JP4120188B2 - Assembly time estimation system - Google Patents

Assembly time estimation system Download PDF

Info

Publication number
JP4120188B2
JP4120188B2 JP2001228865A JP2001228865A JP4120188B2 JP 4120188 B2 JP4120188 B2 JP 4120188B2 JP 2001228865 A JP2001228865 A JP 2001228865A JP 2001228865 A JP2001228865 A JP 2001228865A JP 4120188 B2 JP4120188 B2 JP 4120188B2
Authority
JP
Japan
Prior art keywords
assembly
coefficient
time
standard
assembly time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001228865A
Other languages
Japanese (ja)
Other versions
JP2003039260A (en
Inventor
裕美子 澤田
辰哉 鈴木
雅夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001228865A priority Critical patent/JP4120188B2/en
Publication of JP2003039260A publication Critical patent/JP2003039260A/en
Application granted granted Critical
Publication of JP4120188B2 publication Critical patent/JP4120188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Automatic Assembly (AREA)
  • General Factory Administration (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構造設計者が設計した製品の各部品の組付け時間を予測して設計改善を検討する場合、または生産技術者が製品製造前に工程設計を改善する検討を行うなどに際して、製品の組立時間を評価する検討作業を支援する組立時間推定システムに関する
【0002】
【従来の技術】
従来、組立てて製造する製品の組立に要する時間(以下、組立時間と略す。)を推定する方法として、実際に組立ラインで組付作業に要する時間を実測し、それを経験値として、次期製品に用いたりしてきたが、新しい工程が発生すると組立時間が予測できないという問題があった。この問題を解決するために、部品組付作業の動作内容を表現するために必要な動作種類を決定し(下移動動作、横移動動作、など;標準組付動作と称す。)、該標準組付動作毎に、予め定めた「ある作業者条件、ある部品条件、ある作業職場条件」(基準条件と称す。)の下で該標準組付動作を行う場合に、該標準組付動作を行うのに要する時間の数値を設定した組立時間推定方法が考えられた(特開平04−069703)。この従来技術により、設計段階や製造工程計画段階などの製造前に、新しい組付作業が発生しても、該作業を該標準組付動作で表現することによって組立時間を推定することが出来るようになった。
【0003】
【発明が解決しようとする課題】
しかし、この従来の組立時間推定方法においても、標準組付動作の組立時間数値は、動作の種類や基準条件の違いは考慮されているが、理想状態の数値であった。しかし、実際の組立ラインにおいては、同じ作業を同じ作業者が行っても組立時間バラツキが発生し、組付を失敗してやり直しなどをする場合には2倍程度もしくはそれ以上要する場合もある。従来の組立時間推定方法では、時間のバラツキが考慮されておらず、特に組付けの難しい作業において、実組立時間が推定組立時間よりも長くなるという問題があった。
【0004】
この問題は、複数の工程から構成される組立ライン設計において、従来の推定組立時間値をもとに工程分割を決定すると、実際の生産時に、実組立時間との誤差が大きい作業を含む工程がネック工程となり、製品全体のサイクルタイムを長くし、製品納期遅延などの問題にもつながる。
【0005】
本発明は、設計段階や製造工程計画段階などの製造前の段階で、組立時間バラツキを考慮した組立時間を推定する方法およびそのシステムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、組立作業不良の発生頻度を用いて組立時間バラツキを推定し、組立バラツキを考慮した組立時間を推定することとした。
【0007】
ここで、組立作業不良の発生頻度とは、部品などを組付ける作業が確実に行うことのできない確率のことである。
【0008】
人間が組付動作を確実に行えない場合に、該組付動作を再度行わなければならず、組立時間が増加する。従って、人間が組付動作を理想的に行えない確率が大きいほど、長い組立時間の動作が多くなり、理想組立時間に対して、平均組立時間が長く、バラツキが大きくなる。このように、組立作業不良の発生頻度と組立時間バラツキの間に相関関係があることが、我々の研究で明らかになった。
【0009】
そこで、本発明では、組立作業不良の発生頻度に基づき、組立時間バラツキを推定することとした。
【0010】
【発明の実施の形態】
以下、図面を用いて、本発明をさらに詳細に説明する。
【0011】
図1に、本発明の方法による組立時間バラツキ推定の考え方を示す。図1に示すように、組立時間バラツキは、製品または部品の組立に要する時間と、製品または部品の組立作業不良発生頻度を複合させることによって得られる。
【0012】
図2に、組立に要する時間と組立作業不良の発生頻度との複合方法の一実施例を示す。ある組付作業の作業不良発生頻度である数値(例えば、100ppm)を、予め定めた係数(組立時間バラツキ変換係数と称す。)により、組立時間バラツキ補正係数に変換し、前記組立に要する時間を該組立時間バラツキ補正係数で補正することによって、組立時間バラツキが得られる。ここで、組立時間バラツキ変換係数は、あらゆる作業不良発生頻度において一定値を用いてもよいし、組付動作別、部品性質別などによって異なる値を定めてもよいものとする。
【0013】
図3に、図1や図2に示される製品または部品の「組立に要する時間」の推定方法の一実施例を示す。部品組付作業の動作内容を表現するために必要な動作種類(前記標準組付動作)を予め定めておき、該標準組付動作毎に、予め定めた「ある作業者条件、ある部品条件、ある作業職場条件」(基準条件と称す。)の下で該標準組付動作を行う場合に、該標準組付動作を行うのに要する時間の数値を設定した標準組付動作別組立時間係数を定める。次に、組付動作を行う組付部品の性質によって該標準組付動作別組立時間係数を補正する第一の組立時間補正係数で該標準組付動作別組立時間係数を補正し、組付動作を行う被組付部品の性質によって該標準組付動作別組立時間係数を補正する第二の組立時間補正係数で該標準組付動作別組立時間係数を補正する。そして、該製品または部品を組立てる職場の標準動作に要する時間と、該補正された標準組付動作別組立時間係数を複合することにより、製品または部品の組立に要する時間を推定する方法である。このように、組付作業を標準組付動作で表現することで、組立時間を推定する公知の方法として特開平04−069703号に記載の方法があり、その方法を用いても良い。
【0014】
図4に、製品または部品の組立作業不良の発生頻度の推定方法の一実施例を示す。部品組付作業の動作内容を表現するために必要な動作種類(前記標準組付動作)を予め定めておき、該標準組付動作毎に、予め定めた「ある作業者条件、ある部品条件、ある作業職場条件」(基準条件と称す。)の下で該標準組付動作を行う場合に、該標準組付動作を確実に行うことの出来ない確率の大小を示す数値を設定した標準組付動作別組立不良係数を定める。次に、組付動作を行う組付部品の性質によって該標準組付動作別組立不良係数を補正する第一の組立不良補正係数で該標準組付動作別組立不良係数を補正し、組付動作を行う被組付部品の性質によって該標準組付動作別組立不良係数を補正する第二の組立不良補正係数で該標準組付動作別組立不良係数を補正する。そして、該製品または部品を組立てる職場の標準動作作業不良の発生頻度と、該補正された標準組付動作別組立不良係数を複合することにより、製品または部品の組立作業不良の発生頻度を推定する方法である。このように、組付作業を標準組付動作で表現することで、組立作業不良の発生頻度を推定する公知の方法として特開平10−334151号に記載の方法があり、その方法を用いても良い。
【0015】
図5に本発明の方法を実現するシステム構成の一例を示す。本システムは、本発明の組立時間バラツキを考慮した組立時間推定システム10と、2次元CADシステムや3次元CADシステムや部品の部品名称、部品番号、材質、重量、個数、単価などの情報を記憶する部品情報データベースなどからなる設計システム20とから構成される。
【0016】
時間バラツキを考慮した組立時間推定システム10は、キーボード、マウス、ペン入力タブレット、記憶媒体を介しての入力手段等で構成された入力手段1、ディスプレイモニター等の表示手段、印刷手段を介しての出力手段等で構成された出力手段2と、本発明の組立時間ばらつき算出処理を実行したり、組立時間算出処理を実行したり、組立不良係数算出処理を実行する計算手段3と、予め定めた係数(標準動作別組立時間係数41、組付部品性質別の第一の組立時間補正係数42、被組付部品性質別の第二の組立時間補正係数43、標準動作別組立不良係数44、組付部品性質別の第一の組立不良補正係数45、被組付部品性質別の第二の組立不良補正係数46、組立時間バラツキ変換係数47、計算プログラム48)、入力手段1によって得られた入力情報(標準動作情報、組付部品性質情報、被組付部品情報)を記憶する記憶手段4から構成される。なお、計算手段3は、CPU32、所定のプログラムを格納したROM31、各種データを一次格納するRAM33、入出力インターフェース部34、およびバスライン35などから構成される。
【0017】
図6は、本発明による時間バラツキを考慮した組立時間推定システムの処理フローの一例を示す。処理フローは大きく3つのフロー、動作および部品性質分析フロー200、動作および部品性質入力フロー300、時間バラツキを考慮した組立時間の算出フロー400、結果出力を行うフロー500とから構成される。動作および部品性質分析フロー200、動作および部品性質入力フロー300、については特開平10−334151などに詳しく示された公知の方法を用いることとする。
【0018】
図7に、図6の中の時間バラツキを考慮した組立時間の算出フロー400についての詳細な実施例を示す。
【0019】
まず、組立時間算出フロー410について説明する。ステップ411では、フロー300において入力された動作の種類情報を用いて、記憶手段4に格納されている標準動作別組立時間係数41の中から該動作の組立時間係数Toiを引き当てる。次に、ステップ412では、フロー300において入力された組付部品の性質情報を用いて、記憶手段4に格納されている組付部品性質別の第一の組立時間補正係数42の中から該組付部品の第一の組立時間補正係数Tc1iを引き当てる。ステップ413では、フロー300において入力された被組付部品の性質情報を用いて、記憶手段4に格納されている被組付部品性質別の第二の組立時間補正係数43の中から該被組付部品の第二の組立時間補正係数Tc2iを引き当てる。ステップ414では、ステップ411で得た組立時間係数Toiを、ステップ412、413で得た第一の組立時間補正係数Tc1i、第二の組立時間補正係数Tc2iによって補正し、該動作の組立時間Tiを算出する。
【0020】
次に、組立不良係数算出フロー420について説明する。ステップ421では、フロー300において入力された動作の種類情報を用いて、記憶手段4に格納されている標準動作別組立不良係数44の中から該動作の組立不良係数Roiを引き当てる。次に、ステップ422では、フロー300において入力された組付部品の性質情報を用いて、記憶手段4に格納されている組付部品性質別の第一の組立不良補正係数45の中から該組付部品の第一の組立不良補正係数Rc1iを引き当てる。ステップ423は、フロー300において入力された被組付部品の性質情報を用いて、記憶手段4に格納されている被組付部品性質別の第二の組立不良補正係数46の中から該被組付部品の第二の組立不良補正係数Rc2iを引き当てる。ステップ424では、ステップ421で得た組立不良係数Roiを、ステップ422、423で得た第一の組立不良補正係数Rc1i、第二の組立不良補正係数Rc2iによって補正し、該動作の組立不良係数Riを算出する。
【0021】
次に、組立時間バラツキ補正係数算出フロー430について説明する。ステップ431では、ステップ424で得た組立不良係数Riを、記憶手段4に格納されている組立時間バラツキ変換係数TTRによって変換し、組立時間バラツキ補正係数Tcsiを算出する。図7では、記憶手段4に格納されている組立時間バラツキ変換係数TTRが、どの動作に対しても一定の数値の場合のフローであるが、組立時間バラツキ変換係数TTRは1つの固定値に限らない。例えば、組立時間バラツキ変換係数TTRを、組付動作毎に設定しても本発明の範囲内であり、また、組立プロセスの職場環境に応じた設定値であってもよい。
【0022】
次に、図7の組立時間バラツキ算出フロー440について説明する。ステップ441では、ステップ414で得た該動作の組立時間Tiを、ステップ431で得た組立時間バラツキ補正係数Tcsiで補正し、該動作の組立時間バラツキTsiを計算する。
【0023】
組立時間バラツキ補正係数算出フロー430の他の実施例を図8に示す。ステップ432では、フロー300において入力された動作の種類情報を用いて、記憶手段4に格納されている組立時間バラツキ変換係数47の中から該動作の組立時間バラツキ変換係数TTRiを引き当てる。このように、標準動作別に組立時間バラツキ変換係数47を設定してもよい。
【0024】
また、フロー430で用いている組立時間バラツキ変換係数TTRは、予め決定した数値を記憶手段4に格納しておくものである。そこで、組立時間バラツキ変換係数TTRを予め決定する方法の実施例を説明する。従来製品など、既に生産を行っている製品の組立ラインにおいて、ある部品Pの組立時間Tpを複数回計測する。実測した複数の実組立時間データが図9に示すような正規分布で表せると仮定し、平均値Tpaveと標準偏差σpを求める。次に、ある確率rで行われる組立時間の下側確率の最大値をTpmax、ある確率rで行われる組立時間の上側確率の最小値をTpminとし、その差分ΔTp=Tpmax−Tpminを部品Pの組立時間Tpのバラツキとする。ここで、ある確率rで行われる組立時間の最大値、最小値は、以下の式(1)を基に求められるKを用いて、式(2)、(3)より求められる。
【0025】
【数1】

