vapor or water in the air. On the other hand, synthetic fibers such as polyester and polyamide are widely used in clothing and industrial applications because they have many excellent properties. However, since many of these synthetic fibers are hydrophobic, their hygroscopicity is extremely low, and therefore their calorific value is low, which is inferior in heat retention compared to wool and acrylonitrile fibers.
[0003]
As a method for modifying the hydrophobic synthetic fiber to impart hygroscopicity, there is a method in which a hydrophilic vinyl monomer such as acrylic acid or methacrylic acid is grafted onto the fiber. (For example, see Patent Documents 1-4.)
However, the graft product obtained by these methods is not sufficiently hygroscopic, and it is premised on repeated washing considering the use in clothing, but the hygroscopic decrease is significant each time, There is also a problem of poor durability.
[0004]
In order to increase the hygroscopicity, it is sufficient to increase the graft polymerization rate of the hydrophilic vinyl monomer, but there is also a new problem that the light fastness is extremely deteriorated when dyed with such a high graft polymerization rate. Arise.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 54-99428 [Patent Document 2]
JP 63-196768 [Patent Document 3]
JP 2000-54262 A [Patent Document 4]
Japanese Patent Laid-Open No. 2000-226766 [0006]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and provides a method for producing a hygroscopic exothermic fiber having sufficient durability and sufficient light fastness even when dyed. is there.
[0007]
[Means for Solving the Problems]
The manufacturing method of the present invention has the following configuration in order to solve the above problems.
That is, (1) a hygroscopic exothermic fiber in which a hydrophilic vinyl monomer is graft-polymerized to a fiber at a graft polymerization rate of 5 to 10%, and the fiber surface is coated with diglycidylethylene glycol represented by the general formula [1] Exist.
[0008]
And (2) it exists in the hygroscopic exothermic fiber which contains the infrared absorber further.
[0009]
And (3) after carrying out the graft polymerization of the hydrophilic vinyl monomer to the fiber in the ratio of 5-10% of graft polymerization ratio, after being dyed as needed, diglycidyl ethylene shown by General formula [1] The present invention resides in a method for producing a hygroscopic exothermic fiber treated with a treatment liquid containing glycol.
[0010]
And (4) it exists in the manufacturing method of the hygroscopic exothermic fiber which makes the process liquid containing the diglycidyl ethylene glycol shown by General formula [1] contain an infrared absorber further.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the fiber material that can be used in the present invention include polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, polyester fibers obtained by copolymerizing a third component with polyester, polyamide fibers such as nylon 6 and nylon 66, and third fibers such as polyamide. Examples include polyamide fibers copolymerized with components, polyolefin fibers such as polyethylene and polypropylene, acrylic fibers mainly composed of polyacrylonitrile, polyvinyl chloride fibers, cellulose fibers, protein fibers, and the like. Also included are blended, woven and knitted materials. Among these, the present invention is preferably used in the case of producing a hygroscopic exothermic fiber by modifying a hydrophobic synthetic fiber such as a polyester fiber or a polyamide fiber. The form of the fiber may be any form such as filament, staple, cotton, tow, woven fabric, knitted fabric, non-woven fabric, etc., but from the viewpoint of workability, fabrics are preferable.
[0012]
In the present invention, first, a hydrophilic vinyl monomer is graft-polymerized on the fibers as described above. Examples of the hydrophilic vinyl monomer used in the present invention include ethylenically unsaturated organic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, crotonic acid, butenetricarboxylic acid, and these may be used alone or in combination of two or more. Also good. Of these, acrylic acid or methacrylic acid is preferred in view of polymerization efficiency and cost.
[0013]
Further, the preferred graft polymerization rate is 5 to 10%, and if the graft polymerization rate is lower than 5%, the moisture absorption heat generation is not improved so much, and if it is higher than 10%, the fiber strength and light fastness may be lowered. There is.
[0014]
The method for graft polymerizing the hydrophilic vinyl monomer onto the fiber is not particularly limited, and any conventionally known method may be used. For example, the fibers may be immersed in a treatment liquid containing a hydrophilic vinyl monomer using a liquid dyeing machine or the like and treated at 50 to 170 ° C. for 5 to 180 minutes. Examples of the graft polymerization catalyst used at this time include potassium persulfate, ammonium persulfate, sodium persulfate, and benzoyl peroxide. Further, it is preferable to perform the treatment in a nitrogen gas atmosphere as the atmosphere during the treatment because the polymerization can be efficiently performed.
