JP4120352B2 - Additive for powder metallurgy - Google Patents

Additive for powder metallurgy Download PDF

Info

Publication number
JP4120352B2
JP4120352B2 JP2002312079A JP2002312079A JP4120352B2 JP 4120352 B2 JP4120352 B2 JP 4120352B2 JP 2002312079 A JP2002312079 A JP 2002312079A JP 2002312079 A JP2002312079 A JP 2002312079A JP 4120352 B2 JP4120352 B2 JP 4120352B2
Authority
JP
Japan
Prior art keywords
acid
additive
powder
fatty acid
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002312079A
Other languages
Japanese (ja)
Other versions
JP2004143562A (en
Inventor
康行 宮田
辰行 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2002312079A priority Critical patent/JP4120352B2/en
Publication of JP2004143562A publication Critical patent/JP2004143562A/en
Application granted granted Critical
Publication of JP4120352B2 publication Critical patent/JP4120352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は粉末冶金用添加剤に関し、詳しくは原料粉と混合した際に、流動性が良好で、見かけ密度が高く、成形時には圧粉体密度、抜き出し圧に優れ、かつスーティングの発生を抑える粉末冶金用添加剤に関する。
【0002】
【従来の技術】
従来、鉄粉、黒鉛粉等の金属粉末を圧縮成形する際、粉末同士の摩擦を軽減して流動性を高めたり、金型との摩擦抵抗を低減して粉末の圧縮成形性を高めたり、さらには離型性を向上して抜き圧を低減させる目的で、ステアリン酸亜鉛やエチレンビスステアリン酸アミドなどが単独または混合して使用されている。圧縮成型した成型品は水素ガスを含む非酸化性雰囲気中で焼結される。
ステアリン酸亜鉛を含む成型体を非酸化性雰囲気の焼結炉中で加熱すると、金属セッケンは分解し有機物が揮発すると同時に亜鉛分も揮発し、炉壁等に付着し成形品不良が発生したり、定期的な洗浄が必要となる。また金属粉末成型品中に残存した亜鉛、焼結品の金属組成を変化させるばかりでなく、焼結体の表面にカーボンを析出させる現象(スーティング)を引き起こす原因となる場合がある。
上記の観点からステアリン酸亜鉛の使用量を低減する、あるいはステアリン酸亜鉛を含まない粉末冶金用添加剤が提案されている。
例えば、エチレングリコールまたはペンタエリスリトールの脂肪酸エステルを潤滑剤として使用する方法が提案されている(例えば、特許文献1〜3参照。)。しかし、この方法で得られる混合粉末は、ステアリン酸亜鉛またはエチレンビスステアリン酸アミドと比較した場合に潤滑性が劣り、流動度の低下および抜き圧の上昇などが見られる。また、これらの潤滑剤は液状で添加するためにトルエンなどの溶剤を使用しており、環境への影響が大きい。また、エチレンビスラウリン酸アミドを粉末冶金用添加剤として使用する方法が提案されている(例えば、特許文献4参照)。しかし、この方法で得られるビスアミドは、いまだ充分な流動性を確保することができない。また、エチレンビスステアリンアミドとステアリン酸リチウムを混合して使用する方法が提案されている(例えば、特許文献5参照)。しかし、この方法では非酸化性雰囲気で加熱され、揮発したリチウムが炉壁を腐食させる原因となる可能性があるばかりでなく、残留したリチウムが水分との接触によって表面にさびを発生させる危険性が高い。また、直鎖モノカルボン酸、直鎖ジカルボン酸とジアミンとの反応生成物を潤滑剤として使用する方法が提案されているが(例えば、特許文献6参照)、この方法では金属粉末と混合する際に、150℃以上に加熱する必要があり、常温混合での使用が困難である。さらに、潤滑剤としてポリエーテル化合物を使用しているものもあるが(例えば、特許文献7参照)、良好な潤滑性が得られず、流動度、見掛け密度の低下、抜き圧の上昇などが見られる。
【0003】
【特許文献1】
特開平7−18303号公報
【特許文献2】
特開平8−176606号公報
【特許文献3】
特開平8−325604号公報
【特許文献4】
特開平4−136104号公報
【特許文献5】
特開平11−193404号公報
【特許文献6】
特表平6−506726号公報
【特許文献7】
特表平9−512864号公報
【0004】