Figure 0004120188
【数2】
Figure 0004120188
【数3】
Figure 0004120188
ここで、ある確率rとは、ユーザが推定したい時間バラツキの範囲を指定することができ、入力手段を介して入力を受ける。
【0026】
一方、該部品Pの組付動作を、前記標準組付動作、組付部品性質別第一不良補正係数、被組付部品性質別第二不良補正係数によって表現し、組立不良係数算出フロー420を用いて、部品Pの組立不良係数Rpを算出する。組立時間バラツキ変換係数TTRは、以下の式で算出できる。
【0027】
【数4】
Figure 0004120188
以上は、ある部品一個を用いた場合の方法であるが、複数個の部品を用いて組立時間バラツキ変換係数を算出することもできる。部品番号i=1からnまでの部品Piについて前記のようにTTRiを算出し、その平均値を算出することで、TTRを決定することができる。
【0028】
次に、結果出力の実施例を説明する。
【0029】
図10に、本発明による時間バラツキを考慮した組立時間推定システムの結果出力の実施例として、動作毎に結果出力を行った例を示す。501、502はフロー300において入力された動作情報、部品性質情報、503はステップ414で得た各動作の組立時間、504はステップ441で得た各動作の組立時間バラツキ、505はステップ424で得た各動作の組立不良係数が出力されており、503、504が同時に示されているのが特徴である。
【0030】
図11に、他の実施例として、部品毎に結果出力を行った例を示す。509はフロー300において入力された動作情報、部品性質情報、510は部品毎の組立時間、511は部品毎の組立時間バラツキ、512は組付順番号が出力されている。
ここで、部品毎の組立時間の算出方法の一実施例として、組付部品を被組付部品に組付けるまでに用いる組付動作毎の組立時間の総和で求めることとするが、算出方法はこれに限らない。また、算出方法の他の実施例として、組付部品を被組付部品に組付けるまでに用いる組付動作毎の組立時間を組付動作の数別補正係数で補正し、補正後の組付動作毎組立時間の総和で求めてもよい。
【0031】
部品毎の組立時間バラツキの算出方法の一実施例として、組付部品を被組付部品に組付けるまでに用いる組付動作毎の組立時間の二乗和平均(組付動作毎組立時間の二乗を総和し、平方根を求める)で求めることとするが、算出方法はこれに限らない。また、算出方法の他の実施例として、組付部品を被組付部品に組付けるまでに用いる組付動作毎の組立時間バラツキを組付動作の数別補正係数で補正し、補正後の組付動作毎組立時間バラツキの二乗和平均で求めてもよい。
【0032】
部品毎の組立不良係数の算出方法の一実施例として、組付部品を被組付部品に組付けるまでに用いる組付動作毎の組立不良係数の総和で求めることとするが、算出方法はこれに限らない。また、算出方法の他の実施例として、組付部品を被組付部品に組付けるまでに用いる組付動作毎の組立不良係数を組付動作の数別補正係数で補正し、補正後の組付動作毎組立不良係数の総和で求めてもよい。
【0033】
また、出力結果のその他の情報として、評価対象が複数の部品で構成される製品の場合は、506:製品全体の組立時間、507:製品全体の組立時間バラツキ、508:製品全体の組立不良係数を示す。ここで、製品全体の組立時間の算出方法の一実施例として、該製品を構成する組付部品毎の組立時間の総和で求めることとする。製品全体の組立時間バラツキの算出方法の一実施例として、該製品を構成する組付部品毎の組立時間バラツキの二乗和平均で求めることとする。製品全体の組立不良係数の算出方法の一実施例として、該製品を構成する組付部品毎の組立不良係数の総和で求めることとする。それぞれの製品全体値算出方法はこれに限らない。
【0034】
図12に出力結果の他の実施例として、組立不良係数の大きい順に部品毎に出力を行った例をしめす。513に高不良係数順番号が出力されている。
【0035】
図13に出力結果の他の実施例として、組立時間バラツキの大きい順に部品毎に出力を行った例をしめす。513に組立時間バラツキ順番号が出力されている。
【0036】
図14に出力結果の他の実施例として、組立時間および組立時間バラツキのグラフ表示を行った例をしめす。514に組立時間および組立時間バラツキグラフが出力されている。
【0037】
次に、本発明による組立時間推定方法を用いて、工程分割設計を行う場合の実施例を示す。
【0038】
まず、本実施例を可能とするためには、図6に示した本システムの処理フローにおいて、フロー300において入力する項目に、各部品に対して工程番号を決めた工程番号情報を入力する必要がある。図15に、入力された動作情報、部品性質情報、工程番号情報を用いて、本発明による組立時間バラツキを考慮した組立時間推定システムで算出した出力結果の一例を示す。515に工程番号、516に組付順番号、517に部品情報(部品名称、部品図番など)、518に動作情報、部品性質情報、519に工程毎の組立時間、520に組立時間バラツキ、521に組立時間および組立時間バラツキのグラフが出力されている。ここで、工程毎の組立時間算出方法の一実施例として、該工程に含まれる組付部品毎の組立時間の総和で求めることとする。工程毎の組立時間バラツキ算出方法の一実施例として、該工程に含まれる組付部品毎の組立時間バラツキの二乗和で求めることとする。工程毎に組立時間、組立時間バラツキを出力することによって、ユーザは、各工程間の組立時間を時間バラツキを考慮したより実際時間に近い値を得ることができ、設計段階などの製造段階前に、各工程間の組立時間を平均化したり、工程分割などの検討を行うことができる。
【0039】
このように、本実施例によれば、動作毎、部品毎だけでなく、ユーザの設定した分類毎に組立時間、組立時間バラツキを算出することができる。
【0040】
図16に、工程毎の組立時間バラツキ算出方法の他の実施例の計算処理方法を示す。本システムの処理フロー300において入力された工程番号情報により、工程番号Jにふくまれる部品P=P1〜Pnとしたときの、工程毎組立時間バラツキ算出方法を説明する。まず、ステップフロー610において、シミュレーション回数Knを指定する。次に、ステップ611において、フロー410と440で得られた部品P=Piの組立時間Tiと組立時間バラツキTsiから、図に示すような組立時間の発生頻度を想定し、発生頻度にあわせた乱数Nを0〜1の間で発生させて、組立時間シミュレート値Tsimを算出する。これを部品P=P1〜Pnまで繰り返す。次に、ステップ612において、ステップ611で得られた部品P=P1〜Pnまでの組立時間シミュレート値Tsim(1)〜Tsim(n)の総和を求めることにより、シミュレート回数番号Kにおける工程毎組立時間Ttotal(K)を算出する。これをシミュレート回数K=1〜Knまで繰り返す。そして、ステップ613において、ステップ612で得られた工程毎組立時間Ttotal(1)〜Ttotal(K)の平均と偏差を求めることにより、工程毎組立時間および、組立時間バラツキを算出する。この方法は、各部品毎の組立時間が最悪値ばかりが重なった場合に、工程毎の組立時間合計が大幅に長くなることも考慮した算出方法である。
【0041】
次に、本発明を構造設計者が利用する場合の一実施形態について説明する。まず、製品の寸法や仕様を決定する構造設計者は、製品の性能やコストなどを勘案して該製品の部品構成、各部品の寸法、材料などを決定した後、本発明の時間推定システムを用いて、該製品の組立時間を算出する。具体的には、図6に示したように各部品の組付け動作、部品性質を分析し、該組付け動作や部品性質を本システムに入力すると、時間バラツキを考慮した組立時間が算出される。本システムによれば、部品別、動作別に、組立時間、組立時間バラツキが算出されるので、設計者は出力結果より、一番組立時間が大きい部品や組付け動作、組立時間バラツキの大きい部品や動作を容易に抽出することができ、組付け動作や部品性質を改善することができる。このように、一つ一つの部品や動作について改善を検討する際に利用することができる。
【0042】
次に、製品を生産するラインの設計や工程設計を行う生産技術者が利用する場合の一実施形態について説明する。構造設計者より、製品の部品構成、各部品の寸法、材料などの設計情報データを受け取った後、本発明の時間推定システムを用いて、該製品の組立時間を算出する。具体的には、図6に示したように各部品の組付け動作、部品性質を分析し、該組付け動作や部品性質を本システムに入力すると、時間バラツキを考慮した組立時間が算出される。また、構造設計者が本システムを用いて計算した入力データを利用することもできる。その時、入力追加項目として各部品に工程順番号を入力することにより、図15に示すような工程別の組立時間、組立時間バラツキを算出することができる。本システムによれば、工程別に、組立時間、組立時間バラツキが算出されるので、生産技術者は出力結果より、一番組立時間が大きい工程、組立時間バラツキが大きい工程を容易に抽出することができ、組付け順序を入れ替えるなどの方法によって、各工程間の組付け時間、組付け時間バラツキを平均化することができる。
【0043】
次に、本システムを用いて上記のような手順を自動的に行い、最適工程割付を決定する方法の実施例について説明する。図17に具体的な手順を示す。ステップ710で、製品を構成する部品Pi(i=1〜n)について、組付け動作および部品性質情報に加えて、製造ラインに配置する人数Mを決定する。次に、ステップ711で、図7に示したような本システムの方法により、各部品の組立時間Ti、組立時間バラツキTcsiを算出する。ステップ712では、各部品Piについて、総組立時間Triを以下の式で算出する。
【0044】
Tri=Ti+Tcsi
ステップ713では、各工程間の組立時間差が無い理想的な工程時間としてTaを以下の式で算出する。
【0045】
Ta=(ΣTri)/M
ステップ714では、ステップ713で算出された理想工程時間Taに最も近い部品組み合わせ(工程割付)を求める。まず、生産ラインを構成する人数Mを繰り返し数とする。次に、部品k個の中からr個を選ぶ組み合わせを算出するため、繰り返し数rを設定し、また、繰り返しM=M−1までに採用された部品C(1)〜C(M−1)を除外しておく。次に、部品k個の中からr個を選ぶ組み合わせrCkを算出し、該部品組み合わせについて、組立時間の合計値Tqを算出する。
【0046】
Tq(q=1〜rCk)=ΣTri
次に、各組み合わせの組立時間合計値Tqと理想組立時間Taとの差分ΔTの絶対値を求め、最小値をΔT(r)とする。次に、繰り返し数r−1のときのΔT(r−1)との大小を比較し、ΔT(r)>ΔT(r−1)となるまで、rを1ずつ増やして繰り返す。そして、ΔT(r)>ΔT(r−1)が成り立ったとき、r−1の時においてΔTの絶対値が最小となった部品組み合わせをC(M)、組立時間合計値TqをT(M)として記憶する。これをM=1〜Mまで繰り返す。
【0047】
以上のステップにより、各工程間の組立時間の差が少ない部品組み合わせを求めることができる。
【0048】
このように、自動的に部品組み合わせと組立時間合計値を算出し、その結果を示すことで、生産技術者は、各工程間の組立時間の差が小さい組み合わせを容易に抽出することができる。
【0049】
【発明の効果】
本発明によれば、設計段階や製造工程計画段階などの製造前の段階で、組立時間バラツキを考慮した組立時間を推定することが可能となり、製品の低コスト化、量産早期立ち上げなどに寄与することができる。
【図面の簡単な説明】
【図1】本発明の組立時間バラツキ推定の考え方を示す図
【図2】本発明の組立に要する時間と組立作業不良の発生頻度との複合方法の一実施例を示す図
【図3】本発明の組立に要する時間の推定方法の一実施例を示す図
【図4】本発明の組立作業不良の発生頻度の推定方法の一実施例を示す図
【図5】本発明のシステムの一実施例の構成を示す図
【図6】本発明のシステムの計算処理の流れの一例を示す図
【図7】本発明のシステムの計算処理の流れの一例を示す図
【図8】本発明のシステムの計算処理の流れの一例を示す図
【図9】本発明の組立時間バラツキ変換係数を算出する方法の一例を示す図
【図10】本発明のシステムの出力画面の一例を示す図
【図11】本発明のシステムの出力画面の一例を示す図
【図12】本発明のシステムの出力画面の一例を示す図
【図13】本発明のシステムの出力画面の一例を示す図
【図14】本発明のシステムの出力画面の一例を示す図
【図15】本発明のシステムの出力画面の一例を示す図
【図16】本発明の工程毎の組立時間バラツキ算出方法の一例を示す図
【図17】本発明の利用方法の一例を示す図
【符号の説明】
1…入力手段、2…出力手段、3…計算手段、4…記憶手段、5…通信手段、10…格付けシステム、20…設計システム、31…ROM、32…CPU、プログラム実行部、33…RAM、34…入出力インターフェース部、35…バスライン、[0001]
BACKGROUND OF THE INVENTION
In the present invention, when a structural designer predicts the assembly time of each part of a product designed by the structural designer and examines improvement of the design, or when a production engineer considers improvement of the process design before manufacturing the product, etc. An assembly time estimation system to support study work to evaluate assembly time .
[0002]
[Prior art]
Conventionally, as a method of estimating the time required to assemble a product to be assembled and manufactured (hereinafter abbreviated as “assembly time”), the time required for assembly work on the assembly line is actually measured, and this is used as an experience value for the next product. However, there is a problem that the assembly time cannot be predicted when a new process occurs. In order to solve this problem, an operation type necessary for expressing the operation contents of the part assembly work is determined (downward movement operation, lateral movement operation, etc .; referred to as standard assembly operation), and the standard group When the standard assembling operation is performed under a predetermined “a certain worker condition, a certain part condition, a certain work workplace condition” (referred to as a reference condition) for each attaching operation, the standard assembling operation is performed. An assembly time estimation method in which a numerical value for the time required for setting is set has been considered (Japanese Patent Laid-Open No. 04-069703). With this conventional technique, even if a new assembly work occurs before manufacturing at the design stage or the manufacturing process planning stage, the assembly time can be estimated by expressing the work by the standard assembly operation. Became.
[0003]
[Problems to be solved by the invention]
However, also in this conventional assembly time estimation method, the assembly time value for the standard assembly operation is an ideal state value, although differences in the type of operation and reference conditions are taken into account. However, in an actual assembly line, even if the same worker performs the same work, there is a variation in assembly time, and it may take about twice or more if the assembly fails and re-executes. The conventional assembling time estimation method does not take time variation into consideration, and has a problem that the actual assembling time becomes longer than the estimated assembling time particularly in an operation that is difficult to assemble.
[0004]
This problem is that in an assembly line design composed of a plurality of processes, if a process division is determined based on a conventional estimated assembly time value, a process including an operation that has a large error from the actual assembly time during actual production. This becomes a bottleneck process, which increases the cycle time of the entire product and leads to problems such as product delivery delays.
[0005]
An object of the present invention is to provide a method and a system for estimating an assembly time in consideration of the assembly time variation in a pre-manufacturing stage such as a design stage or a manufacturing process planning stage.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention estimates the assembly time variation using the frequency of occurrence of defective assembly work, and estimates the assembly time considering the assembly variation.
[0007]
Here, the frequency of occurrence of defective assembly work refers to the probability that the work of assembling parts cannot be performed reliably.
[0008]
If a person cannot reliably perform the assembling operation, the assembling operation must be performed again, and the assembling time increases. Therefore, the greater the probability that a person cannot ideally perform the assembling operation, the more the operation with a long assembling time increases, and the average assembling time becomes longer and the variation becomes larger than the ideal assembling time. Thus, our research has revealed that there is a correlation between the frequency of assembly work failures and assembly time variation.
[0009]
Therefore, in the present invention, the assembly time variation is estimated based on the frequency of occurrence of defective assembly work.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
[0011]
FIG. 1 shows the concept of estimating assembly time variation by the method of the present invention. As shown in FIG. 1, the assembling time variation is obtained by combining the time required for assembling a product or part and the frequency of occurrence of defective assembly work of the product or part.
[0012]
FIG. 2 shows an embodiment of a method for combining the time required for assembly and the frequency of occurrence of defective assembly work. A numerical value (for example, 100 ppm) that is the frequency of occurrence of defective operations in a certain assembly work is converted into an assembly time variation correction coefficient by a predetermined coefficient (referred to as an assembly time variation conversion coefficient), and the time required for the assembly is calculated. By correcting with the assembly time variation correction coefficient, assembly time variation is obtained. Here, the assembly time variation conversion coefficient may be a constant value for every operation failure occurrence frequency, or may be set to a different value depending on the assembling operation, the part property, or the like.
[0013]
FIG. 3 shows an embodiment of a method for estimating the “time required for assembly” of the product or part shown in FIG. 1 or 2. An operation type (standard assembly operation) necessary for expressing the operation content of the component assembly operation is determined in advance, and for each standard assembly operation, a predetermined “an operator condition, a certain component condition, When the standard assembly operation is performed under a certain work workplace condition (referred to as a reference condition), an assembly time coefficient for each standard assembly operation that sets a numerical value of the time required to perform the standard assembly operation is Determine. Next, the assembly time coefficient for each standard assembly operation is corrected with the first assembly time correction coefficient that corrects the assembly time coefficient for each standard assembly operation according to the nature of the assembly part that performs the assembly operation. The assembly time coefficient for each standard assembly operation is corrected with a second assembly time correction coefficient for correcting the assembly time coefficient for each standard assembly operation according to the property of the part to be assembled. Then, the time required for the assembly of the product or part is estimated by combining the time required for the standard operation in the workplace where the product or part is assembled and the corrected assembly time coefficient for each standard assembly operation. As described above, there is a method described in Japanese Patent Application Laid-Open No. 04-069703 as a known method for estimating the assembly time by expressing the assembly work by the standard assembly operation, and this method may be used.
[0014]
FIG. 4 shows an embodiment of a method for estimating the frequency of occurrence of defective assembly operations for products or parts. An operation type (standard assembly operation) necessary for expressing the operation content of the component assembly operation is determined in advance, and for each standard assembly operation, a predetermined “an operator condition, a certain component condition, Standard assembly with a numerical value indicating the probability that the standard assembly operation cannot be performed reliably when the standard assembly operation is performed under a certain work workplace condition (referred to as a reference condition). Determine assembly failure coefficient for each operation. Next, the assembly failure coefficient for each standard assembly operation is corrected with the first assembly failure correction coefficient for correcting the assembly failure coefficient for each standard assembly operation according to the property of the assembly part that performs the assembly operation, and the assembly operation is performed. The assembly failure coefficient for each standard assembly operation is corrected with a second assembly failure correction coefficient for correcting the assembly failure coefficient for each standard assembly operation according to the property of the part to be assembled. Then, the occurrence frequency of the assembly operation failure of the product or part is estimated by combining the occurrence frequency of the standard operation operation failure in the workplace where the product or part is assembled and the corrected assembly failure coefficient for each standard assembly operation. Is the method. As described above, there is a method described in Japanese Patent Laid-Open No. 10-334151 as a known method for estimating the frequency of occurrence of defective assembly work by expressing the assembly work as a standard assembly operation. good.
[0015]
FIG. 5 shows an example of a system configuration for realizing the method of the present invention. The system stores an assembly time estimation system 10 that takes into account the assembly time variation of the present invention, and information such as part names, part numbers, materials, weights, numbers, and unit prices of two-dimensional CAD systems and three-dimensional CAD systems and parts. And a design system 20 including a parts information database.
[0016]
The assembly time estimation system 10 taking into account the time variation includes an input means 1 composed of an input means via a keyboard, a mouse, a pen input tablet, a storage medium, a display means such as a display monitor, and a printing means. An output unit 2 constituted by an output unit and the like, a calculation unit 3 for executing an assembly time variation calculation process of the present invention, an assembly time calculation process, an assembly failure coefficient calculation process, and a predetermined unit Coefficients (Assembly time coefficient 41 by standard operation, first assembly time correction coefficient 42 by nature of assembled part, second assembly time correction coefficient 43 by nature of part to be assembled, assembly failure coefficient 44 by standard action, group The first assembly failure correction coefficient 45 for each attached part property, the second assembly failure correction coefficient 46 for each attached part property, the assembly time variation conversion coefficient 47, the calculation program 48), and the input means 1 Input information obtained I (normal operation information, assembly parts nature information, parts information with the set) and a storage unit 4 for storing. The calculation means 3 includes a CPU 32, a ROM 31 that stores a predetermined program, a RAM 33 that primarily stores various data, an input / output interface unit 34, a bus line 35, and the like.
[0017]
FIG. 6 shows an example of the processing flow of the assembly time estimation system in consideration of time variation according to the present invention. The processing flow is roughly composed of three flows, an operation and component property analysis flow 200, an operation and component property input flow 300, an assembly time calculation flow 400 considering time variation, and a result output flow 500. For the operation and component property analysis flow 200 and the operation and component property input flow 300, known methods detailed in Japanese Patent Laid-Open No. 10-334151 are used.
[0018]
FIG. 7 shows a detailed embodiment of the assembly time calculation flow 400 in consideration of the time variation in FIG.
[0019]
First, the assembly time calculation flow 410 will be described. In step 411, using the operation type information input in the flow 300, the assembly time coefficient Toi of the operation is assigned from the standard operation-specific assembly time coefficients 41 stored in the storage unit 4. Next, in step 412, using the assembly part property information input in the flow 300, the assembly time correction coefficient 42 for each assembly component property stored in the storage unit 4 is selected from the first assembly time correction coefficient 42. The first assembly time correction coefficient Tc1i of the attached part is assigned. In step 413, using the property information of the part to be assembled input in the flow 300, the second assembly time correction coefficient 43 for each part to be assembled stored in the storage means 4 is used for the assembly. The second assembly time correction coefficient Tc2i of the attached part is assigned. In step 414, the assembly time coefficient Toi obtained in step 411 is corrected by the first assembly time correction coefficient Tc1i and the second assembly time correction coefficient Tc2i obtained in steps 412 and 413, and the assembly time Ti of the operation is obtained. calculate.
[0020]
Next, the assembly failure coefficient calculation flow 420 will be described. In step 421, the assembly failure coefficient Roi of the operation is assigned from the assembly failure coefficients 44 classified by standard operation stored in the storage unit 4 using the operation type information input in the flow 300. Next, in step 422, using the assembly part property information input in the flow 300, the assembly failure correction coefficient 45 for each assembly component property stored in the storage unit 4 is selected from the first assembly failure correction coefficient 45. The first assembly failure correction coefficient Rc1i of the attached part is assigned. Step 423 uses the property information of the part to be assembled input in the flow 300 to select the assembled part from the second assembly failure correction coefficient 46 for each part to be assembled stored in the storage means 4. The second assembly failure correction coefficient Rc2i of the attached part is assigned. In step 424, the assembly failure coefficient Roi obtained in step 421 is corrected by the first assembly failure correction coefficient Rc1i and the second assembly failure correction coefficient Rc2i obtained in steps 422 and 423, and the assembly failure coefficient Ri of the operation is corrected. Is calculated.
[0021]
Next, the assembly time variation correction coefficient calculation flow 430 will be described. In step 431, the assembly failure coefficient Ri obtained in step 424 is replaced with the assembly time variation conversion coefficient T stored in the storage unit 4. TR To calculate an assembly time variation correction coefficient Tcsi. In FIG. 7, the assembly time variation conversion coefficient T stored in the storage means 4 TR Is a flow in the case of a constant value for any operation, but the assembly time variation conversion coefficient T TR Is not limited to one fixed value. For example, assembly time variation conversion coefficient T TR Even if it is set for each assembling operation, it is within the scope of the present invention, and may be a set value according to the work environment of the assembly process.
[0022]
Next, the assembly time variation calculation flow 440 in FIG. 7 will be described. In step 441, the assembly time Ti of the operation obtained in step 414 is corrected by the assembly time variation correction coefficient Tcsi obtained in step 431, and the assembly time variation Tsi of the operation is calculated.
[0023]
Another embodiment of an assembly time variation correction coefficient calculation flow 430 is shown in FIG. In step 432, the assembly time variation conversion coefficient TTRi of the operation is assigned from the assembly time variation conversion coefficient 47 stored in the storage unit 4 using the operation type information input in the flow 300. Thus, the assembly time variation conversion coefficient 47 may be set for each standard operation.
[0024]
Also, the assembly time variation conversion coefficient T used in the flow 430 TR Is for storing a predetermined numerical value in the storage means 4. Therefore, assembly time variation conversion coefficient T TR An embodiment of a method for predetermining the value will be described. In an assembly line of a product that has already been produced, such as a conventional product, the assembly time Tp of a certain part P is measured a plurality of times. Assuming that a plurality of actually measured actual assembly time data can be represented by a normal distribution as shown in FIG. 9, an average value Tpave and a standard deviation σp are obtained. Next, Tpmax is the maximum value of the lower probability of assembly time performed at a certain probability r, Tpmin is the minimum value of the upper probability of assembly time performed at a certain probability r, and the difference ΔTp = Tpmax−Tpmin is set to Assume that the assembly time Tp varies. Here, the maximum value and the minimum value of the assembly time performed at a certain probability r are obtained from the equations (2) and (3) using K obtained based on the following equation (1).
[0025]
[Expression 1]
Figure 0004120188
[Expression 2]
Figure 0004120188
[Equation 3]
Figure 0004120188
Here, the certain probability r can designate a range of time variation that the user wants to estimate, and receives an input via the input means.
[0026]
On the other hand, the assembling operation of the part P is expressed by the standard assembling operation, the first defect correction coefficient for each assembled part property, and the second defect correction coefficient for each assembled part property. Using this, the assembly failure coefficient Rp of the component P is calculated. Assembly time variation conversion factor T TR Can be calculated by the following equation.
[0027]
[Expression 4]
Figure 0004120188
The above is a method in the case where one part is used, but the assembly time variation conversion coefficient can also be calculated using a plurality of parts. T as described above for parts Pi with part numbers i = 1 to n TRi And calculating the average value, T TR Can be determined.
[0028]
Next, an example of the result output will be described.
[0029]
FIG. 10 shows an example of the result output for each operation as an example of the result output of the assembly time estimation system considering the time variation according to the present invention. 501 and 502 are the operation information and part property information input in the flow 300, 503 is the assembly time of each operation obtained in step 414, 504 is the assembly time variation of each operation obtained in step 441, and 505 is obtained in step 424. In addition, the assembly failure coefficient of each operation is output, and 503 and 504 are shown at the same time.
[0030]
FIG. 11 shows an example in which results are output for each component as another embodiment. 509 is the operation information input in the flow 300, part property information, 510 is the assembly time for each part, 511 is the variation in assembly time for each part, and 512 is the assembly sequence number.
Here, as one example of the method for calculating the assembly time for each part, the total time of the assembly time for each assembly operation used until the assembly part is assembled to the part to be assembled is obtained. Not limited to this. As another example of the calculation method, the assembly time for each assembling operation used until the assembling part is assembled to the assembling part is corrected with the correction coefficient for each assembling operation, and the corrected assembling is performed. You may obtain | require by the sum total of the assembly time for every operation | movement.
[0031]
As an example of a method for calculating the variation in assembly time for each part, an average sum of squares of assembly time for each assembly operation used until the assembly part is assembled to the part to be assembled (the square of the assembly time for each assembly operation) The sum is calculated and the square root is obtained), but the calculation method is not limited to this. As another example of the calculation method, the assembly time variation for each assembling operation used until the assembling part is assembled to the assembling part is corrected with the correction coefficient for each assembling operation, and the corrected assembling is performed. You may obtain | require by the square sum average of the assembly time dispersion | variation for every operation.
[0032]
As an example of a method for calculating the assembly failure coefficient for each part, the assembly failure coefficient for each assembly operation used until the assembly part is assembled to the part to be assembled is obtained. Not limited to. As another example of the calculation method, the assembly failure coefficient for each assembly operation used until the assembly part is assembled to the assembly part is corrected with the correction coefficient for each number of assembly operations, and the corrected assembly is performed. You may obtain | require with the sum total of the assembly defect coefficient for every operation.
[0033]
As other information of the output result, when the evaluation target is a product composed of a plurality of parts, 506: assembly time of the entire product, 507: variation in assembly time of the entire product, 508: assembly failure coefficient of the entire product Indicates. Here, as an example of a method for calculating the assembly time of the entire product, the total of the assembly time for each assembly part constituting the product is obtained. As an example of a method for calculating the assembly time variation of the entire product, the average sum of squares of the assembly time variation for each assembly part constituting the product is obtained. As an example of a method for calculating the assembly failure coefficient of the entire product, the total assembly failure coefficient for each assembly component constituting the product is obtained. The total product value calculation method is not limited to this.
[0034]
FIG. 12 shows another example of output results in which output is performed for each part in descending order of assembly failure coefficient. In 513, a high defect coefficient order number is output.
[0035]
FIG. 13 shows another example of output results in which output is performed for each component in descending order of assembly time variation. An assembly time variation order number is output at 513.
[0036]
FIG. 14 shows another example of the output result, in which an assembling time and an assembling time variation graph are displayed. In 514, an assembly time and an assembly time variation graph are output.
[0037]
Next, an example in which process division design is performed using the assembly time estimation method according to the present invention will be described.
[0038]
First, in order to enable the present embodiment, in the processing flow of the system shown in FIG. 6, it is necessary to input process number information in which a process number is determined for each part in the items to be input in the flow 300. There is. FIG. 15 shows an example of an output result calculated by the assembly time estimation system in consideration of the assembly time variation using the input operation information, part property information, and process number information. 515 is a process number, 516 is an assembly sequence number, 517 is part information (part name, part diagram number, etc.), 518 is operation information, part property information, 519 is an assembly time for each process, 520 is an assembly time variation, 521 A graph of assembly time and assembly time variation is output. Here, as an embodiment of the method for calculating the assembly time for each process, the total of the assembly time for each assembly part included in the process is obtained. As an example of the method for calculating the assembly time variation for each process, the sum of squares of the assembly time variation for each assembly component included in the process is obtained. By outputting the assembly time and assembly time variation for each process, the user can obtain the assembly time between each process closer to the actual time considering the time variation, before the manufacturing stage such as the design stage. The assembly time between each process can be averaged or the process division can be considered.
[0039]
Thus, according to the present embodiment, it is possible to calculate the assembly time and the assembly time variation not only for each operation and each part but also for each classification set by the user.
[0040]
FIG. 16 shows a calculation processing method according to another embodiment of the assembly time variation calculation method for each process. An assembly time variation calculation method for each process when the parts P included in the process number J are P = P1 to Pn based on the process number information input in the process flow 300 of the present system will be described. First, in step flow 610, the number of simulations Kn is specified. Next, in step 611, the occurrence frequency of the assembly time as shown in the figure is assumed from the assembly time Ti and the assembly time variation Tsi of the part P = Pi obtained in the flows 410 and 440, and a random number according to the generation frequency is assumed. N is generated between 0 and 1, and an assembly time simulated value Tsim is calculated. This is repeated for parts P = P1 to Pn. Next, in step 612, the sum of assembly time simulated values Tsim (1) to Tsim (n) obtained in step 611 up to the parts P = P1 to Pn is obtained for each process in the simulation number K. An assembly time Ttotal (K) is calculated. This is repeated until the number of simulations K = 1 to Kn. In step 613, the assembly time for each process and the variation in assembly time are calculated by calculating the average and deviation of the process assembly times Ttotal (1) to Ttotal (K) obtained in step 612. This method is a calculation method that takes into account that the total assembly time for each process greatly increases when only the worst assembly time for each part overlaps.
[0041]
Next, an embodiment in which the present invention is used by a structural designer will be described. First, a structural designer who determines the dimensions and specifications of a product determines the component configuration of each product, the dimensions and materials of each product in consideration of the performance and cost of the product, and then uses the time estimation system of the present invention. Used to calculate the assembly time of the product. Specifically, as shown in FIG. 6, when the assembly operation and part properties of each part are analyzed and the assembly operation and part properties are input to this system, the assembly time is calculated in consideration of time variation. . According to this system, the assembly time and the assembly time variation are calculated for each part and operation. Therefore, the designer can calculate the component with the longest assembly time, the assembly operation, the component with the largest assembly time variation, The operation can be easily extracted, and the assembling operation and part properties can be improved. In this way, it can be used when considering improvements for individual components and operations.
[0042]
Next, an embodiment in which a production engineer who designs a line for producing a product or designs a process is used will be described. After receiving design information data such as the part configuration of the product, the dimensions of each part, and the material from the structural designer, the assembly time of the product is calculated using the time estimation system of the present invention. Specifically, as shown in FIG. 6, when the assembly operation and part properties of each part are analyzed and the assembly operation and part properties are input to this system, the assembly time is calculated in consideration of time variation. . Also, input data calculated by the structural designer using this system can be used. At that time, by inputting a process sequence number to each part as an input additional item, it is possible to calculate the assembly time and assembly time variation for each process as shown in FIG. According to this system, the assembly time and the assembly time variation are calculated for each process. Therefore, the production engineer can easily extract the process with the largest assembly time and the process with the largest assembly time variation from the output result. It is possible to average the assembling time and assembling time variation between the processes by a method such as changing the assembling order.
[0043]
Next, an embodiment of a method for automatically performing the above-described procedure using this system and determining the optimum process allocation will be described. FIG. 17 shows a specific procedure. In step 710, in addition to the assembling operation and part property information, the number of persons M to be arranged on the production line is determined for the parts Pi (i = 1 to n) constituting the product. Next, in step 711, the assembly time Ti and the assembly time variation Tcsi of each part are calculated by the method of the present system as shown in FIG. In step 712, for each part Pi, the total assembly time Tri is calculated by the following equation.
[0044]
Tri = Ti + Tcsi
In step 713, Ta is calculated by the following equation as an ideal process time with no difference in assembly time between the processes.
[0045]
Ta = (ΣTri) / M
In step 714, a component combination (process allocation) closest to the ideal process time Ta calculated in step 713 is obtained. First, the number of people M constituting the production line is set as the number of repetitions. Next, in order to calculate a combination for selecting r out of k parts, the number of repetitions r is set, and the parts C (1) to C (M−1) adopted until the repetition M = M−1. ) Is excluded. Next, a combination rCk for selecting r out of k parts is calculated, and a total value Tq of assembly time is calculated for the part combination.
[0046]
Tq (q = 1 to rCk) = ΣTri
Next, the absolute value of the difference ΔT between the total assembly time Tq of each combination and the ideal assembly time Ta is obtained, and the minimum value is ΔT (r). Next, the magnitude is compared with ΔT (r−1) when the number of repetitions is r−1, and r is incremented by 1 until ΔT (r)> ΔT (r−1). Then, when ΔT (r)> ΔT (r−1) is satisfied, the component combination having the minimum absolute value of ΔT at r−1 is C (M), and the total assembly time Tq is T (M ). This is repeated from M = 1 to M.
[0047]
Through the above steps, it is possible to obtain a component combination with a small difference in assembly time between processes.
[0048]
Thus, by automatically calculating the component combination and the total assembly time value and showing the result, the production engineer can easily extract a combination with a small difference in assembly time between the processes.
[0049]
【The invention's effect】
According to the present invention, it is possible to estimate the assembly time in consideration of the assembly time variation in the pre-manufacturing stage such as the design stage and the manufacturing process planning stage, which contributes to cost reduction of the product and early start-up of mass production. can do.
[Brief description of the drawings]
FIG. 1 is a diagram showing the concept of assembly time variation estimation according to the present invention.
FIG. 2 is a diagram showing an embodiment of a combined method of the time required for assembly and the frequency of occurrence of defective assembly work according to the present invention
FIG. 3 is a diagram showing an embodiment of a method for estimating time required for assembly according to the present invention.
FIG. 4 is a diagram showing an embodiment of a method for estimating the frequency of occurrence of defective assembly work according to the present invention.
FIG. 5 is a diagram showing the configuration of an embodiment of the system of the present invention.
FIG. 6 is a diagram showing an example of the flow of calculation processing of the system of the present invention.
FIG. 7 is a diagram showing an example of the flow of calculation processing of the system of the present invention.
FIG. 8 is a diagram showing an example of the flow of calculation processing of the system of the present invention.
FIG. 9 is a diagram showing an example of a method for calculating an assembly time variation conversion coefficient according to the present invention.
FIG. 10 is a diagram showing an example of an output screen of the system of the present invention.
FIG. 11 is a diagram showing an example of an output screen of the system of the present invention.
FIG. 12 is a diagram showing an example of an output screen of the system of the present invention.
FIG. 13 is a diagram showing an example of an output screen of the system of the present invention.
FIG. 14 is a diagram showing an example of an output screen of the system of the present invention.
FIG. 15 is a diagram showing an example of an output screen of the system of the present invention.
FIG. 16 is a diagram showing an example of an assembly time variation calculation method for each process according to the present invention.
FIG. 17 is a diagram showing an example of the usage method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Input means, 2 ... Output means, 3 ... Calculation means, 4 ... Memory | storage means, 5 ... Communication means, 10 ... Rating system, 20 ... Design system, 31 ... ROM, 32 ... CPU, Program execution part, 33 ... RAM 34 ... Input / output interface unit, 35 ... Bus line,

Claims (1)

複数の部品を組み立てて製造する製品について、該製品の製造前に、前記各部品の組立時間、組立時間バラツキを予測する組立時間推定システムであって、
(1) 組立作業の動作内容を表現するための複数の標準組付動作を分類して予め定め、前記標準組付動作別の組立時間係数と、(2) 組付動作を行う組付部品の性質によって前記標準組付動作別組立時間係数を補正する第一の組立時間補正係数と、(3) 組付動作を行う被組付部品の性質によって前記標準組付動作別組立時間係数を補正する第二の組立時間補正係数と、(4) 前記標準組付動作毎に、予め定めた基準条件の下で前記標準組付動作を確実に行うことの出来ない確率の大小を示す数値を設定した標準組付動作別組立不良係数と、(5) 組付動作を行う組付部品の性質によって前記標準組付動作別組立不良係数を補正する第一の組立不良補正係数と、(6) 組付動作を行う被組付部品の性質によって前記標準組付動作別組立不良係数を補正する第二の組立不良補正係数と、(7) 既存の部品の組立時間の実測値を統計処理して、その正規分布の平均値、標準偏差より、ユーザが指定した確率に収まる時間バラツキ範囲へ、前記既存の部品の組付動作に対応する前記標準組付動作別組立不良係数、前記第一の組立不良補正係数、および前記第二の組立不良補正係数から算出した組立不良係数を変換する組立時間バラツキ変換係数と、を記憶する記憶手段と、
評価対象の部品の組立作業について、該部品の組立作業を表す所定の記号で表現された少なくともひとつの標準組付動作と、組付部品の性質、および被組付部品の性質を表す所定の記号で表現された情報の入力を受付ける入力手段と、
前記入力された標準組付動作、組付部品の性質、および被組付部品の性質の情報に基づき、前記組立時間係数、前記第一の組立時間補正係数、前記第二の組立時間補正係数を読み出して、前記対象部品の組立時間を算出し、
前記入力された標準組付動作、組付部品の性質、および被組付部品の性質の情報に基づき、前記標準組付動作別組立不良係数、前記第一の組立不良補正係数、前記第二の組立不良補正係数を読み出して、組立不良係数を算出し、
前記入力された標準組付動作の情報に基づき、前記組立時間バラツキ変換係数を読み出し、組立時間バラツキを計算する計算手段と、
前記計算結果を、画面上に部品名称ごとに、理想とする組立時間と共に組立時間バラツキを表示する出力手段とを備えたことを特徴とする組立時間推定システム。
An assembly time estimation system for predicting an assembly time and an assembly time variation of each part before manufacturing the product for a product manufactured by assembling a plurality of parts,
(1) A plurality of standard assembly operations for expressing the operation contents of the assembly work are classified and determined in advance, and the assembly time coefficient for each standard assembly operation, and (2) the assembly parts that perform the assembly operation. A first assembly time correction coefficient for correcting the assembly time coefficient for each standard assembly operation according to the property, and (3) correcting the assembly time coefficient for each standard assembly operation according to the property of the part to be assembled for performing the assembly operation. Second assembly time correction factor and (4) for each standard assembly operation, a numerical value indicating the magnitude of the probability that the standard assembly operation cannot be reliably performed under predetermined reference conditions was set. Assembly failure coefficient by standard assembly operation, and (5) a first assembly failure correction coefficient for correcting the assembly failure coefficient by standard assembly operation according to the nature of the assembly part that performs the assembly operation, and (6) assembly. A second group that corrects the assembly failure coefficient for each standard assembly operation according to the nature of the assembled component that performs the operation. And bad correction coefficient, statistically processes the measured values of (7) assembly time of an existing component, the average value of the normal distribution, than the standard deviation, the time variation range to fit to the probability that the user has specified, the existing parts Assembly time variation conversion coefficient for converting the assembly failure coefficient calculated from the standard assembly operation-specific assembly failure coefficient, the first assembly failure correction coefficient, and the second assembly failure correction coefficient corresponding to the assembly operation of Storage means for storing
For assembly work of a part to be evaluated , at least one standard assembly operation expressed by a predetermined symbol representing the assembly work of the part, a property of the assembled component, and a predetermined symbol representing the property of the assembled component Input means for accepting input of information expressed in
Based on the inputted standard assembling operation , property of assembling part, and property of assembling part, the assembly time coefficient, the first assembling time correction coefficient, and the second assembling time correction coefficient are determined. Read out, calculate the assembly time of the target part,
Based on the information of the input standard assembly operation, the property of the assembly component, and the property of the assembly component, the assembly failure coefficient for each standard assembly operation , the first assembly failure correction coefficient, and the second Read the assembly failure correction coefficient, calculate the assembly failure coefficient,
Calculation means for reading out the assembly time variation conversion coefficient based on the input standard assembly operation information and calculating the assembly time variation;
An assembly time estimation system comprising: an output means for displaying the calculation result for each part name on the screen together with an ideal assembly time and an assembly time variation.
JP2001228865A 2001-07-30 2001-07-30 Assembly time estimation system Expired - Lifetime JP4120188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228865A JP4120188B2 (en) 2001-07-30 2001-07-30 Assembly time estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228865A JP4120188B2 (en) 2001-07-30 2001-07-30 Assembly time estimation system

Publications (2)

Publication Number Publication Date
JP2003039260A JP2003039260A (en) 2003-02-12
JP4120188B2 true JP4120188B2 (en) 2008-07-16

Family

ID=19061297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228865A Expired - Lifetime JP4120188B2 (en) 2001-07-30 2001-07-30 Assembly time estimation system

Country Status (1)

Country Link
JP (1) JP4120188B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8583578B2 (en) 2006-03-13 2013-11-12 Hitachi, Ltd. Method and system for supporting design
JP5063444B2 (en) * 2008-03-31 2012-10-31 株式会社日立製作所 Line production management support method and apparatus
US20190205802A1 (en) * 2016-09-07 2019-07-04 Mitsubishi Electric Corporation Information processing device, information processing method and computer readable medium
JP7172138B2 (en) * 2018-05-25 2022-11-16 富士通株式会社 Information processing device, time estimation method and time estimation program
WO2022259579A1 (en) * 2021-06-11 2022-12-15 三菱電機株式会社 Estimate assistance system, estimate assistance method, and program

Also Published As

Publication number Publication date
JP2003039260A (en) 2003-02-12

Similar Documents

Publication Publication Date Title
Ariff et al. Use of analytical hierarchy process (AHP) for selecting the best design concept
US7596727B2 (en) System and method for analyzing an MTBF of an electronic product
US20070233436A1 (en) Structural analysis apparatus, structural analysis method, and structural analysis program
JP2006318263A (en) Information analysis system, information analysis method and program
Taflanidis Reliability-based optimal design of linear dynamical systems under stochastic stationary excitation and model uncertainty
JP2011013763A (en) Duration calculator and duration calculation method
JP2010250674A (en) Working hour estimation device, method, and program
CN101593295A (en) A kind of questionnaire type computer-aided proposal estimating and examining system and evaluation method
JP4637808B2 (en) Analysis method of evaluation index of load frequency control
JP4120188B2 (en) Assembly time estimation system
Altuger et al. Multi criteria preventive maintenance scheduling through arena based simulation modeling
US20030088510A1 (en) Operational risk measuring system
Fritzsche et al. Interactive simulation and ergonomics assessment of manual work with EMA-applications in product development and production planning
Le et al. A generative network model for product evolution
JP5725547B2 (en) Risk management device
US20130325422A1 (en) Analysis Supporting Method and Analysis Supporting Apparatus
US7778807B2 (en) Simulation model generator of causality phenomena and events
JP6209985B2 (en) Product design support program, product design support method, and product design support apparatus
KR101566601B1 (en) Risk management device
JP2006351003A (en) Production simulation device and method
O’Halloran et al. A method to calculate function and component failure distributions using a hierarchical bayesian model and frequency weighting
KR101182015B1 (en) System for Designing Architecture Engineering and Method for Using the Same
WO2011163390A1 (en) Systems and methods for impact analysis in a computer network
Fukuzumi et al. Development of quantitative usability evaluation method
Ko et al. A multi-criteria decision-making approach based on data envelopment analysis considering interval weights in defense sector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4120188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term