JP4121400B2 - Latex composition for immunoassay - Google Patents

Latex composition for immunoassay Download PDF

Info

Publication number
JP4121400B2
JP4121400B2 JP2003064436A JP2003064436A JP4121400B2 JP 4121400 B2 JP4121400 B2 JP 4121400B2 JP 2003064436 A JP2003064436 A JP 2003064436A JP 2003064436 A JP2003064436 A JP 2003064436A JP 4121400 B2 JP4121400 B2 JP 4121400B2
Authority
JP
Japan
Prior art keywords
antibody
antigen
latex
composition
glycinamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003064436A
Other languages
Japanese (ja)
Other versions
JP2004271416A (en
Inventor
昭策 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Seiken Co Ltd
Original Assignee
Denka Seiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Seiken Co Ltd filed Critical Denka Seiken Co Ltd
Priority to JP2003064436A priority Critical patent/JP4121400B2/en
Publication of JP2004271416A publication Critical patent/JP2004271416A/en
Application granted granted Critical
Publication of JP4121400B2 publication Critical patent/JP4121400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

【0001】
【発明の属する技術分野】
検体中の抗原又は抗体を測定する免疫測定法として、ラテックス粒子を用いたラテックス凝集法、ラテックス粒子を用いたフロースルー免疫測定法並びにラテラルフロー免疫測定法等が実用化されている。ラテックス凝集法は測定すべき抗原又は抗体に対応する抗体又は抗原をその表面に吸着させたラテックス粒子が用いられる。このようなラテックス粒子は緩衝液等の媒体中に浮遊され、これに検体が加えられる。検体中の抗原又は抗体と、これと対応するラテックス表面上の抗体又は抗原とが抗原抗体反応を起こし結合する。検体中の抗原又は抗体は、抗原抗体反応部位を通常複数有するので検体中の抗原又は抗体を介してラテックス粒子が架橋され凝集する。この凝集の程度は、検体中の測定すべき抗原又は抗体の量に比例するので、この凝集の程度を見ることによって検体中の抗原又は抗体を測定することができる。通常、凝集の程度は検体と対応する抗体又は抗原を結合させたラテックス粒子浮遊液との混合物を肉眼的に観察して測定、また、分光光度計などの専用の分析機器によって測光することにより、簡単に行うことができる。これらの方法は、測定方法が簡単で感度が高く、一般的に広く用いられている。
【0002】
ラテックス凝集法に用いられる抗体又は抗原が表面に結合されたラテックス粒子は、ラテックス粒子の自然凝集を防止する目的の水溶性化合物とpH緩衝能を有する水溶性化合物とを溶解した水溶液に浮遊された状態で保存される。すなわち、媒体としての緩衝液に更に自然凝集防止剤を添加した状態で用いられている。自然凝集を防止する化合物としては1分子内にアミノ基を2個以上有するアミノ酸(特公平6−17911号公報)、塩化コリン、多価アルコール等が用いられている。他方、媒体としての緩衝液はグリシン緩衝液、リン酸緩衝液、トリス緩衝液等が用いられている。さらに、塩濃度調整のために塩化ナトリウム、安定剤としてウシ血清アルブミン、ゼラチン、サッカロース等が適宜添加される。
【0003】
このように自然凝集を防止する化合物と緩衝能を保つための化合物をそれぞれ使用しているため、そのぶん試薬組成が複雑となり、また比重や粘度が上昇するため検出感度に影響を及ぼす等の欠点があった。
【0004】
【特許文献1】
特公平6−17911号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、優れた自然凝集防止効果を発揮する、新規な自然凝集防止剤を含む免疫測定用ラテックス組成物を提供することである。また、本発明の目的は、緩衝剤を別途用いなくてもpH緩衝能を有する免疫測定用ラテックス組成物を提供することである。
【0006】
【課題を解決するための手段】
本願発明者は、鋭意研究の結果、グリシンアミドが、免疫測定用ラテックス粒子の自然凝集を効果的に防止することができることを見出し、本発明を完成した。また、本願発明者は、上記グリシンアミドに加え、さらに塩基性の金属水酸化物を加えることにより、組成物がpH緩衝能を獲得し、別途緩衝剤を添加しなくてもpHをほぼ一定に保持することができることを見出した。
【0007】
すなわち、本発明は、抗体若しくはその抗原結合性断片又は抗原を結合させたラテックス粒子と、これを浮遊させる媒体とを含む免疫測定用ラテックス組成物において、グリシンアミドを組成物全量に対し0.8ないし4.5Mの濃度で含有することを特徴とするラテックス組成物を提供する。また、本発明は、上記本発明のラテックス組成物において、塩基性の金属水酸化物をさらに含み、pH緩衝能を有するラテックス組成物をも提供する。
【0008】
【発明の実施の形態】
この発明のラテックス組成物は、表面に抗体若しくはその抗原結合性断片又は抗原が結合されたラテックス粒子と、該ラテックス粒子を浮遊させる媒体とを含むラテックス組成物に、ラテックス粒子の自然凝集防止の目的でグリシンアミドを含有させたものである。なお、ここで、「抗原結合性断片」とは、抗体のF(ab)断片やF(ab')2断片等のように、対応抗原と抗原抗体反応可能な断片である。これらの抗体断片も抗体と同様に用いられている。この発明の組成物中のラテックス粒子、これに吸着される抗体若しくはその抗原結合性断片又は抗原、及び、これを浮遊させる媒体並びにそれらの組成物中のグリシンアミド以外の含量はこの発明にとって何ら特徴的なものではなく、従来から用いられているいずれのものをも用いることができる。従って、これらの説明は省略する。
【0009】
この発明に用いられるグリシンアミドは、分子式がHNCHCONHで表される化合物であり、酸付加塩(例えば塩酸塩)のような塩の形態にあってもよい。この発明の組成物に含まれるグリシンアミドの濃度は、0.8ないし4.5Mであり、好ましくは0.8ないし3Mである。グリシンアミドの濃度が低過ぎると組成物を長期間保存した場合、自然凝集が生じるため、この組成物を用いて測定を行うと正確な測定結果を得ることができない。一方、グリシンアミドの濃度が高過ぎると測定感度が低下する。また、グリシンアミドの濃度が4.6Mを超えるとグリシンアミドの結晶が生じ正確な測定に支障をきたす。
【0010】
グリシンアミドに加え、さらに、塩基性の金属水酸化物を添加することにより、組成物にpH緩衝能が付与され、別途緩衝剤を用いる必要がなくなるので、有利である。塩基性の金属水酸化物としては、特に限定されないが、アルカリ金属水酸化物が好ましく、特に水酸化ナトリウムが好ましい。塩基性の金属水酸化物の添加濃度は、組成物が所望のpHを達成する濃度が好ましく、通常、組成物が弱塩基性になる濃度、好ましくは組成物のpHが約7.4〜9.0になる濃度である。なお、グリシンアミド及び塩基性の金属水酸化物を含む本発明のラテックス組成物は、別途緩衝剤を添加しなくても実用上支障のないpH緩衝作用を発揮するが、測定に悪影響が生じない範囲で別途緩衝剤を添加して用いることも可能である。
【0011】
この発明のラテックス組成物の使用方法は、従来のラテックス組成物の使用方法と全く同じである。すなわち、検体と組成物とを混合し、反応させ、それによって生じるラテックス粒子の凝集の程度を、肉眼的に観察して測定、あるいは専用の分析機器を用いて測光することによって測定するのである。より具体的な測定法としては平板を用いて行うスライド法、マイクロプレートを用いて行うプレート法、専用分析機器を用いて行う自動分析法が例として挙げられる。更には着色ラテックスを用いたフロースルー免疫測定法、ラテラルフロー免疫測定法等も例として上げられるが、これらに限定されることなく、抗体若しくはその抗原結合性断片又は抗原を固定化したラテックス粒子を用いる免疫測定法に広く使用され得るものである。
【0012】
【実施例】
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
【0013】
実施例1
抗ヒト免疫グロブリンE抗体(マウスモノクロ−ナル抗体、デンカ生研製)を粒径0.266μmのラテックス粒子(積水化学製)に結合させ、グリシンアミド塩酸塩(アルドリッチケミカル製)0.5〜4.5M、pH7.6となる量の水酸化ナトリウム、塩化ナトリウム 0.1M、ウシ血清アルブミン 0.1w/v%、アジ化ナトリウム0.085w/v%を含む水溶液にラテックス粒子の濃度が0.12w/v%になるように浮遊させた。これらの浮遊液を4〜8℃で長期間保存した。長期間保存における自然凝集・沈殿の有無を肉眼的に観察した。グリシンアミド 0.6M以下では90日間の内に自然凝集・沈殿が認められたが、0.7Mでは90日間、0.8Mでは360日間、0.9M以上では540日間保存しても自然凝集・沈殿はまったく認められず、ラテックス粒子は均一に分散していた。その結果を下記表1に示す。
【0014】
【表1】
表1 自然凝集・沈殿の有無

Figure 0004121400
−;自然凝集・沈殿なし
+;自然凝集・沈殿あり
【0015】
実施例2
実施例1と同様にして、粒径0.266μmのラテックス粒子に抗ヒト免疫グロブリンE抗体(マウスモノクロ−ナル抗体)を結合させ、グリシンアミド塩酸塩 1.5M、pH7.6となる量の水酸化ナトリウム、塩化ナトリウム 0.1M、ウシ血清アルブミン 0.1w/v%、アジ化ナトリウム 0.085w/v%を含む水溶液にラテックス粒子の濃度が0.12w/v%になるように浮遊させた。グリシンアミドの存在により測定精度が落ちないことを示すために以下の実験を行った。
【0016】
種々の濃度既知ヒト免疫グロブリンEの生理食塩水溶液3μLに、塩化ナトリウム 0.1Mを含む0.17M グリシン緩衝液(pH7.6)200μL、抗ヒト免疫グロブリンE抗体(マウスモノクロ−ナル抗体)を結合させた粒径0.266μmのラテックス粒子浮遊液(0.12w/v%)100μLを加え、37℃で反応させ,吸光度変化率を波長572nmで測定して検量線を作成し、次いで,検体として種々の未知濃度のヒト免疫グロブリンEを含むヒト血清を用いて上記と同様な操作を行い検量線から検体中のヒト免疫グロブリンE濃度を求めた。上記の操作工程は自動化学分析装置(東芝TBA−30R)を用いて行った。
【0017】
一方、従来から広く用いられているラテックス凝集法試薬を用いて同検体について測定を行い、上記の発明の方法により得られた結果と比較した。上記2法による測定値の相関図を図1に示す。
【0018】
この相関図の相関係数は0.9967、回帰式はy=0.9992x−4.141であり,上記2法による測定値がほぼ完全に一致していることがわかる。すなわち、本発明の組成物を用いた場合、グリシンアミドの存在により測定精度に悪影響がおよぼされないことが明らかである。
【0019】
実施例3
定性法として用いられているスライド凝集法で実験を行った。粒径0.3μmのラテックス粒子(積水化学製)に抗病原大腸菌O157抗体(マウスモノクロ−ナル抗体、デンカ生研製)を結合させ、グリシンアミド塩酸塩 1.8M、pH8.0となる量の水酸化ナトリウム、塩化ナトリウム 0.1M、ウシ血清アルブミン 0.2w/v%、アジ化ナトリウム 0.085w/v%を含む水溶液にラテックス粒子の濃度が0.5w/v%になるように浮遊させた。試験用抗原として、病原大腸菌O157の菌体懸濁液を100℃、10分間加熱処理した後、2000G、5分間遠心して、この上清を用いた。菌体を含まないものを陰性対照とした。
【0020】
試験法
スライド凝集試験用板に抗原50μLを乗せ、次に抗体結合ラテックス粒子浮遊液25μLを加えて室温で3分間緩やかに撹拌し、凝集の有無を肉眼で観察した。一方、従来から広く用いられているスライドラテックス凝集法試薬を用いて同検体について測定を行い、上記の発明の方法により得られた結果と比較した。その結果を下記表2に示す。
【0021】
【表2】
表2
Figure 0004121400
判定基準
+++ : 強い凝集が見られるもの
− : 凝集が見られないもの
【0022】
表2に示されるように、本発明の組成物を用いた場合、グリシンアミドの存在により測定精度に悪影響がおよぼされないことが明らかである。
【0023】
実施例4
フロースルー免疫測定法で実験を行った。粒径0.290μmの青色ラテックス粒子(CM/BL、セラダイン製)に抗A型インフルエンザウイルス抗体(マウスモノクロ−ナル抗体、デンカ生研製)を共有結合させ、グリシンアミド塩酸塩 1.5M、pH8.0となる量の水酸化ナトリウム、塩化ナトリウム 0.2M、ウシ血清アルブミン 0.2w/v%、アジ化ナトリウム 0.085w/v% を含む水溶液にラテックス粒子の濃度が0.01w/v%になるように浮遊させた。
【0024】
デバイス
ニトロセルロース膜(AE100、ポアサイズ12μm、S&S製)上に直径約4mmになる量の抗A型インフルエンザウイルス抗体(マウスモノクロ−ナル抗体;上記と別のクローン、デンカ生研製)液を滴下して、減圧下で良く乾燥させて抗体を固相化した。この膜を厚手の濾紙の上に重ねてフロースルー免疫測定用容器に組み込んでデバイスを作製した。
【0025】
測定
検体としてA型インフルエンザウイルス抗原、B型インフルエンザウイルス抗原をそれぞれ用いた。インフルエンザウイルス抗原をウシ血清アルブミン 3w/v%並びにポリオキシエチレン(20)ソルビタンモノラウレート 2w/v%に加えた50mM トリス緩衝液、pH8.0で10倍希釈した。希釈したインフルエンザウイルス抗原500μLに抗A型インフルエンザウイルス抗体結合ラテックス粒子浮遊液500μLを加えて良く混ぜて全量をデバイスのサンプルウエルに入れた。判定は10分後に下記の方法で行った。
【0026】
判定および結果
判定は抗A型インフルエンザウイルス抗体を固相化した部分への抗原抗体反応によるラテックス粒子の付着による着色の有無を肉眼で観察して行った。
その結果を表3に示す。
【0027】
【表3】
表3
Figure 0004121400
判定基準
+ : 青の着色が見られるもの
− : 青の着色が見られないもの
【0028】
A型インフルエンザウイルス抗原は陽性でB型インフルエンザウイルス抗原は陰性となり特異的にA型インフルエンザウイルス抗原を検出できることが確かめられた。
【0029】
実施例5
ラテラルフロー免疫測定法で実験を行った。粒径0.290μmの青色ラテックス粒子(CM/BL、セラダイン製)に抗A型インフルエンザウイルス抗体(マウスモノクロ−ナル抗体、デンカ生研製)を共有結合させ、グリシンアミド塩酸塩 1.5M、pH8.0となる量の水酸化ナトリウム、塩化ナトリウム 0.2M、ウシ血清アルブミン 0.1w/v%、アジ化ナトリウム 0.085w/v%を含む水溶液にラテックス粒子の濃度が0.015w/v%になるように浮遊させた。
【0030】
デバイス
ニトロセルロース膜(ポアサイズ12μm、AE100、S&S製)を幅20cm、高さ1.2cmに切り、接着剤を塗布した厚さ約0.2mm、大きさ20cm×3.5cmのプラスチック板に下端をよく合わせて貼り付け、更に残りの接着剤塗布部分に20cm×2.6cmの大きさの濾紙(No.590、アドバンテック製)をニトロセルロース膜に3mm重ねて貼り付けた。このニトロセルロース膜の下端から0.6cmの位置に太さ約1mm幅になる量の抗A型インフルエンザウイルス抗体(マウスモノクロ−ナル抗体;上記と別のクローン、デンカ生研製)液で20cmの線を描き、減圧下で良く乾燥させて抗体を固相化した。つぎに、カッターで幅5mmの短冊に細切してデバイスを作製した。
【0031】
測定
検体としてA型インフルエンザウイルス抗原、B型インフルエンザウイルス抗原をそれぞれ用いた。インフルエンザウイルス抗原をウシ血清アルブミン 3w/v%並びにポリオキシエチレン(20)ソルビタンモノラウレート 2w/v%に加えた50mM トリス緩衝液、pH8.0で10倍希釈した。平底マイクロプレートのウエルに希釈したインフルエンザウイルス抗原40μL並びに抗A型インフルエンザウイルス抗体結合ラテックス粒子浮遊液40μLを入れて良く混ぜ、つぎにデバイスの下端を液に浸して立て反応させた。判定は15分後に下記の方法で行った。
【0032】
判定および結果
判定は抗A型インフルエンザウイルス抗体を固相化した部分への抗原抗体反応によるラテックス粒子の付着による着色線の有無を肉眼で観察して行った。その結果を表4に示す。
【0033】
【表4】
表4
Figure 0004121400
判定基準
+ : 青の着色が見られるもの
− : 青の着色が見られないもの
【0034】
A型インフルエンザウイルス抗原は陽性でB型インフルエンザウイルス抗原は陰性となり特異的にA型インフルエンザウイルス抗原を検出できることが確かめられた。
【0035】
【発明の効果】
この発明の免疫測定用ラテックス組成物は、長期間保存してもラテックス粒子の凝集が起こらない。従って、長期間保存後も検体中の抗原又は抗体を精度良く測定することができる。また、塩基性の金属水酸化物を含む本発明のラテックス組成物は、pH緩衝作用を発揮するので、別途緩衝剤を添加することが不要であり、試薬組成を単純化することができ、また比重や粘度が従来の組成物のように上昇することを回避することができる。
【図面の簡単な説明】
【図1】本発明の組成物を用いた免疫測定方法と、従来法による免疫測定方法により、試料中の免疫グロブリンEを測定した値の相関図である。[0001]
BACKGROUND OF THE INVENTION
As an immunoassay for measuring an antigen or antibody in a specimen, a latex agglutination method using latex particles, a flow-through immunoassay method using latex particles, a lateral flow immunoassay method, and the like have been put into practical use. In the latex agglutination method, latex particles having an antibody or antigen corresponding to the antigen or antibody to be measured adsorbed on the surface thereof are used. Such latex particles are suspended in a medium such as a buffer solution, and a specimen is added thereto. The antigen or antibody in the specimen and the corresponding antibody or antigen on the latex surface cause an antigen-antibody reaction and bind to each other. Since the antigen or antibody in the specimen usually has a plurality of antigen-antibody reaction sites, latex particles are cross-linked and aggregated via the antigen or antibody in the specimen. Since the degree of aggregation is proportional to the amount of antigen or antibody to be measured in the specimen, the antigen or antibody in the specimen can be measured by observing the degree of aggregation. Usually, the degree of agglutination is measured by visually observing a mixture of a specimen and a corresponding suspension of latex particles to which an antibody or antigen is bound, or by measuring with a dedicated analytical instrument such as a spectrophotometer. It can be done easily. These methods are simple and high in sensitivity, and are generally widely used.
[0002]
Latex particles with antibodies or antigens used for latex aggregation bound to the surface are suspended in an aqueous solution in which a water-soluble compound intended to prevent spontaneous aggregation of latex particles and a water-soluble compound having a pH buffering capacity are dissolved. Saved in state. That is, it is used in a state in which a natural aggregation inhibitor is further added to a buffer solution as a medium. As compounds that prevent spontaneous aggregation, amino acids having two or more amino groups in one molecule (Japanese Patent Publication No. 6-17911), choline chloride, polyhydric alcohols, and the like are used. On the other hand, a glycine buffer solution, a phosphate buffer solution, a Tris buffer solution or the like is used as a buffer solution as a medium. Furthermore, sodium chloride and bovine serum albumin, gelatin, saccharose and the like as stabilizers are appropriately added for adjusting the salt concentration.
[0003]
In this way, the compounds that prevent spontaneous aggregation and the compounds that maintain the buffer capacity are used, so that the reagent composition is complicated, and the specific gravity and viscosity increase, which affects detection sensitivity. was there.
[0004]
[Patent Document 1]
Japanese Examined Patent Publication No. 6-17911 [0005]
[Problems to be solved by the invention]
The objective of this invention is providing the latex composition for immunoassay containing the novel natural aggregation inhibitor which exhibits the outstanding natural aggregation prevention effect. Another object of the present invention is to provide a latex composition for immunoassay having a pH buffering capacity without using a buffering agent separately.
[0006]
[Means for Solving the Problems]
As a result of earnest research, the present inventor found that glycinamide can effectively prevent spontaneous aggregation of latex particles for immunoassay, and completed the present invention. In addition to the above glycinamide, the present inventor further added a basic metal hydroxide to obtain a pH buffering ability of the composition, and the pH can be kept substantially constant without adding a buffering agent. Found that can be retained.
[0007]
That is, the present invention relates to an immunoassay latex composition comprising an antibody, an antigen-binding fragment thereof or a latex particle to which an antigen is bound, and a medium for suspending the antibody, and 0.8% of glycinamide relative to the total amount of the composition. A latex composition is provided that is contained at a concentration of 4.5 M. The present invention also provides a latex composition that further includes a basic metal hydroxide and has a pH buffering ability in the latex composition of the present invention.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The latex composition of the present invention is a latex composition comprising a latex particle having an antibody or an antigen-binding fragment thereof or an antigen bound on the surface thereof, and a medium for suspending the latex particle. And glycinamide. Here, the “antigen-binding fragment” is a fragment capable of antigen-antibody reaction with a corresponding antigen, such as an antibody F (ab) fragment or F (ab ′) 2 fragment. These antibody fragments are used in the same manner as antibodies. The latex particles in the composition of the present invention, the antibody adsorbed thereto or the antigen-binding fragment or antigen thereof, the medium in which the latex is suspended, and the content other than glycinamide in these compositions are all characteristic to the present invention. Any of those conventionally used can be used. Therefore, these descriptions are omitted.
[0009]
Glycinamide used in the present invention is a compound having a molecular formula represented by H 2 NCH 2 CONH 2 , and may be in the form of a salt such as an acid addition salt (for example, hydrochloride). The concentration of glycinamide contained in the composition of the present invention is 0.8 to 4.5M, preferably 0.8 to 3M. When the concentration of glycinamide is too low, spontaneous aggregation occurs when the composition is stored for a long period of time. Therefore, when measurement is performed using this composition, accurate measurement results cannot be obtained. On the other hand, if the concentration of glycinamide is too high, the measurement sensitivity decreases. On the other hand, if the concentration of glycinamide exceeds 4.6M, crystals of glycinamide are formed, which hinders accurate measurement.
[0010]
In addition to glycinamide, addition of a basic metal hydroxide is advantageous because it gives the composition a pH buffering ability and eliminates the need for a separate buffer. Although it does not specifically limit as a basic metal hydroxide, An alkali metal hydroxide is preferable and especially sodium hydroxide is preferable. The concentration of the basic metal hydroxide is preferably such that the composition achieves the desired pH, and usually the concentration at which the composition becomes weakly basic, preferably the pH of the composition is about 7.4 to 9.0. Concentration. Note that the latex composition of the present invention containing glycinamide and a basic metal hydroxide exhibits a pH buffering action that does not hinder practical use without adding a separate buffer, but does not adversely affect the measurement. It is also possible to add a buffering agent separately within the range.
[0011]
The method of using the latex composition of the present invention is exactly the same as the method of using the conventional latex composition. That is, the specimen and the composition are mixed and reacted, and the degree of latex particle aggregation caused thereby is measured by visual observation or by photometry using a dedicated analytical instrument. Specific examples of the measurement method include a slide method using a flat plate, a plate method using a microplate, and an automatic analysis method using a dedicated analyzer. Furthermore, flow-through immunoassay using a colored latex, lateral flow immunoassay, etc. can be cited as examples, but not limited thereto, antibodies or antigen-binding fragments thereof or latex particles immobilized with an antigen are used. It can be widely used for the immunoassay used.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
[0013]
Example 1
Anti-human immunoglobulin E antibody (mouse monoclonal antibody, manufactured by Denka Seken) was bound to latex particles (manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 0.266 μm, and glycinamide hydrochloride (manufactured by Aldrich Chemical) 0.5-4. The concentration of latex particles is 0.12w in an aqueous solution containing 5M, sodium hydroxide in an amount of pH 7.6, sodium chloride 0.1M, bovine serum albumin 0.1w / v%, sodium azide 0.085w / v%. It was made to float so that it might become / v%. These suspensions were stored at 4-8 ° C for a long time. The presence or absence of spontaneous aggregation and precipitation during long-term storage was visually observed. Glycinamide 0.6M or less showed spontaneous aggregation / precipitation within 90 days, but 0.7M was 90 days, 0.8M was 360 days, 0.9M or more was stored for 540 days, spontaneous aggregation / precipitation No precipitation was observed at all, and the latex particles were uniformly dispersed. The results are shown in Table 1 below.
[0014]
[Table 1]
Table 1 Presence / absence of spontaneous aggregation / precipitation
Figure 0004121400
-; No natural flocculation / precipitation +; Natural flocculation / precipitation [0015]
Example 2
In the same manner as in Example 1, anti-human immunoglobulin E antibody (mouse monoclonal antibody) was bound to latex particles having a particle size of 0.266 μm to give glycinamide hydrochloride 1.5M, pH 7.6 in an amount of water. It was suspended in an aqueous solution containing sodium oxide, sodium chloride 0.1M, bovine serum albumin 0.1 w / v%, sodium azide 0.085 w / v% so that the concentration of latex particles was 0.12 w / v%. . The following experiment was conducted to show that the measurement accuracy does not deteriorate due to the presence of glycinamide.
[0016]
200 µL of 0.17 M glycine buffer solution (pH 7.6) containing 0.1 M sodium chloride and anti-human immunoglobulin E antibody (mouse monoclonal antibody) are bound to 3 µL of physiological saline solution of human immunoglobulin E with various concentrations. 100 μL of the latex particle suspension (0.12 w / v%) having a particle size of 0.266 μm was added, reacted at 37 ° C., the absorbance change rate was measured at a wavelength of 572 nm, and a calibration curve was prepared. The same procedure as described above was performed using human serum containing human immunoglobulin E having various unknown concentrations, and the human immunoglobulin E concentration in the specimen was determined from the calibration curve. Said operation process was performed using the automatic chemical analyzer (Toshiba TBA-30R).
[0017]
On the other hand, the sample was measured using a latex agglutination method reagent that has been widely used in the past, and compared with the results obtained by the method of the present invention. A correlation diagram of measured values by the above two methods is shown in FIG.
[0018]
The correlation coefficient of this correlation diagram is 0.9967, and the regression equation is y = 0.9992x-4.141, and it can be seen that the measured values by the above two methods almost completely match. That is, when the composition of the present invention is used, it is clear that the measurement accuracy is not adversely affected by the presence of glycinamide.
[0019]
Example 3
The experiment was performed by the slide aggregation method used as a qualitative method. Anti-pathogenic Escherichia coli O157 antibody (mouse monoclonal antibody, manufactured by Denka Seken) was bound to latex particles (manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 0.3 μm, and an amount of glycinamide hydrochloride 1.8 M, pH 8.0 was obtained. Float in an aqueous solution containing sodium hydroxide, sodium chloride 0.1M, bovine serum albumin 0.2 w / v%, sodium azide 0.085 w / v% so that the concentration of latex particles is 0.5 w / v%. It was. As a test antigen, a cell suspension of pathogenic E. coli O157 was heat-treated at 100 ° C. for 10 minutes, and then centrifuged at 2000 G for 5 minutes to use this supernatant. The thing which does not contain a microbial cell was made into the negative control.
[0020]
Test Method 50 μL of antigen was placed on a slide agglutination test plate, then 25 μL of antibody-bound latex particle suspension was added and gently stirred at room temperature for 3 minutes, and the presence or absence of aggregation was visually observed. On the other hand, the same sample was measured using a conventionally used slide latex agglutination reagent and compared with the results obtained by the method of the present invention. The results are shown in Table 2 below.
[0021]
[Table 2]
Table 2
Figure 0004121400
Criteria ++: Strong aggregation is observed −: Aggregation is not observed [0022]
As shown in Table 2, it is clear that when the composition of the present invention is used, the measurement accuracy is not adversely affected by the presence of glycinamide.
[0023]
Example 4
Experiments were performed by flow-through immunoassay. Anti-influenza A influenza virus antibody (mouse monoclonal antibody, manufactured by Denka Seken) was covalently bonded to blue latex particles (CM / BL, manufactured by Ceradyne) having a particle size of 0.290 μm, and glycinamide hydrochloride 1.5 M, pH 8. The concentration of latex particles in an aqueous solution containing sodium hydroxide, sodium chloride 0.2M, bovine serum albumin 0.2w / v%, sodium azide 0.085w / v% in an amount of 0 to 0.01w / v% It was floated to become.
[0024]
On a device nitrocellulose membrane (AE100, pore size 12 μm, manufactured by S & S), an anti-influenza A virus antibody (mouse monoclonal antibody; another clone, manufactured by Denka Seken) with a diameter of about 4 mm is dropped. The antibody was solidified by drying well under reduced pressure. This membrane was stacked on a thick filter paper and incorporated into a flow-through immunoassay container to produce a device.
[0025]
Influenza A virus antigen and influenza B virus antigen were used as measurement samples, respectively. The influenza virus antigen was diluted 10-fold with 50 mM Tris buffer, pH 8.0, added to bovine serum albumin 3 w / v% and polyoxyethylene (20) sorbitan monolaurate 2 w / v%. To 500 μL of diluted influenza virus antigen, 500 μL of anti-influenza A virus antibody-bound latex particle suspension was added and mixed well, and the entire amount was placed in the sample well of the device. The determination was made after 10 minutes by the following method.
[0026]
The determination and the result determination were performed by observing with the naked eye the presence or absence of coloration due to the adhesion of latex particles due to the antigen-antibody reaction on the portion where the anti-influenza A virus antibody was immobilized.
The results are shown in Table 3.
[0027]
[Table 3]
Table 3
Figure 0004121400
Judgment criteria +: Blue color is seen-: Blue color is not seen. [0028]
The influenza A virus antigen was positive and the influenza B virus antigen was negative, confirming that the influenza A virus antigen could be specifically detected.
[0029]
Example 5
Experiments were performed by lateral flow immunoassay. Anti-influenza A influenza virus antibody (mouse monoclonal antibody, manufactured by Denka Seken) was covalently bonded to blue latex particles (CM / BL, manufactured by Ceradyne) having a particle size of 0.290 μm, and glycinamide hydrochloride 1.5 M, pH 8. The concentration of latex particles is 0.015 w / v% in an aqueous solution containing sodium hydroxide, sodium chloride 0.2M, bovine serum albumin 0.1 w / v%, sodium azide 0.085 w / v% to be 0. It was floated to become.
[0030]
Cut the device nitrocellulose membrane (pore size 12 μm, AE100, manufactured by S & S) into a width of 20 cm and a height of 1.2 cm, and apply the adhesive to the plastic plate with a thickness of about 0.2 mm and a size of 20 cm × 3.5 cm. Then, a filter paper having a size of 20 cm × 2.6 cm (No. 590, manufactured by Advantech) was laminated on the nitrocellulose membrane and pasted on the remaining adhesive application part. A 20 cm line with an anti-influenza A virus antibody (mouse monoclonal antibody; another clone, manufactured by DENKA SEIKEN) in an amount of about 1 mm in width at a position 0.6 cm from the lower end of the nitrocellulose membrane. And dried well under reduced pressure to immobilize the antibody. Next, the device was fabricated by cutting into 5 mm width strips with a cutter.
[0031]
Influenza A virus antigen and influenza B virus antigen were used as measurement samples, respectively. The influenza virus antigen was diluted 10-fold with 50 mM Tris buffer, pH 8.0, added to bovine serum albumin 3 w / v% and polyoxyethylene (20) sorbitan monolaurate 2 w / v%. 40 μL of diluted influenza virus antigen and 40 μL of anti-influenza A influenza virus antibody-bound latex particle suspension were mixed in a well of a flat-bottomed microplate and mixed well. Next, the lower end of the device was immersed in the solution and allowed to react. The determination was made by the following method after 15 minutes.
[0032]
The determination and result determination were made by observing with the naked eye the presence or absence of colored lines due to the adhesion of latex particles due to the antigen-antibody reaction on the portion where the anti-influenza A virus antibody was immobilized. The results are shown in Table 4.
[0033]
[Table 4]
Table 4
Figure 0004121400
Criteria +: Blue color is seen-: Blue color is not seen [0034]
The influenza A virus antigen was positive and the influenza B virus antigen was negative, confirming that the influenza A virus antigen could be specifically detected.
[0035]
【The invention's effect】
The latex composition for immunoassay of the present invention does not aggregate latex particles even when stored for a long period of time. Therefore, even after long-term storage, the antigen or antibody in the specimen can be accurately measured. Further, since the latex composition of the present invention containing a basic metal hydroxide exhibits a pH buffering action, it is not necessary to add a separate buffering agent, and the reagent composition can be simplified. It is possible to avoid the specific gravity and viscosity from increasing as in the conventional composition.
[Brief description of the drawings]
FIG. 1 is a correlation diagram of values obtained by measuring immunoglobulin E in a sample by an immunoassay method using the composition of the present invention and an immunoassay method according to a conventional method.

Claims (5)

抗体若しくはその抗原結合性断片又は抗原を結合させたラテックス粒子と、これを浮遊させる媒体とを含む免疫測定用ラテックス組成物において、グリシンアミドを組成物全量に対し0.8ないし4.5Mの濃度で含有することを特徴とするラテックス組成物。An immunoassay latex composition comprising an antibody, an antigen-binding fragment thereof, or latex particles bound with an antigen and a medium for suspending the antibody, and a concentration of 0.8 to 4.5 M of glycinamide relative to the total amount of the composition A latex composition comprising: 前記グリシンアミドの濃度が0.8ないし3Mである請求項1記載のラテックス組成物。The latex composition according to claim 1, wherein the concentration of glycinamide is 0.8 to 3M. 塩基性の金属水酸化物をさらに含み、pH緩衝能を有する請求項1又は2記載の組成物。The composition according to claim 1 or 2, further comprising a basic metal hydroxide and having a pH buffering ability. 前記金属水酸化物がアルカリ金属水酸化物である請求項3記載の組成物。The composition according to claim 3, wherein the metal hydroxide is an alkali metal hydroxide. 前記アルカリ金属水酸化物が水酸化ナトリウムである請求項4記載の組成物。The composition according to claim 4, wherein the alkali metal hydroxide is sodium hydroxide.
JP2003064436A 2003-03-11 2003-03-11 Latex composition for immunoassay Expired - Lifetime JP4121400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064436A JP4121400B2 (en) 2003-03-11 2003-03-11 Latex composition for immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064436A JP4121400B2 (en) 2003-03-11 2003-03-11 Latex composition for immunoassay

Publications (2)

Publication Number Publication Date
JP2004271416A JP2004271416A (en) 2004-09-30
JP4121400B2 true JP4121400B2 (en) 2008-07-23

Family

ID=33125730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064436A Expired - Lifetime JP4121400B2 (en) 2003-03-11 2003-03-11 Latex composition for immunoassay

Country Status (1)

Country Link
JP (1) JP4121400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486059B2 (en) * 2006-05-25 2010-06-23 デンカ生研株式会社 Latex composition for immunoassay
CN105137062A (en) * 2015-06-03 2015-12-09 章丘维他力医疗器械有限公司 Immunoglobulin E immunoturbidimetry detection kit

Also Published As

Publication number Publication date
JP2004271416A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US20080096189A1 (en) Device and Method for Detection of Analytes
US20160209410A1 (en) Test piece for immunochromatography, developing fluid used therefor, and immunochromatography using the same
CN102177437B (en) Reference control for cell by cell analysis
JP3451091B2 (en) Analytical cuvette used for quantification of an analyte present in a whole blood sample, quantification method, and diagnostic test kit
WO2007138964A1 (en) Latex composition for immunoassay
EP0082862A1 (en) A method of detecting or determining histamine in histamine containing materials, particularly body fluids and an analytical means for use in such method.
JP4121400B2 (en) Latex composition for immunoassay
EP2439533A1 (en) Immunoassay method and reagent therefor
JP3513075B2 (en) Immunoassay and reagent therefor
DK157109B (en) IMMUNOCHEMICAL REAGENTS
JPS63133064A (en) Method and reagent for measuring igm and iga immunoglobulin
Harris et al. C reactive protein rapid assay techniques for monitoring resolution of infection in immunosuppressed patients.
JP2004012434A (en) Method for measuring pepsinogen and measuring kit
JPH02257063A (en) Reagent and method for immunoassay
WO2024038863A1 (en) Immunoassay method and reagent
KR20030022314A (en) Method of Immunity Examination With Insoluble Carrier Particle and Reagent Therefor
JP5177677B2 (en) Method for measuring antigen and antibody against the antigen, and measuring reagent used therefor
JP2006029830A (en) Test piece for immuno-chromatograph method and detection method of substance to be examined
JPS61296270A (en) Reagent for immunological reaction
JP7483109B2 (en) Ferritin measurement reagent
CN108414775A (en) Neutrophil gelatinase-associated lipocalin detection kit
US20230083766A1 (en) Diagnostic reagent for quantitative determination of procalcitonin in a sample
JPH01253654A (en) Stable latex reagent
JPH02222836A (en) Method and test kit for increased visualization of reactant between substance specifically bonded and corresponding bonding substance
JP2002257833A (en) Measuring reagent for matter to be measured and method for stabilizing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4121400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term