[0015]
A fiber obtained by graft polymerization of a hydrophilic vinyl monomer by such a method is dyed as necessary. The dyeing process may be performed by a normal method according to the fiber material.
It is also possible to carry out a graft polymerization treatment after the dyeing treatment, but it is better to carry out the graft polymerization treatment before the dyeing treatment because radicals generated during the graft polymerization may decompose the dye.
[0016]
In the present invention, diglycidyl ethylene glycol is imparted to a fiber (after dyeing if necessary) obtained by graft polymerization of a hydrophilic vinyl monomer.
By forming a hydrophilic film of diglycidyl ethylene glycol on the surface of the fiber graft-polymerized with the hydrophilic vinyl monomer, a sufficiently durable hygroscopic exothermic fiber can be produced.
[0017]
Although it is diglycidyl ethylene glycol used for this invention, it is an epoxy compound shown by following General formula [1], n in a formula is an integer of 1-30, Preferably it is 2-15. Here, when n is less than 1, not only the solubility in water is lowered, but also it is difficult to obtain sufficient hygroscopicity. On the other hand, when n exceeds 30, the reactivity is poor and the durability is also lowered.
[0018]
[Chemical 2]
Figure 0004121814
[0019]
The amount of diglycidyl ethylene glycol applied to the fiber is 1 to 20% by weight, preferably 2 to 10% by weight. If it is less than 1% by weight, the desired moisture absorption performance cannot be obtained. On the other hand, if it exceeds 20% by weight, the texture becomes hard and an effect commensurate with the use concentration cannot be obtained, resulting in an increase in cost. In addition, you may use an acidic catalyst, a basic catalyst, an amine catalyst, etc. as a catalyst with which the diglycidyl ethylene glycol of this invention is made to react.
[0020]
As a method for applying diglycidyl ethylene glycol to the fiber, any conventionally known method may be used. In the dipping method, a room temperature standing method or a heating and stirring method, etc., in the padding method, the pad-roll method, the pad dry method, etc. Method, pad dry cure method, pad steam method and the like. Of these, the pad / dry method and the pad / dry cure method are preferable in view of productivity. For example, a solution containing diglycidylethylene glycol is padded on the fiber, and immediately after drying, dry heat treatment is performed. Drying and dry heat treatment may be performed in one step. The drying may be air drying, but is usually performed at 50 to 120 ° C. for 1 to 30 minutes. The dry heat treatment is usually performed at 80 ° C. or higher, preferably 100 to 220 ° C. for 1 to 20 minutes. Further, after drying, the reaction may be carried out at a low temperature for a long time.
[0021]
In the present invention, the treatment for applying diglycidylethylene glycol to the fiber is performed after the dyeing treatment when the dyeing treatment is performed. This is because if it is applied before the dyeing treatment, the coating of diglycidylethylene glycol coated on the fiber surface hinders dyeability.
[0022]
Furthermore, it is more preferable to add an infrared absorbent to the hygroscopic exothermic fiber of the present invention. By applying an infrared absorber, infrared rays such as sunlight can be absorbed to increase the temperature inside the fiber. Further, the elevated temperature can be maintained for a long time, and the heat retaining property is also improved.
[0023]
Examples of infrared absorbers include metal oxide fine particles, carbon black, and infrared absorbing dyes of organic compounds. Among them, many metal oxide fine particles have both infrared absorption ability and infrared reflection ability, and specifically, it is preferable to use antimony-doped tin oxide or tin-doped indium oxide. Such metal oxide fine particles are also a transparent material that transmits visible light, and are preferable in that they do not change the hue.
[0024]
The amount of the infrared absorbent applied to the fiber is 0.01% by weight or more and 10% by weight or less. The means for applying the infrared absorbent to the fiber is not particularly limited, and the hygroscopic exothermic fiber of the present invention may be further attached with an infrared absorbent using a binder resin, or in a treatment solution of diglycidyl ethylene glycol. Infrared absorbers may be blended in and simultaneously processed.
[0025]
【Example】
In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to these examples. In addition, the evaluation method in an Example was performed with the following method.
[0026]
(1) Washing durability Washed 20 times in a repeated washing test according to JIS-L-0217-103.
[0027]
(2) Graft polymerization rate The graft polymerization rate was calculated from the rate of weight increase from the absolute dry weight (W0) of the fiber before the reaction to the absolute dry weight (W1) after the graft polymerization and washing.
Graft polymerization rate (%) = (W1-W0) × 100 / W0
[0028]
(3) Moisture absorption exothermicity (1) Insert a temperature sensor into the sample folded in two, and adjust the humidity until the moisture content of the sample reaches equilibrium in an environment of 20 ° C and 20% RH. .