【発明が解決しようとする課題】
本発明は鉄粉などの原料粉と混合した際に、流動性が良好で、見かけ密度が高く、成形時には圧粉体密度、抜き出し圧に優れ、かつスーティングの発生を抑える粉末冶金用添加剤を提供することを目的とする。
【0005】
【問題を解決するための手段】
上記の問題点を解決するため、本発明者らは鋭意検討を行った結果、特定の脂肪酸組成を有するジアミド化合物を粉末冶金用添加剤として用いることによって、成形用粉末の流動性、見かけ密度が良好で、成形時には圧粉体密度、抜き出し圧に優れ、スーティングの発生を抑えられることを見出し、本発明を得るに至った。
【0006】
すなわち、本発明は、
炭素数が6〜24の混合脂肪酸であって、かつ該混合脂肪酸中において炭素数が6〜16の脂肪酸のいずれか1種を50〜85重量%含有する混合脂肪酸と、式(1)で示されるジアミン化合物との脱水縮合反応により得られるアミド化合物である粉末冶金用添加剤である。
2N−(CH2n−NH2 (1)
(式中nは1〜10である。)
【0007】
【発明の実施の形態】
本発明の粉末冶金用添加剤は、炭素数が6〜24の混合脂肪酸であって、かつ該混合脂肪酸中において炭素数が6〜16の脂肪酸のいずれか1種を50〜85重量%含有する混合脂肪酸と、式(1)で示されるジアミン化合物との脱水縮合反応により得られるアミド化合物からなる。
本発明で使用する炭素数6〜24の混合脂肪酸は、天然油脂を加水分解し、必要があれば水素添加した後に蒸留、精製し得ても良いし、化学的に合成して得ても良い。具体的には、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸などの飽和脂肪酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エルカ酸などの不飽和脂肪酸、およびこれらの混合物であるヤシ油脂肪酸、牛脂脂肪酸、硬化牛脂脂肪酸などの混合脂肪酸などが挙げられ、これらは単独で、あるいは複数を組み合わせて使用することができる。
【0008】
また、本発明で使用する混合脂肪酸においては、炭素数6〜16の脂肪酸のいずれか1種の脂肪酸を50〜85重量%含有し、好ましくは60〜80重量%である。炭素数6〜16の脂肪酸としては、例えば、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸が挙げられ、好ましくは、カプリン酸、ラウリン酸、ミリスチン酸である。
混合脂肪酸に含まれる炭素数6〜16のいずれか1種の脂肪酸含有量が85重量%を超える場合、もしくは50重量%未満の場合は、成形用粉末の流動性および見掛け密度が低下し、好ましくない。
【0009】
本発明で使用する式(1)で示されるジアミン化合物において、nは1〜10であり、例えば、メチレンジアミン、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミンなどが挙げられ、好ましくはこれらのうちn=1〜6の化合物である。これらのうちメチレンジアミン、エチレンジアミン、ヘキサメチレンジアミンが工業的に入手が容易であり、また価格の面からも好ましい。nが10を超える場合は、抜き圧が上昇しやすくなるため好ましくない。
【0010】
本発明の粉末冶金用添加剤は、脂肪酸とアミンの脱水縮合であるアミド化反応で得ることができる。例えば、溶融した脂肪酸2モルにジアミン化合物0.90〜1.10モル、好ましくは0.95〜1.05モルを滴下混合し、生成する水を排出しながら170〜240℃に昇温して、1〜5時間反応させることによって得ることができる。このジアミド化合物をステンレス製バットまたはフレーカー、スプレー造粒などによって冷却、固化した後に衝撃式または気流式粉砕機等によって粉砕し、粉末冶金用添加剤として使用することができる。
【0011】
本発明の粉末冶金用添加剤は、その効果を損なわない範囲で他の添加剤、たとえばステアリン酸亜鉛、ステアリン酸リチウムなどの金属セッケン、動植物油、ペンタエリスリトール脂肪酸エステル、エチレングリコール脂肪酸エステルなどのエステル、ポリエーテルなどと併用することができる。
【0012】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明する。
〈粉末冶金用添加剤の調製〉
(1)調製例1
温度計、攪拌機および冷却管を取り付けた2リットルのガラス製フラスコに、ラウリン酸700g(3.48モル)、ミリスチン酸300g(1.31モル)を70℃で加熱混合した。次いでエチレンジアミン144g(2.40モル)を混合しながら30分間で滴下し、反応により発生する水を取り除きながら180℃まで昇温後、同温度で4時間反応させた。その後、反応生成物をステンレスバット中で冷却、固化し、ホソカワミクロン(株)製バンタムミルを使用して粉砕し、酸価6.6mgKOH/g、融点150℃、平均粒子径51μmの粉末冶金用添加剤1を得た。分析方法を以下に示す。
1)酸価:JOCS(基準油脂分析試験法:日本油化学会)2.3.1−96に基づき評価した。
2)融点:JIS−K0064に基づき評価した。
3)平均粒子径:(株)島津製作所製SALAD2100型を用いてレーザー回折散乱法で評価した。
【0013】
(2)調製例2〜4、および比較調製例1〜2
表1〜表2に示す混合脂肪酸を用い、アミン化合物や混合脂肪酸とアミン化合物の仕込みモル比や反応条件は、調製例1と同じにして、本発明の添加剤2〜4および比較用添加剤1〜2を得た。得られた添加剤の酸価、融点、および平均粒径を表1〜表2に示す。また図1の電子顕微鏡写真の本発明の添加剤3は粒状の粒子であるのに対し、図2の比較用添加剤1は針状の粒子であった。
【0014】
【表1】

Figure 0004120352
【0015】
【表2】
Figure 0004120352
【0016】
(3)比較調製例3(ステアリン酸亜鉛の調製)
3リットルガラス製フラスコに比較調製例2と同じ混合脂肪酸200g(0.73モル)およびイオン交換水2000gを投入し、85℃まで昇温した後、48重量%水酸化ナトリウム水溶液61g(0.74モル)を加え、内温を90℃に調整し、溶液が透明になったことを確認後、50重量%塩化亜鉛水溶液95g(0.35モル)を30分かけて滴下した。その後、内温を85℃に保ちながら1時間攪拌し、得られたステアリン酸亜鉛水溶液を60℃に冷却して吸引ろ過器を使用して脱水後、送風乾燥機中で80℃、48時間乾燥させて、比較用添加剤3のステアリン酸亜鉛粉末を得た。得られたステアリン酸亜鉛粉末をJSCI−II(化粧品原料基準 第二版 薬事日報社)の「ステアリン酸亜鉛」の試験法に基づいて分析したところ、遊離脂肪酸0.1重量%、亜鉛分10.3重量%、乾燥減量0.1重量%であった。また、調製例1〜4、比較調製例1〜2で用いた方法で融点および平均粒子径を測定したところ、融点は123℃、平均粒子径は12μmであった。
【0017】
〈成型用粉末の評価〉
本発明および比較用の成型用粉末の評価を以下の方法で実施した。
鉄粉100重量部、銅粉1.5重量部、黒鉛0.7重量部に、本発明の粉末冶金用添加剤および、比較調製例の粉末冶金用添加剤をそれぞれ0.8重量部添加、混合し、成型用粉末1〜4および比較用の成形用粉末1〜3を調製した。
得られた成形用粉末について、流動度と見かけ密度を測定した。以下の方法で評価した結果を表3〜表4に示す。
(1)流動度:JIS Z 2502に基づき評価した。
(2)見かけ密度:JIS Z 2504に基づき評価した。
【0018】
【表3】
Figure 0004120352
【0019】
【表4】
Figure 0004120352
【0020】
〈圧粉成型品の評価〉
本発明および比較用の圧粉成型品の評価を以下の方法で実施した。
成形用粉末を500MPaで圧粉成型し、圧粉成型品1〜4および比較用の圧粉成形品1〜3を調製し、圧縮性および抜き出し性を測定した。さらに水素ガスを含む非酸化性ガス雰囲気中で1100℃、30分保持して焼結し、成型品表面のスーティングを観察した。
以下の方法で評価した結果を表5〜表6に示す。
(1)圧縮性:圧粉成型後の体積と重量から比重を算出した。
(2)抜き出し性:圧粉成型後に金型より抜き出す際のゲージ圧を測定した。
(3)スーティング:焼結後の成型品表面のすすの有無を目視で確認した。
すすの付着が認められない場合を○、付着が認められる場合を×と評価した。
【0021】
【表5】
Figure 0004120352
【0022】
【表6】
Figure 0004120352
【0023】
本発明の粉末冶金用添加剤は原料粉と混合した際の流動度、見掛け密度、圧粉成型後の圧粉体密度は、ステアリン酸亜鉛とほぼ同等であるが、圧粉成型後の抜き出し性の点で優れ、焼結時にはスーティングを起さず良好な評価であった。
これに対して、混合脂肪酸を用いない比較用添加剤1のエチレンビスラウリン酸アミドは、成型用粉末の流動性、見掛け密度が低下した。特定炭素数の脂肪酸の割合が本発明の規定外の比較用添加剤2のエチレンビスステアリン酸アミドは、成型用粉末の流動性が低下した。ジアミン化合物との反応生成物ではない比較用添加剤3のステアリン酸亜鉛は、圧粉成型品の焼結時にスーティングを起した。
【0024】
【発明の効果】
本発明の粉末冶金用添加剤は、原料粉と混合した際に、流動性が良好で、見かけ密度が高く、成形時には圧粉体密度、抜き出し圧に優れ、かつスーティングの発生を抑える。
【図面の簡単な説明】
【図1】図1は調製例3のビスアミドの電子顕微鏡写真である。
【図2】図2は比較調製例1のビスアミドの電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an additive for powder metallurgy. Specifically, when mixed with raw material powder, the fluidity is good, the apparent density is high, the green density and the extraction pressure are excellent during molding, and the occurrence of sooting is suppressed. The present invention relates to an additive for powder metallurgy.
[0002]
[Prior art]
Conventionally, when metal powder such as iron powder and graphite powder is compression-molded, the friction between the powders is reduced to increase the fluidity, the frictional resistance with the mold is reduced to increase the powder compression-moldability, Furthermore, zinc stearate, ethylenebisstearic acid amide, or the like is used alone or in combination for the purpose of improving releasability and reducing punching pressure. The compression molded product is sintered in a non-oxidizing atmosphere containing hydrogen gas.
When a molded body containing zinc stearate is heated in a sintering furnace in a non-oxidizing atmosphere, the metal soap decomposes and the organic matter volatilizes, and at the same time, the zinc content also volatilizes and adheres to the furnace wall, etc. Regular cleaning is required. In addition to changing the zinc composition remaining in the metal powder molded product and the metal composition of the sintered product, it may cause a phenomenon (stinging) of carbon deposition on the surface of the sintered body.
From the above viewpoint, an additive for powder metallurgy that reduces the amount of zinc stearate used or does not contain zinc stearate has been proposed.
For example, a method of using a fatty acid ester of ethylene glycol or pentaerythritol as a lubricant has been proposed (see, for example, Patent Documents 1 to 3). However, the mixed powder obtained by this method is inferior in lubricity when compared with zinc stearate or ethylenebisstearic acid amide, and a decrease in fluidity and an increase in punching pressure are observed. Moreover, since these lubricants are added in liquid form, a solvent such as toluene is used, which has a large environmental impact. Moreover, the method of using ethylenebislauric acid amide as an additive for powder metallurgy is proposed (for example, refer patent document 4). However, the bisamide obtained by this method still cannot secure sufficient fluidity. In addition, a method in which ethylene bis stearamide and lithium stearate are mixed and used has been proposed (see, for example, Patent Document 5). However, in this method, not only can the heated lithium in a non-oxidizing atmosphere and volatilized lithium corrode the furnace wall, but the risk of residual lithium causing rust on the surface due to contact with moisture Is expensive. Moreover, although the method of using the reaction product of linear monocarboxylic acid and linear dicarboxylic acid and diamine as a lubricant is proposed (for example, refer patent document 6), when mixing with metal powder in this method, In addition, it is necessary to heat to 150 ° C. or higher, and it is difficult to use at room temperature. Furthermore, although some use a polyether compound as a lubricant (see, for example, Patent Document 7), good lubricity cannot be obtained, and fluidity, apparent density, increase in extraction pressure, etc. are observed. It is done.
[0003]
[Patent Document 1]
JP 7-18303 A [Patent Document 2]
JP-A-8-176606 [Patent Document 3]
JP-A-8-325604 [Patent Document 4]
JP-A-4-136104 [Patent Document 5]
JP-A-11-193404 [Patent Document 6]
Japanese Patent Publication No. 6-506726 [Patent Document 7]
Japanese National Patent Publication No. 9-512864
[Problems to be solved by the invention]
The present invention is an additive for powder metallurgy that has good fluidity and high apparent density when mixed with raw material powder such as iron powder, has excellent green compact density and extraction pressure during molding, and suppresses the occurrence of sooting. The purpose is to provide.
[0005]
[Means for solving problems]
In order to solve the above problems, the present inventors have conducted intensive studies, and as a result, by using a diamide compound having a specific fatty acid composition as an additive for powder metallurgy, the fluidity and apparent density of the molding powder are reduced. The present inventors have found that it is good, has excellent green compact density and extraction pressure at the time of molding, and can suppress the occurrence of sooting.
[0006]
That is, the present invention
A mixed fatty acid having 6 to 24 carbon atoms and 50 to 85% by weight of any one of fatty acids having 6 to 16 carbon atoms in the mixed fatty acid, and represented by the formula (1) An additive for powder metallurgy that is an amide compound obtained by a dehydration condensation reaction with a diamine compound.
H 2 N- (CH 2) n -NH 2 (1)
(In the formula, n is 1 to 10.)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The additive for powder metallurgy according to the present invention is a mixed fatty acid having 6 to 24 carbon atoms, and contains 50 to 85% by weight of any one of fatty acids having 6 to 16 carbon atoms in the mixed fatty acid. It consists of an amide compound obtained by a dehydration condensation reaction of a mixed fatty acid and a diamine compound represented by the formula (1).
The mixed fatty acid having 6 to 24 carbon atoms used in the present invention may be obtained by hydrolyzing natural fats and oils, and if necessary, after hydrogenation, may be distilled and purified, or may be obtained by chemical synthesis. . Specifically, saturated fatty acids such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid , Unsaturated fatty acids such as erucic acid, and mixed fatty acids such as coconut oil fatty acid, beef tallow fatty acid, hardened beef tallow fatty acid which are mixtures thereof, and the like can be used alone or in combination.
[0008]
Moreover, in the mixed fatty acid used by this invention, 50-85 weight% of any one fatty acid of a C6-C16 fatty acid is contained, Preferably it is 60-80 weight%. Examples of the fatty acid having 6 to 16 carbon atoms include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, and palmitic acid, and capric acid, lauric acid, and myristic acid are preferable.
When the fatty acid content of any one of 6 to 16 carbon atoms contained in the mixed fatty acid exceeds 85% by weight or less than 50% by weight, the fluidity and apparent density of the molding powder are decreased, preferably Absent.
[0009]
In the diamine compound represented by the formula (1) used in the present invention, n is 1 to 10, for example, methylene diamine, ethylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine. , Octamethylene diamine, nonamethylene diamine, decamethylene diamine and the like. Among these, compounds of n = 1 to 6 are preferable. Among these, methylene diamine, ethylene diamine, and hexamethylene diamine are industrially easily available, and are preferable from the viewpoint of price. When n exceeds 10, it is not preferable because the extraction pressure tends to increase.
[0010]
The additive for powder metallurgy of the present invention can be obtained by an amidation reaction that is a dehydration condensation of a fatty acid and an amine. For example, 0.9 mol to 1.10 mol, preferably 0.95 to 1.05 mol of a diamine compound is added dropwise to 2 mol of melted fatty acid, and the temperature is raised to 170 to 240 ° C. while discharging the generated water. For 1 to 5 hours. This diamide compound can be cooled and solidified by a stainless bat or flaker, spray granulation, etc., and then pulverized by an impact type or airflow type pulverizer, etc., and used as an additive for powder metallurgy.
[0011]
The additive for powder metallurgy of the present invention is other additives, for example, metal soaps such as zinc stearate and lithium stearate, animals and vegetable oils, esters such as pentaerythritol fatty acid ester and ethylene glycol fatty acid ester, as long as the effect is not impaired. Can be used in combination with polyethers.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
<Preparation of powder metallurgy additive>
(1) Preparation Example 1
Lauric acid 700 g (3.48 mol) and myristic acid 300 g (1.31 mol) were heated and mixed at 70 ° C. in a 2 liter glass flask equipped with a thermometer, a stirrer and a condenser. Next, 144 g (2.40 mol) of ethylenediamine was added dropwise over 30 minutes while mixing, the temperature was raised to 180 ° C. while removing water generated by the reaction, and the mixture was reacted at the same temperature for 4 hours. Thereafter, the reaction product was cooled and solidified in a stainless steel vat, and pulverized using a bantam mill manufactured by Hosokawa Micron Co., Ltd., and an additive for powder metallurgy having an acid value of 6.6 mg KOH / g, a melting point of 150 ° C., and an average particle size of 51 μm. 1 was obtained. The analysis method is shown below.
1) Acid value: evaluated based on JOCS (standard oil analysis method: Japan Oil Chemists' Society) 2.3.1-96.
2) Melting point: Evaluated based on JIS-K0064.
3) Average particle diameter: Evaluation was made by a laser diffraction scattering method using a SALAD2100 model manufactured by Shimadzu Corporation.
[0013]
(2) Preparation Examples 2-4 and Comparative Preparation Examples 1-2
Using the mixed fatty acids shown in Tables 1 and 2, the amine compound, the mixed molar ratio of the mixed fatty acid and the amine compound, and the reaction conditions are the same as in Preparation Example 1, and the additives 2 to 4 and comparative additives of the present invention are used. 1-2 were obtained. Tables 1 and 2 show the acid value, melting point, and average particle diameter of the obtained additives. In addition, the additive 3 of the present invention in the electron micrograph of FIG. 1 is a granular particle, whereas the additive 1 for comparison in FIG. 2 is a needle-like particle.
[0014]
[Table 1]
Figure 0004120352
[0015]
[Table 2]
Figure 0004120352
[0016]
(3) Comparative Preparation Example 3 (Preparation of zinc stearate)
A 3 liter glass flask was charged with 200 g (0.73 mol) of the same mixed fatty acid and 2000 g of ion-exchanged water as in Comparative Preparation Example 2, heated to 85 ° C., and then 61 g (0.74) of a 48 wt% aqueous sodium hydroxide solution. Mol) was added, the internal temperature was adjusted to 90 ° C., and after confirming that the solution became transparent, 95 g (0.35 mol) of a 50 wt% aqueous zinc chloride solution was added dropwise over 30 minutes. Thereafter, the mixture was stirred for 1 hour while maintaining the internal temperature at 85 ° C., and the obtained zinc stearate aqueous solution was cooled to 60 ° C., dehydrated using a suction filter, and then dried at 80 ° C. for 48 hours in a blow dryer. Thus, a zinc stearate powder of Comparative Additive 3 was obtained. The obtained zinc stearate powder was analyzed based on the test method of “zinc stearate” of JSCI-II (Cosmetic raw material standard 2nd edition Yakuji Nippo Co., Ltd.). It was 3% by weight and loss on drying was 0.1% by weight. Moreover, when melting | fusing point and average particle diameter were measured by the method used by Preparation Examples 1-4 and Comparative Preparation Examples 1-2, melting | fusing point was 123 degreeC and average particle diameter was 12 micrometers.
[0017]
<Evaluation of molding powder>
The present invention and comparative molding powders were evaluated by the following methods.
To 100 parts by weight of iron powder, 1.5 parts by weight of copper powder and 0.7 parts by weight of graphite, 0.8 parts by weight of the additive for powder metallurgy of the present invention and the additive for powder metallurgy of the comparative preparation example are respectively added. By mixing, molding powders 1 to 4 and comparative molding powders 1 to 3 were prepared.
The resulting powder for molding was measured for fluidity and apparent density. The results evaluated by the following methods are shown in Tables 3 to 4.
(1) Fluidity: Evaluated based on JIS Z 2502.
(2) Apparent density: Evaluated based on JIS Z 2504.
[0018]
[Table 3]
Figure 0004120352
[0019]
[Table 4]
Figure 0004120352
[0020]
<Evaluation of compacted products>
The evaluation of the present invention and the compacted molded product for comparison were carried out by the following methods.
The powder for molding was compacted at 500 MPa to prepare compacted molded products 1 to 4 and compacted compacted products 1 to 3 for comparison, and the compressibility and extractability were measured. Further, sintering was carried out at 1100 ° C. for 30 minutes in a non-oxidizing gas atmosphere containing hydrogen gas, and sooting on the surface of the molded product was observed.
The results evaluated by the following methods are shown in Tables 5 to 6.
(1) Compressibility: Specific gravity was calculated from the volume and weight after compacting.
(2) Extractability: Gauge pressure was measured when extracting from the mold after compacting.
(3) Sooting: The presence or absence of soot on the surface of the molded product after sintering was visually confirmed.
The case where adhesion of soot was not recognized was evaluated as ○, and the case where adhesion was observed was evaluated as ×.
[0021]
[Table 5]
Figure 0004120352
[0022]
[Table 6]
Figure 0004120352
[0023]
The additive for powder metallurgy of the present invention is almost the same as zinc stearate in terms of fluidity, apparent density, and green compact density after mixing with raw material powder. It was excellent in that, and it was good evaluation without causing sooting during sintering.
On the other hand, ethylenebislauric acid amide of Comparative Additive 1 that does not use a mixed fatty acid has decreased fluidity and apparent density of the molding powder. The ethylene bis-stearic acid amide of comparative additive 2 in which the proportion of the fatty acid having a specific number of carbon atoms is outside the specified range of the present invention has reduced the fluidity of the molding powder. The comparative additive 3 zinc stearate, which is not a reaction product with the diamine compound, caused sooting during sintering of the green compact.
[0024]
【The invention's effect】
The additive for powder metallurgy of the present invention has good fluidity and high apparent density when mixed with raw material powder, is excellent in green compact density and extraction pressure during molding, and suppresses the occurrence of sooting.
[Brief description of the drawings]
1 is an electron micrograph of the bisamide of Preparation Example 3. FIG.
FIG. 2 is an electron micrograph of the bisamide of Comparative Preparation Example 1.

Claims (1)

炭素数が6〜24の混合脂肪酸であって、かつ該混合脂肪酸中において炭素数が6〜16の脂肪酸のいずれか1種を50〜85重量%含有する混合脂肪酸と、式(1)で示されるジアミン化合物との脱水縮合反応により得られるアミド化合物である粉末冶金用添加剤。
2N−(CH2n−NH2 (1)
(式中nは1〜10である。)
A mixed fatty acid having 6 to 24 carbon atoms and containing 50 to 85% by weight of any one of fatty acids having 6 to 16 carbon atoms in the mixed fatty acid, and represented by formula (1) An additive for powder metallurgy , which is an amide compound obtained by a dehydration condensation reaction with a diamine compound.
H 2 N- (CH 2) n -NH 2 (1)
(In the formula, n is 1 to 10.)
JP2002312079A 2002-10-28 2002-10-28 Additive for powder metallurgy Expired - Lifetime JP4120352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312079A JP4120352B2 (en) 2002-10-28 2002-10-28 Additive for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312079A JP4120352B2 (en) 2002-10-28 2002-10-28 Additive for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2004143562A JP2004143562A (en) 2004-05-20
JP4120352B2 true JP4120352B2 (en) 2008-07-16

Family

ID=32457073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312079A Expired - Lifetime JP4120352B2 (en) 2002-10-28 2002-10-28 Additive for powder metallurgy

Country Status (1)

Country Link
JP (1) JP4120352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753044B2 (en) * 2005-12-27 2011-08-17 Tdk株式会社 Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet

Also Published As

Publication number Publication date
JP2004143562A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JPH07103404B2 (en) Method for producing sintered metal member and metal powder composition therefor
JP4300217B2 (en) Lubricant for powder metallurgy, mixed powder for powder metallurgy, and method for producing sintered body
US6231635B1 (en) Lubricant powder for powder metallurgy
RU2254362C2 (en) Lubricant combination and a method for preparation thereof
CA2489489C (en) Composition and process for warm compaction of stainless steel powders
RU2008131291A (en) METALLURGICAL POWDER COMPOSITION
CA2950583C (en) A metal powder composition
JP4120352B2 (en) Additive for powder metallurgy
JP4758045B2 (en) Lubricant composite material and manufacturing method thereof
JP4578965B2 (en) Metal powder composition containing binding lubricant and binding lubricant containing glyceryl stearate
JP7501521B2 (en) Lubricant, powder mixture, and method for producing sintered body
JP2733868B2 (en) Molding lubricant for powder metallurgy
JP5466067B2 (en) Lubricant for powder metallurgy and metal powder composition
CA3134580A1 (en) Mixed powder for powder metallurgy
KR100865929B1 (en) Improved Powder Metallurgy Lubricant Compositions and Methods for Using the Same
CN111741824A (en) Mixed powder for powder metallurgy
CN112584948B (en) Mixed powder for powder metallurgy and lubricant for powder metallurgy
KR100977652B1 (en) Metal powder composition including a bonding lubricant and a bonding lubricant comprising glyceryl stearate
WO2022259548A1 (en) Combination of lubricants, powder mixture, combination of raw materials for powder mixture and production method for sintered body
JP2005154828A (en) Raw material powder for warm compacting, and warm compacting method
MXPA99001313A (en) Lubricant powder for powder metallurgy
JPH01301794A (en) Lubricating oil
JP2006182964A (en) Lubricant for adhering die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4120352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term