(2) A sufficiently humidified sample is left in an environment of 20 ° C. and 90% RH, and the temperature of the sample is measured at regular intervals.
(3) Record the value of the temperature rise in hygroscopic heat generation as the difference from 20 ° C.
Moisture absorption exothermic temperature = (20 ° C., maximum temperature in 90% RH environment) −20 ° C.
[0029]
(4) Light fastness It was carried out by a method based on JIS-L-0842 (Testing method for dyeing fastness to carbon arc lamp light). As the measuring instrument, a light fastness measuring machine (sealed ultraviolet fade meter, manufactured by Suga Test Instruments Co., Ltd.) was used. Light class 3 irradiation and light class 4 irradiation were performed, faded, and evaluated on a gray scale basis.
[0030]
[Example 1] A knitted fabric made of 100% polyester having a fabric weight of 200 g / m 2 was used in a nitrogen gas atmosphere with a liquid dyeing machine under the following prescription and a bath ratio of 1:20 at 105 ° C for 1 hour. A graft polymerization treatment was performed.
Figure 0004121814
After the graft polymerization treatment, it was washed with an aqueous solution of 0.2% by weight of sodium carbonate at 80 ° C. for 20 minutes to obtain a graft polymerized fiber fabric.
[0031]
Next, dyeing was performed for 60 minutes at a temperature condition of 130 ° C. with a bath ratio of 1:20 according to the following formulation.
Figure 0004121814
After dyeing, hydrosulfite was adjusted to 0.1% by weight and sodium carbonate to 0.1% by weight, and reduction washing was performed at a bath ratio of 1:20 and a temperature condition of 80 ° C. for 10 minutes.
[0032]
And the dyed graft polymerization fiber fabric was immersed in the processing liquid of the following prescription, and diglycidyl ethylene glycol was provided.
Figure 0004121814
And after squeezing with a squeeze rate of 100%, it is dried at 110 ° C. for 3 minutes. Next, a dry heat treatment was performed at 150 ° C. for 5 minutes. Further, it was washed with warm water at 50 ° C. for 10 minutes and dried to obtain a hygroscopic exothermic fiber of the present invention.
[0033]
[Example 2] In the graft polymerization treatment of Example 1, methacrylic acid was 2% by weight, and in the step of applying diglycidylethylene glycol, an antimony-doped tin oxide aqueous dispersion (fine particle diameter 50 nm) was further added to the treatment liquid as an infrared absorber. Hereinafter, the treatment was performed in the same manner as in Example 1 except that 3% by weight of solid content was added to obtain a hygroscopic exothermic fiber of the present invention.
[0034]
[Comparative Example 1] In Example 1, only the dyeing process was performed, and the graft polymerization process and the application of diglycidylethylene glycol were not performed.
[0035]
[Comparative Example 2] In the graft polymerization treatment, the treatment was performed in the same manner as in Example 1 except that methacrylic acid was 2% by weight and diglycidyl ethylene glycol was not applied.
[0036]
[Comparative Example 3] In the graft polymerization treatment, the treatment was performed in the same manner as in Example 1 except that methacrylic acid was 4 wt% and diglycidyl ethylene glycol was not applied.
[0037]
For the fibers obtained in the above Examples and Comparative Examples, each evaluation item was evaluated. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004121814
[0039]
Comparing Example 1 and Comparative Example 2 in the table, Example 1 has a graft polymerization rate approximately half that of Comparative Example 2, but the moisture absorption exothermic property of 0 times of washing is almost the same value. It can be seen that the diglycidyl ethylene glycol covering the surface contributes to the moisture absorption exothermic property of the fiber. Moreover, durability was also improved by providing diglycidyl ethylene glycol from the comparison of the moisture absorption exothermic property of the washing | cleaning 0 times and washing 20 times of Example 1,2.
[0040]
Moreover, it can be seen from the results of the light fastness of the Examples that the moisture-absorbing and heat-generating fibers of the present invention have high moisture absorption and heat-generating properties while also having excellent light-fastness.
[0041]
【The invention's effect】
Since the hygroscopic exothermic fiber of the present invention is coated with diglycidyl ethylene glycol on the fiber surface, it achieves high hygroscopic exothermic properties and is excellent in durability. Further, even when the hygroscopic exothermic fiber of the present invention is dyed, the light fastness, which has been a problem until now, is also excellent. Therefore, for example, a hygroscopic exothermic fiber that can be suitably used in the clothing field such as sportswear and inner can be provided.

Claims (4)

親水性ビニルモノマーがグラフト重合率5〜10%の割合で繊維にグラフト重合され、繊維表面が一般式〔1〕で示されるジグリシジルエチレングリコールで被覆されていることを特徴とする吸湿発熱性繊維。
Figure 0004121814
A hygroscopic exothermic fiber characterized in that a hydrophilic vinyl monomer is graft-polymerized to a fiber at a graft polymerization rate of 5 to 10%, and the fiber surface is coated with diglycidylethylene glycol represented by the general formula [1] .
Figure 0004121814
さらに赤外線吸収剤を含有していることを特徴とする請求項1記載の吸湿発熱性繊維。The hygroscopic exothermic fiber according to claim 1, further comprising an infrared absorber. 親水性ビニルモノマーをグラフト重合率5〜10%の割合で繊維にグラフト重合させた後、必要に応じて染色処理された後、請求項1で規定する一般式〔1〕で示されるジグリシジルエチレングリコールを含む処理液で処理されることを特徴とする吸湿発熱性繊維の製造方法。A hydrophilic vinyl monomer is graft-polymerized to a fiber at a graft polymerization rate of 5 to 10%, and after being dyed as necessary, diglycidylethylene represented by the general formula [1] defined in claim 1 A method for producing a hygroscopic exothermic fiber, which is treated with a treatment liquid containing glycol. 請求項1で規定する一般式〔1〕で示されるジグリシジルエチレングリコールを含む処理液に、さらに赤外線吸収剤を含有させることを特徴とする請求項3記載の吸湿発熱性繊維の製造方法。The method for producing a hygroscopic exothermic fiber according to claim 3, wherein the treatment liquid containing the diglycidyl ethylene glycol represented by the general formula [1] defined in claim 1 further contains an infrared absorber.
JP2002280252A 2002-09-26 2002-09-26 Hygroscopic exothermic fiber and method for producing the same Expired - Fee Related JP4121814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280252A JP4121814B2 (en) 2002-09-26 2002-09-26 Hygroscopic exothermic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280252A JP4121814B2 (en) 2002-09-26 2002-09-26 Hygroscopic exothermic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004115952A JP2004115952A (en) 2004-04-15
JP4121814B2 true JP4121814B2 (en) 2008-07-23

Family

ID=32274998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280252A Expired - Fee Related JP4121814B2 (en) 2002-09-26 2002-09-26 Hygroscopic exothermic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4121814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101791890B1 (en) 2016-03-18 2017-11-01 한국타이어 주식회사 Rubber composition with heating textile and tire using the same

Also Published As

Publication number Publication date
JP2004115952A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7427300B2 (en) Hydrophilic finish for fibrous substrates
JP5285017B2 (en) Deodorant cellulose fiber structure, production method thereof, and deodorant cellulose fiber product using the deodorant cellulose fiber structure
JP2002348780A (en) Hygroscopic and exothermic cellulose-based fiber
JP3341984B2 (en) Heat retaining heating fabric
JPH04222276A (en) Method for flame-retarding organic fiber substrate
JPH06313271A (en) Method for antistaining cellulose textile
JP4121814B2 (en) Hygroscopic exothermic fiber and method for producing the same
JP2006070421A (en) Method for dyeing cross-linked acrylate fiber and textile product comprising cross-linked acrylate fiber dyed with the method
TWI292451B (en) Cross-linking and dyeing cellusose fibres
JP5254757B2 (en) Cloth
US3423163A (en) Cellulosic textile fibers bearing grafted n-methylol amide
WO2003097925A1 (en) Hydrophilic finish for fibrous substrates
JPH04108164A (en) Modification of polyester fiber
TW593429B (en) Process for improving characteristics of a polyamide
JP5254756B2 (en) Cloth
CN1756870A (en) Deodorant fiber structure and method for production thereof
WO1992006239A1 (en) Improvements in and relating to conductive fibres
JP2898623B1 (en) Hygroscopic heat-generating cellulose fiber and method for producing the same
US3583855A (en) Modification of keratinic fibers with ethylenically unsaturated compounds
JP2013064211A (en) Fabric with pollen release property and method for producing the same
JP4338574B2 (en) Colored moisture absorbing / releasing exothermic fiber and method for producing the same
WO2003093567A1 (en) Hydrophilic finish for fibrous substrates
Vu Surface Modification of Meta–aramid To Enhance Dyeing
JPH05163673A (en) Flame-proof finishing of fibers
CN103726323A (en) Durable antistatic terylene textile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees