JP4119522B2 - Winding method of rapidly solidified foil for frustum ring joint material - Google Patents

Winding method of rapidly solidified foil for frustum ring joint material Download PDF

Info

Publication number
JP4119522B2
JP4119522B2 JP11974098A JP11974098A JP4119522B2 JP 4119522 B2 JP4119522 B2 JP 4119522B2 JP 11974098 A JP11974098 A JP 11974098A JP 11974098 A JP11974098 A JP 11974098A JP 4119522 B2 JP4119522 B2 JP 4119522B2
Authority
JP
Japan
Prior art keywords
winding
roll
rapidly solidified
foil
solidified foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11974098A
Other languages
Japanese (ja)
Other versions
JPH11314141A (en
Inventor
有一 佐藤
茂克 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11974098A priority Critical patent/JP4119522B2/en
Publication of JPH11314141A publication Critical patent/JPH11314141A/en
Application granted granted Critical
Publication of JP4119522B2 publication Critical patent/JP4119522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管等の管同士を接合する際、接合面に挿入される円錐台リング接合材用急冷凝固箔を製造する際の該急冷凝固箔の巻取り方法に関するものである。
【0002】
【従来の技術】
鋼管等の管同士の接合手段として、図7に示すような方法がある。すなわち、接合しようとする管12および管13の端面を加工し、一方の管12には凹テーパ14を、他方の管13には凸テーパ15を形成し、両テーパ14,15の間に円錐台リング接合材11を挿入して管12と管13を接合させ、加熱して接合する方法である。この方法は、MIG溶接やTIG溶接に比べて安価かつ簡易な方法であり、油井鋼管の現地施工等に採用されている。
【0003】
円錐台リング接合材11は、接合対象材中への拡散成分を有する合金の急冷凝固箔からなる。従来の円錐台リング接合材は、シート状の箔材から切り出して製造されるため、切り捨て部分が多く発生し、製造歩留が低いとともに、切り出し作業に時間がかかるという問題があった。
【0004】
この問題の対策として本発明者らは、特開平5−123890号公報により、図6に示すような方法を提案している。すなわち、冷却ロール6の表面をテーパ状に形成し、該テーパ面5とほぼ平行になるようにスリット9を配置させたるつぼ10を冷却ロールテーパ面5に接近させ、回転軸7により高速回転させた冷却ロール6のテーパ面5に、るつぼ10内の溶融金属8を噴出して急冷凝固箔4を製造する方法である。この方法により得られる帯状の急冷凝固箔を所定の長さに切断し、切断部を突き合わせることで円錐台リング接合材を製造することができ、製造歩留および作業性が著しく向上する。
【0005】
さらに、本発明者らは、特開平10−5859号公報において、上記方法で製造される急冷凝固箔の巻取り方法を提案した。この方法は図5に示すように、テーパ面5を有する冷却ロール6と同じ形状の(つまり、同じ径およびテーパ角を有する)巻取ロール1を用い、巻取ロール1のテーパ面2と冷却ロール6のテーパ面5が平行で、巻取ロール1と冷却ロール6の回転軸3,7が同一平面内となり、かつ両テーパ2,5の短径側同士あるいは長径側同士が対向する位置関係に配置し、巻取ロール1を冷却ロール6に接近させて巻取りを開始し、少なくとも一周巻取り後は、両テーパ2,5が平行を維持した状態で両テーパ面2,5の間隔を拡大させ、かつ巻取ロールの短径側が冷却ロール6の長径側に近づく方向に巻取ロール1を移動させて、急冷凝固箔4を巻取る方法である。
【0006】
また、本発明でいう円錐台リング状接合材には、例えば図4に示すような管12,13の開先が垂直な面の水平な形状の接合材11も含まれるが、このような水平リング接合材用急冷凝固箔の製造方法としては、図3に示すような方法がある。つまり、冷却ロール6の側面(水平なテーパ面5)に、このテーパ面5とほぼ平行になるようにスリット9を配置させたるつぼ10を冷却ロール6のテーパ面5とに接近させ、回転軸7により高速回転させた冷却ロール6のテーパ面5に、るつぼ10内の溶融合金8を噴出させて急冷凝固箔4を製造する方法である。
【0007】
【発明が解決しようとする課題】
しかしながら、本発明者らが提案した円錐台リング状接合材用急冷凝固箔製造用の巻取り方法には改善すべき点が存在していた。つまり、この巻取り方法では、用いる巻取ロールの径を冷却ロールの径に合わせなければならないから、冷却ロールの径が大きくなると、大きな径の巻取ロールに必要となり、大規模な巻取装置を必要とすることになる。実際の接合に用いる円錐台リング状接合材の量はそれほどでもないのに、大規模な巻取り装置とするのは、製造設備建設の費用が嵩んだり、巻取り作業が煩雑なるので好ましくない。
【0008】
一方、本発明者らが提案した巻取り方法は、図3に示すような水平リング状接合材用急冷凝固箔製造のための巻取り方法には適用できず、水平リング状接合材用急冷凝固箔製造のための巻取り方法の開発が望まれていた。
【0009】
本発明の目的は、図3に示すような水平リング状接合材用急冷凝固箔の製造プロセスにおいて、該急冷凝固箔をオンラインで巻取ることを可能とする巻取り方法、さらにはいかなる径およびテーパ角の円錐台リング状接合材の場合でも、小型の巻取装置で該接合材用急冷凝固箔の巻取りを可能とする巻取り方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、以下の構成を要旨とする。すなわち、
テーパ付き冷却ロールのテーパ面に溶融合金を噴出して製造される急冷凝固箔を、テーパ付き巻取ロールを用いて巻取る方法において、下記の(1)式を満足する中心径およびテーパ角を有する巻取ロールを用いて巻取ることを特徴とする円錐台リング状接合材用急冷凝固箔の巻取り方法である。
φ/sinθ=φ/sinθ …(1)
ここで、θ=巻取ロールテーパ角
θ=冷却ロールテーパ角
φ=巻取ロール中心径
φ=鋳造中心位置での冷却ロール径
但し、θ ≠θ かつφ ≠φ である。
【0011】
【発明の実施の形態】
以下に本発明の方法を詳細に説明する。
本発明は、例えば径が300mm以下の巻取ロールからなる小型の巻取装置を用いて、いかなる径およびテーパ角を有する円錐台リング状接合材用急冷凝固箔の場合でも、該急冷凝固箔の巻取りを可能とする方法である。
【0012】
図1を用いて具体的に説明する。図1は、水平リング状接合材用急冷凝固箔の製造およびオンライン巻取りを行っているところを模式的に示している。つまり、本発明はテーパ角θ中心径φ の巻取ロール1を用いることにより、θが90°である冷却ロール6を用い製造する水平リング状接合材を巻き取る方法である。但し、これを実現するには、用いる巻取ロール1のテーパ角θと中心径φは、前述の(1)式を満足しなければならない。ここで、(1)式中、θは冷却ロールテーパ角(図1の場合90°)であり、φは鋳造時の幅方向中心位置での冷却ロール径(図1中に図示)である。
【0013】
なお、図1において、急冷凝固箔4の製造について簡単に説明すると、該急冷凝固箔4は回転軸7により高速回転している冷却ロール6のテーパ面5上に、るつぼ10に保持した溶融合金8をるつぼ10の下部に設けたスリット9を介して噴出し、冷却ロール6上で鋳造して得る。
【0014】
該急冷凝固箔の巻取りは、巻取ロール1のテーパ面2を冷却ロール6に接近させて、巻取ロール1を回転軸3により冷却ロール6の表面速度並みの速さで高速回転させ、該急冷凝固箔4の先端を巻取ロール1のテーパ面2で捕捉させて開始し、その後継続して巻き取る。巻取り開始後、少なくとも一周巻取後は両テーパ面2,5が平行を維持した状態で、両テーパ面2,5の間隔が拡大する方向(図1に示すy方向)、および巻取ロール1の短径側が冷却ロール6のテーパ面5から遠ざかる方向(図1に示すx方向)に巻取ロール1を移動させる。これは、巻取りの進行に伴い巻取ロール1のテーパ面2上に積層される急冷凝固箔4の積層厚が、増加することから生じる冷却ロールとの接触の恐れ、および、該箔4は幅方向に湾曲しているので、短径側にずれていくことにより生じるしわや破損の恐れを防止するためである。なお、巻取ロールの移動の要領に関しては実施例にて具体的に説明する。
【0015】
さらに、本発明について図2を用いて説明する。図2は、テーパ角がθ2 、鋳造中心位置での径がφ2 からなる冷却ロール6を用いて、テーパ角θ2 からなる円錐台リング状接合材用の急冷凝固箔4を製造する際に、本発明の方法を採用して該箔4の巻取りをオンラインで行っている様子を模式的に示している。
【0016】
ここで、用いる巻取ロールのテーパ角はθ1 、中心径はφ1 であり、これらθ1 およびφ1 を、冷却ロールのテーパ角θ2 および径φ2 との間に、(1)式が満足するように設定する。こうすることにより、冷却ロール径が大きくなっても、小さい径の巻取ロールで該急冷凝固箔4の巻取りが可能となる、なお、該急冷凝固箔4は、冷却ロール回転軸7により高速回転している冷却ロール6のテーパ面5上に、るつぼ10に保持した溶融合金8をるつぼ10の下部に設けたスリット(図2には示していない)を介して噴出し、冷却ロール6上で鋳造して製造する。製造された該急冷凝固箔4は、回転軸3で高速回転する巻取ロール1のテーパ面2で捕捉され巻取られる。
【0017】
該急冷凝固箔4の巻取りは、巻取ロール1を冷却ロール6に接近させて開始するが、少なくとも一周巻取り後は、両テーパ2,5が平行を維持した状態で両テーパ2,5の間隔dが拡大する方向(y方向)、および巻取ロール1の短径側が冷却ロール6の長径側に近づく方向(x方向)に巻取ロール1を移動させる。これは、巻取りの進行に伴い巻取ロール1のテーパ面2上に積層される急冷凝固箔4の積層厚が、増加することから生じる冷却ロールとの接触の恐れ、および、該箔4は幅方向に湾曲しているので、短径側にずれていくことにより生じるしわや破損の恐れを防止するためである。なお、巻取ロールの移動の要領に関しては実施例にて具体的に説明する。
【0018】
なお、図1,2において共通して言えることであるが、本発明において、巻取り開始時、急冷凝固箔4の先端を巻取ロール1に捕捉させるには、該箔4が磁性を有する場合は、テーパ面2に永久磁石あるいは電磁石を埋め込んでおく等の磁気的捕捉手段を採用することができる。また、該箔4が非磁性の場合は、テーパ面2に粘着性の物質を付着させる等の捕捉手段を採用することができる。
【0019】
本発明において、巻取ロール1のテーパ角θ1 および中心径φ1 を決定する際に用いる(1)式の意味について図8を用いて説明する。図8には2つの円錐台リングA・Bと水平リングCを同一中心線上に重ねて示す、それぞれのリングのテーパ角を図中に示すように、θa ,θb ,θc とし、それぞれのリングの中心位置での径を、φa ,φb ,φc とする(半径がそれぞれ、φa /2,φb /2,φc /2となる)。また、それぞれのリングののりの長さをそれぞれ、La ,Lb ,Lc とする。
【0020】
ここで、La ,Lb ,Lc を等しいと仮定すると、円錐台リングBを下方へ降ろした場合、θb がθa になったとき、円錐台リングBは円錐台リングAとなる。また、水平リングCを下方へ降ろした場合、θc がθa になったとき、水平リングCは円錐台リングAとなる。
【0021】
すなわち、本発明により用いる巻取ロールを円錐台リングAとみなし、円錐台リング状接合材を円錐台リングBおよび水平リングCとみなすと、La ,Lb ,Lc を等しくなるように設計すれば、円錐台リングAの形状の巻取ロールを用いれば、円錐台リングBおよび水平リングCの形状の円錐台リング状および水平リング状接合材用急冷凝固箔を巻き取ることができる。
【0022】
よって、図8に示すLa ,Lb ,Lc が等しくなるような関係式を満足すればよいことになる。
すなわち、図8に示すように、

Figure 0004119522
となり、さらに、φa ,θa をそれぞれ巻取ロールの中心経φ1 、テーパ角θ1 とし、φb ,φc を冷却ロールの中心径φ2 ,θb ,θc を冷却ロールのテーパ角θ2 として表すと、
(φ1 /2)/sinθ1 =(φ2 /2)/sinθ2
すなわち、φ1 /sinθ1 =φ2 /sinθ2
となり、(1)式が導かれる。
【0023】
なお、本発明により急冷凝固箔を巻取る際、少なくとも一周巻取り後巻取ロールをx方向およびy方向に移動する必要がある旨先に述べたが、これは巻取りが進行するにつれ図8に示すように急冷凝固箔をのりの長さを一定になるように巻取らないとしわや破損が生じるためである。
以下、本発明の実施例を図面に基づいて説明する。
【0024】
【実施例1】
図4に示すような90°開先を有する鋼管同士(鋼管サイズ:外径360mm、内径340mm、肉厚10mm)を接合するための水平リング状接合材を得るために、図1に示すような装置で急冷凝固箔の鋳造および巻取実験を行った。用いた冷却ロールは、径400mm、幅35mmの銅製のもので、鋳造は必要な水平リング状接合材のサイズに合わせて、冷却ロールの中心から半径175mmの位置を中心として行った。急冷凝固箔の巻取りには、(1)式を満足するような小型サイズの巻取ロールを用いた。すなわち、中心径、テーパ角がそれぞれ、248mm、45°で厚さが50mmの巻取ロールを用いた。なお、巻取ロールのテーパ面2には永久磁石(Sm−Co合金)を埋め込み、磁力で急冷凝固箔(強磁性を有する)の先端を捕捉する方式を採用した。
【0025】
鋳造は以下のように行った。すなわち、冷却ロール6を1400rpm (平均表面速度でおよそ26m/s)の速さで高速回転させ、るつぼ10からFe−9wt%Si−1.5wt%Bからなる組成の溶融合金8を、噴出圧0.2kg/cmで、スリット9(スリットサイズ:0.6mm×11mm)からテーパ面5へ噴出した。噴出時の溶融合金の温度は1300℃とし、スリット9と冷却ロール6のテーパ面5とのギャップは0.2mmとした。
【0026】
巻取条件は、鋳造開始時の回転数を1950rpm とし、巻取り開始から0.5秒後以降は巻取張力が5kgf の一定値となるように制御した。また、巻取り開始後0.5秒後から、巻取ロールをx方向に34mm/分で移動させ、さらに2秒後からはy方向に20mm/秒で移動させた。
【0027】
結果として、幅は18mm、厚さはおよそ20μmの急冷凝固箔4を整然と積層して巻取ることができた積層厚さは約20mmで、巻取り量は約1kgであった。この急冷凝固箔4を、鋼管の90°開先の周長に合わせて1周長さ分を切り出したところ、目標の水平リング状接合材となり、この鋼管接合用として長さ、幅、傾きのすべての寸法が一致した。
【0028】
この結果から、水平リング状接合材用急冷凝固箔でも、(1)式を満足するように設計した巻取ロールを用いれば、良好に巻取ることができることを確認できた。
【0029】
【実施例2】
図7に示すような45°開先を有する鋼管同士(鋼管サイズ:外径400mm、内径380mm、肉厚10mm)を接合するための円錐台リング状接合材を得るために、図2に示すような装置で急冷凝固箔の鋳造および巻取実験を行った。用いた冷却ロールは、必要な円錐台リング状接合材のサイズに合わせて、中心径が390mm、テーパ角が45°で、厚さは35mmであった。急冷凝固箔の巻取りには、(1)式を満足するような小型サイズの巻取ロールを用いた。つまり、中心径、テーパ角がそれぞれ、232mm、25°で、厚さが50mmの巻取ロールを用いた。なお、巻取ロールのテーパ面2には永久磁石(Sm−Co合金)を埋め込み、磁力で急冷凝固箔(強磁性を有する)の先端を捕捉する方式を採用した。
【0030】
鋳造は以下のように行った。すなわち、冷却ロール6を1200rpm (平均表面速度24.5m/s)の速さで高速回転させ、るつぼ10から、Fe−9wt%Si−1.5wt%Bからなる組成の溶融合金8を、噴出圧0.2kg/cm2 で、スリット9(スリットサイズ:0.6mm×18mm)からテーパ面5に噴出した。噴出時の溶融合金の温度は1300℃とし、スリット9と冷却ロール6のテーパ面5とのギャップは0.2mmとした。
【0031】
巻取条件は、鋳造開始時の回転数を2000rpm とし、巻取り開始から0.5秒後以降は巻取張力が5kgf の一定値となるように制御した。また、巻取り開始後0.5秒後から、巻取ロールをx方向に34mm/分で移動させ、さらに2秒後からはy方向に20mm/秒で移動させた。
【0032】
結果として、幅は18mm、厚さはおよそ20μmの急冷凝固箔4を整然と積層して巻取ることができた積層厚さは約14mmで、巻取り量は約1kgであった。この急冷凝固箔4を、鋼管の45°開先の周長に合わせて1周長さ分を切り出したところ、目標の円錐台リング状接合材となり、この鋼管接合用として長さ、幅、傾きのすべての寸法が一致した。
【0033】
この結果から、冷却ロールにより小型の巻取ロールでも、(1)式を満足するように設計した巻取ロールを用いれば、比較的大型の円錐台リング状接合材用急冷凝固箔でも良好に巻取ることができることを確認できた。
【0034】
【発明の効果】
本発明によれば、鋼管等の管同士を接合する際、接合面に挿入される水平リング状さらには大型の円錐台リング状の接合材用急冷凝固箔でも、小型の巻取装置で、良好に巻取ることが可能となり、該急冷凝固箔製造時の設備建設費用の削減と、作業性および歩留の向上を実現できる。
【図面の簡単な説明】
【図1】本発明の一例を示す模式図である。
【図2】本発明の他の一例を示す模式図である。
【図3】水平リング状接合箔用急冷凝固箔の製造の様子を示す模式図である。
【図4】水平リング状接合箔を用いて管を接合する様子を示す模式図である。
【図5】円錐台リング状接合箔用急冷凝固箔の従来巻取方法を示す模式図である。
【図6】円錐台リング状接合箔用急冷凝固箔の製造方法を示す模式図である。
【図7】円錐台リング状接合箔を用いて管を接合する様子を示す模式図である。
【図8】本発明における(1)式の意味を説明する模式図である。
【符号の説明】
1:巻取ロール
2:巻取ロールテーパ角
3:巻取ロール回転軸
4:急冷凝固箔
5:冷却ロールテーパ角
6:冷却ロール
7:冷却ロール回転軸
8:溶融合金
9:スリット
10:るつぼ
11:円錐台リング状接合材
12,13:管
14:凹テーパ管
15:凸テーパ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for winding a rapidly solidified foil when manufacturing a rapidly solidified foil for a truncated cone ring bonding material to be inserted into a joining surface when joining pipes such as steel pipes.
[0002]
[Prior art]
As a means for joining pipes such as steel pipes, there is a method as shown in FIG. That is, the end surfaces of the pipe 12 and the pipe 13 to be joined are machined, a concave taper 14 is formed on one pipe 12, and a convex taper 15 is formed on the other pipe 13. This is a method in which the base ring bonding material 11 is inserted to join the pipe 12 and the pipe 13 and to join by heating. This method is cheaper and simpler than MIG welding or TIG welding, and has been adopted for on-site construction of oil well steel pipes.
[0003]
The frustoconical ring bonding material 11 is made of a rapidly solidified foil made of an alloy having a diffusion component into the material to be bonded. Since the conventional frustoconical ring bonding material is manufactured by cutting out from a sheet-like foil material, there are problems that many cut-off portions are generated, the manufacturing yield is low, and the cutting operation takes time.
[0004]
As a countermeasure against this problem, the present inventors have proposed a method as shown in FIG. 6 according to Japanese Patent Laid-Open No. 5-123890. That is, the surface of the cooling roll 6 is formed in a taper shape, and the crucible 10 in which the slit 9 is arranged so as to be substantially parallel to the tapered surface 5 is brought close to the cooling roll taper surface 5 and rotated at a high speed by the rotating shaft 7. In this method, the rapidly solidified foil 4 is produced by ejecting the molten metal 8 in the crucible 10 onto the tapered surface 5 of the cooling roll 6. By cutting the strip-like rapidly solidified foil obtained by this method into a predetermined length and butting the cut portions, a truncated cone ring bonding material can be manufactured, and the manufacturing yield and workability are significantly improved.
[0005]
Furthermore, the present inventors have proposed a method for winding a rapidly solidified foil manufactured by the above method in Japanese Patent Application Laid-Open No. 10-5859. As shown in FIG. 5, this method uses a winding roll 1 having the same shape as the cooling roll 6 having the tapered surface 5 (that is, having the same diameter and taper angle), and the tapered surface 2 of the winding roll 1 and the cooling roll 1 are cooled. Positional relationship in which the taper surface 5 of the roll 6 is parallel, the rotary shafts 3 and 7 of the winding roll 1 and the cooling roll 6 are in the same plane, and the short diameter sides or the long diameter sides of both the tapers 2 and 5 face each other. The winding roll 1 is moved close to the cooling roll 6 and winding is started. After winding at least one turn, the distance between the taper surfaces 2 and 5 is kept in a state where the tapers 2 and 5 are maintained in parallel. In this method, the winding roll 1 is moved in a direction in which the short diameter side of the winding roll approaches the long diameter side of the cooling roll 6 to wind the rapidly solidified foil 4.
[0006]
In addition, the frustoconical ring-shaped bonding material referred to in the present invention includes a horizontal-shaped bonding material 11 having a vertical surface of the pipes 12 and 13 as shown in FIG. 4, for example. As a method for producing a rapidly solidified foil for a ring bonding material, there is a method as shown in FIG. That is, the crucible 10 in which the slit 9 is arranged on the side surface (horizontal taper surface 5) of the cooling roll 6 so as to be substantially parallel to the taper surface 5 is brought close to the taper surface 5 of the cooling roll 6 to rotate the rotating shaft. 7 is a method of manufacturing the rapidly solidified foil 4 by ejecting the molten alloy 8 in the crucible 10 onto the tapered surface 5 of the cooling roll 6 rotated at a high speed by 7.
[0007]
[Problems to be solved by the invention]
However, there has been a point to be improved in the winding method for producing a rapidly solidified foil for a frustoconical ring-shaped bonding material proposed by the present inventors. In other words, in this winding method, the diameter of the winding roll to be used must be matched to the diameter of the cooling roll. Therefore, when the diameter of the cooling roll increases, it is necessary for a winding roll having a large diameter, and a large-scale winding device is required. Will be required. Although the amount of the frustoconical ring-shaped bonding material used for actual bonding is not so large, it is not preferable to use a large-scale winding device because the cost of manufacturing equipment construction increases and the winding operation becomes complicated. .
[0008]
On the other hand, the winding method proposed by the present inventors is not applicable to the winding method for manufacturing the rapidly solidified foil for horizontal ring-shaped bonding material as shown in FIG. Development of a winding method for foil production has been desired.
[0009]
An object of the present invention is to provide a winding method that enables the rapidly solidified foil to be wound online in a manufacturing process of a rapidly solidified foil for a horizontal ring-shaped bonding material as shown in FIG. 3, and any diameter and taper. An object of the present invention is to provide a winding method that enables winding of a rapidly solidified foil for a bonding material with a small winding device even in the case of an angular frustoconical ring-shaped bonding material.
[0010]
[Means for Solving the Problems]
The gist of the present invention is as follows. That is,
In a method of winding a rapidly solidified foil manufactured by jetting a molten alloy onto a tapered surface of a tapered cooling roll using a tapered winding roll, a center diameter and a taper angle satisfying the following formula (1) are set. A method for winding a rapidly solidified foil for a truncated conical ring-shaped bonding material, wherein the winding roll is wound using a winding roll.
φ 1 / sin θ 1 = φ 2 / sin θ 2 (1)
Where θ 1 = winding roll taper angle
θ 2 = cooling roll taper angle
φ 1 = winding roll center diameter
φ 2 = Cooling roll diameter at the center of casting
However, θ 1 ≠ θ 2 and φ 1 ≠ φ 2 .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention will be described in detail below.
The present invention uses, for example, a small winding device composed of a winding roll having a diameter of 300 mm or less, and the rapidly solidified foil for a frustoconical ring-shaped bonding material having any diameter and taper angle. This is a method that enables winding.
[0012]
This will be specifically described with reference to FIG. FIG. 1 schematically shows the production and online winding of a rapidly solidified foil for a horizontal ring-shaped bonding material. In other words, the present invention is a method of winding a horizontal ring-shaped bonding material manufactured using a cooling roll 6 having a taper angle θ 1 and a center diameter φ 1 of θ 1 and a θ 2 of 90 °. However, in order to realize this, the taper angle θ 1 and the center diameter φ 1 of the winding roll 1 to be used must satisfy the above-described formula (1). Here, in the formula (1), θ 2 is the cooling roll taper angle (90 ° in the case of FIG. 1), and φ 2 is the cooling roll diameter (shown in FIG. 1) at the center position in the width direction during casting. is there.
[0013]
In FIG. 1, the production of the rapidly solidified foil 4 will be briefly described. The rapidly solidified foil 4 is a molten alloy held in a crucible 10 on a tapered surface 5 of a cooling roll 6 rotating at a high speed by a rotating shaft 7. 8 is ejected through a slit 9 provided in the lower part of the crucible 10 and cast on the cooling roll 6.
[0014]
For winding the rapidly solidified foil, the taper surface 2 of the winding roll 1 is brought close to the cooling roll 6, and the winding roll 1 is rotated at a high speed at the same speed as the surface speed of the cooling roll 6 by the rotating shaft 3. The tip of the rapidly solidified foil 4 is captured by the taper surface 2 of the take-up roll 1 and then wound up continuously. A direction (y direction shown in FIG. 1) in which the distance between the tapered surfaces 2 and 5 is increased in a state in which both the tapered surfaces 2 and 5 remain parallel after at least one turn after winding is started, and a winding roll The winding roll 1 is moved in a direction (x direction shown in FIG. 1) in which the minor axis side of 1 moves away from the tapered surface 5 of the cooling roll 6. This is because the laminated thickness of the rapidly solidified foil 4 laminated on the taper surface 2 of the winding roll 1 as the winding progresses may cause contact with the cooling roll, and the foil 4 This is because it is curved in the width direction, so as to prevent wrinkles and breakage caused by shifting to the short diameter side. In addition, about the point of movement of a winding roll, it demonstrates concretely in an Example.
[0015]
Further, the present invention will be described with reference to FIG. 2, 2 taper angle theta, using a cooling roll 6 diameter of the casting center position consists of phi 2, when manufacturing the frustoconical rapid solidification foil 4 of ring-like bonding material made of a taper angle theta 2 Fig. 6 schematically shows a state in which the foil 4 is wound up online by employing the method of the present invention.
[0016]
Here, the taper angle of the take-up roll used is θ 1 and the center diameter is φ 1 , and these θ 1 and φ 1 are expressed by the formula (1) between the taper angle θ 2 and the diameter φ 2 of the cooling roll. Is set to satisfy. By doing so, even when the diameter of the cooling roll is increased, the rapidly solidified foil 4 can be wound with a winding roll having a small diameter. On the taper surface 5 of the rotating cooling roll 6, the molten alloy 8 held in the crucible 10 is ejected through a slit (not shown in FIG. 2) provided in the lower part of the crucible 10, Cast and manufacture with. The manufactured rapidly solidified foil 4 is captured and wound by the taper surface 2 of the winding roll 1 that rotates at a high speed around the rotating shaft 3.
[0017]
Winding of the rapidly solidified foil 4 is started by bringing the winding roll 1 close to the cooling roll 6, but at least after one round winding, the both tapers 2, 5 are maintained in a state where the both tapers 2, 5 remain parallel. The winding roll 1 is moved in the direction in which the distance d increases (y direction) and in the direction in which the short diameter side of the winding roll 1 approaches the long diameter side of the cooling roll 6 (x direction). This is because the laminated thickness of the rapidly solidified foil 4 laminated on the taper surface 2 of the winding roll 1 as the winding progresses may cause contact with the cooling roll, and the foil 4 This is because it is curved in the width direction, so as to prevent wrinkles and breakage caused by shifting to the short diameter side. In addition, about the point of movement of a winding roll, it demonstrates concretely in an Example.
[0018]
In addition, as can be said commonly in FIGS. 1 and 2, in the present invention, when the winding roll 1 captures the tip of the rapidly solidified foil 4 at the start of winding, the foil 4 has magnetism. Can adopt a magnetic capturing means such as embedding a permanent magnet or an electromagnet in the tapered surface 2. Further, when the foil 4 is non-magnetic, it is possible to adopt a capturing means such as attaching an adhesive substance to the tapered surface 2.
[0019]
In the present invention, the meaning of the equation (1) used when determining the taper angle θ 1 and the center diameter φ 1 of the winding roll 1 will be described with reference to FIG. FIG. 8 shows two frustoconical rings A and B and a horizontal ring C superimposed on the same center line. The taper angles of the respective rings are θ a , θ b , θ c as shown in the figure, The diameters at the center positions of the rings are φ a , φ b , and φ c (the radii are φ a / 2, φ b / 2, and φ c / 2, respectively). Further, each of the rings of glue length respectively, and L a, L b, L c .
[0020]
Here, assuming that L a , L b and L c are equal, when the truncated cone ring B is lowered, the truncated cone ring B becomes the truncated cone ring A when θ b becomes θ a . When the horizontal ring C is lowered, the horizontal ring C becomes the truncated cone ring A when θ c becomes θ a .
[0021]
That is, when the winding roll used according to the present invention is regarded as a truncated cone ring A and the truncated cone ring-shaped joining material is regarded as a truncated cone ring B and a horizontal ring C, L a , L b and L c are designed to be equal. Then, if the winding roll in the shape of the truncated cone ring A is used, the rapidly solidified foil for the truncated cone ring shape and the horizontal ring-shaped bonding material in the shape of the truncated cone ring B and the horizontal ring C can be wound.
[0022]
Therefore, it is only necessary to satisfy the relational expression such that L a , L b , and L c shown in FIG. 8 are equal.
That is, as shown in FIG.
Figure 0004119522
Next, further, phi a, the center through phi 1 of each winding roll theta a, a taper angle theta 1, phi b, central diameter phi 2 of the phi c cooling roll, theta b, tapered cooling roll theta c When expressed as the angle θ 2,
(Φ 1/2) / sinθ 1 = (φ 2/2) / sinθ 2
That is, φ 1 / sin θ 1 = φ 2 / sin θ 2
Thus, equation (1) is derived.
[0023]
It should be noted that when the rapidly solidified foil is wound according to the present invention, it is necessary to move the winding roll in the x direction and the y direction after at least one round winding, as shown in FIG. This is because if the rapidly solidified foil is not wound up so that the length of the paste is constant, wrinkles and breakage occur.
Embodiments of the present invention will be described below with reference to the drawings.
[0024]
[Example 1]
In order to obtain a horizontal ring-shaped joining material for joining steel pipes having a 90 ° groove as shown in FIG. 4 (steel pipe size: outer diameter 360 mm, inner diameter 340 mm, wall thickness 10 mm), as shown in FIG. Casting and winding experiments of rapidly solidified foil were carried out with the equipment. The cooling roll used was made of copper having a diameter of 400 mm and a width of 35 mm, and casting was performed centering on a position having a radius of 175 mm from the center of the cooling roll in accordance with the required size of the horizontal ring-shaped bonding material. For winding the rapidly solidified foil, a small-sized winding roll satisfying the formula (1) was used. That is, a winding roll having a center diameter and a taper angle of 248 mm and 45 ° and a thickness of 50 mm was used. In addition, a system was adopted in which a permanent magnet (Sm—Co alloy) was embedded in the taper surface 2 of the winding roll and the tip of the rapidly solidified foil (having ferromagnetism) was captured by magnetic force.
[0025]
Casting was performed as follows. That is, the cooling roll 6 is rotated at a high speed of 1400 rpm (average surface speed is approximately 26 m / s), and the molten alloy 8 having the composition of Fe-9 wt% Si-1.5 wt% B is ejected from the crucible 10 The ink was ejected from the slit 9 (slit size: 0.6 mm × 11 mm) onto the tapered surface 5 at 0.2 kg / cm 2 . The temperature of the molten alloy at the time of ejection was 1300 ° C., and the gap between the slit 9 and the taper surface 5 of the cooling roll 6 was 0.2 mm.
[0026]
The winding condition was controlled such that the number of revolutions at the start of casting was 1950 rpm, and the winding tension became a constant value of 5 kgf after 0.5 seconds from the start of winding. Further, 0.5 seconds after the start of winding, the winding roll was moved at 34 mm / min in the x direction, and after 2 seconds, it was moved at 20 mm / sec in the y direction.
[0027]
As a result, the rapidly solidified foil 4 having a width of 18 mm and a thickness of approximately 20 μm was orderly laminated and wound, and the laminated thickness was about 20 mm and the amount of winding was about 1 kg. When this rapidly solidified foil 4 was cut out by one round length in accordance with the circumferential length of the 90 ° groove of the steel pipe, it became a target horizontal ring-shaped joining material, and the length, width, and inclination of the steel pipe were used for joining. All dimensions matched.
[0028]
From this result, it was confirmed that even a rapidly solidified foil for a horizontal ring-shaped bonding material can be wound well by using a winding roll designed to satisfy the expression (1).
[0029]
[Example 2]
In order to obtain a frustoconical ring-shaped joining material for joining steel pipes having a 45 ° groove as shown in FIG. 7 (steel pipe size: outer diameter 400 mm, inner diameter 380 mm, wall thickness 10 mm), as shown in FIG. Experiments on casting and winding of rapidly solidified foils were carried out using a simple device. The cooling roll used had a center diameter of 390 mm, a taper angle of 45 °, and a thickness of 35 mm in accordance with the size of the necessary frustoconical ring-shaped bonding material. For winding the rapidly solidified foil, a small-sized winding roll satisfying the formula (1) was used. That is, a winding roll having a center diameter and a taper angle of 232 mm and 25 °, respectively, and a thickness of 50 mm was used. In addition, a system was adopted in which a permanent magnet (Sm—Co alloy) was embedded in the taper surface 2 of the winding roll and the tip of the rapidly solidified foil (having ferromagnetism) was captured by magnetic force.
[0030]
Casting was performed as follows. That is, the cooling roll 6 is rotated at a high speed of 1200 rpm (average surface speed 24.5 m / s), and the molten alloy 8 having the composition of Fe-9 wt% Si-1.5 wt% B is ejected from the crucible 10. The ink was ejected from the slit 9 (slit size: 0.6 mm × 18 mm) onto the tapered surface 5 at a pressure of 0.2 kg / cm 2 . The temperature of the molten alloy at the time of ejection was 1300 ° C., and the gap between the slit 9 and the taper surface 5 of the cooling roll 6 was 0.2 mm.
[0031]
The winding condition was controlled so that the number of rotations at the start of casting was 2000 rpm, and the winding tension was a constant value of 5 kgf after 0.5 seconds from the start of winding. Further, 0.5 seconds after the start of winding, the winding roll was moved at 34 mm / min in the x direction, and after 2 seconds, it was moved at 20 mm / sec in the y direction.
[0032]
As a result, the rapidly solidified foil 4 having a width of 18 mm and a thickness of about 20 μm was orderly laminated and wound up. The laminated thickness was about 14 mm and the amount of winding was about 1 kg. When this rapidly solidified foil 4 is cut out by one round length in accordance with the circumference of the 45 ° groove of the steel pipe, it becomes a target frustoconical ring-shaped joint material, and the length, width and inclination are used for joining this steel pipe. All dimensions matched.
[0033]
From this result, even with a small winding roll by a cooling roll, if a winding roll designed to satisfy the formula (1) is used, even a relatively large rapidly solidified foil for a truncated cone ring-shaped bonding material can be wound well. I was able to confirm that I could take it.
[0034]
【The invention's effect】
According to the present invention, when pipes such as steel pipes are joined together, a horizontal ring shape inserted into the joining surface or a large frustoconical ring-shaped rapidly solidified foil for joining material is good in a small winding device. Thus, it is possible to reduce the cost of constructing equipment during the production of the rapidly solidified foil and to improve workability and yield.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of the present invention.
FIG. 2 is a schematic diagram showing another example of the present invention.
FIG. 3 is a schematic view showing a state of manufacturing a rapidly solidified foil for a horizontal ring-shaped joining foil.
FIG. 4 is a schematic view showing a state in which tubes are joined using a horizontal ring-shaped joining foil.
FIG. 5 is a schematic view showing a conventional winding method of a rapidly solidified foil for a frustoconical ring-shaped joining foil.
FIG. 6 is a schematic view showing a method for producing a rapidly solidified foil for a frustoconical ring-shaped joining foil.
FIG. 7 is a schematic view showing a state in which tubes are joined using a truncated cone-shaped joining foil.
FIG. 8 is a schematic diagram for explaining the meaning of the formula (1) in the present invention.
[Explanation of symbols]
1: take-up roll 2: take-up roll taper angle 3: take-up roll rotating shaft 4: rapidly solidified foil 5: cooling roll taper angle 6: cooling roll 7: cooling roll rotating shaft 8: molten alloy 9: slit 10: crucible 11: Frustum ring-shaped joining material 12, 13: Tube 14: Concave taper tube 15: Convex taper

Claims (1)

テーパ付き冷却ロールのテーパ面に溶融合金を噴出して製造される急冷凝固箔を、テーパ付き巻取ロールを用いて巻取る方法において、下式を満足する中心径およびテーパ角を有する巻取ロールを用いて巻取ることを特徴とする円錐台リング状接合材用急冷凝固箔の巻取り方法。
φ/sinθ=φ/sinθ
ここで、θ=巻取ロールテーパ角
θ=冷却ロールテーパ角
φ=巻取ロール中心径
φ=鋳造中心位置での冷却ロール径
但し、θ ≠θ かつφ ≠φ である。
A winding roll having a center diameter and a taper angle satisfying the following formula in a method of winding a rapidly solidified foil produced by jetting a molten alloy onto a tapered surface of a tapered cooling roll using a tapered winding roll: A method for winding a rapidly solidified foil for a frustum ring-shaped bonding material, wherein
φ 1 / sin θ 1 = φ 2 / sin θ 2
Where θ 1 = winding roll taper angle
θ 2 = cooling roll taper angle
φ 1 = winding roll center diameter
φ 2 = Cooling roll diameter at the center of casting
However, θ 1 ≠ θ 2 and φ 1 ≠ φ 2 .
JP11974098A 1998-04-28 1998-04-28 Winding method of rapidly solidified foil for frustum ring joint material Expired - Fee Related JP4119522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11974098A JP4119522B2 (en) 1998-04-28 1998-04-28 Winding method of rapidly solidified foil for frustum ring joint material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11974098A JP4119522B2 (en) 1998-04-28 1998-04-28 Winding method of rapidly solidified foil for frustum ring joint material

Publications (2)

Publication Number Publication Date
JPH11314141A JPH11314141A (en) 1999-11-16
JP4119522B2 true JP4119522B2 (en) 2008-07-16

Family

ID=14768968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11974098A Expired - Fee Related JP4119522B2 (en) 1998-04-28 1998-04-28 Winding method of rapidly solidified foil for frustum ring joint material

Country Status (1)

Country Link
JP (1) JP4119522B2 (en)

Also Published As

Publication number Publication date
JPH11314141A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
CN102019501B (en) Friction stir welding method for circular seam
JP2012170975A (en) Method for bonding metal member and resin member
JP4995252B2 (en) Friction stir welding equipment for lap welding
JP2007111716A (en) Clamping device, welding equipment and welding method
KR101234834B1 (en) Method for making the long neck flange
CN102672358A (en) Welding apparatus for induction motor and method of welding induction motor
KR20050081871A (en) Frictional spot joining structure
CN103737220B (en) The friction stir welding inner supporting device of its central band reserved opening closed cylinder in two ends
JP2007209986A (en) Friction stirring and joining method
JP4119522B2 (en) Winding method of rapidly solidified foil for frustum ring joint material
JPH03243286A (en) Joining method for clad tube
JP3902326B2 (en) Method of manufacturing rapidly solidified foil for frustoconical ring-shaped bonding material
JP3415996B2 (en) Winding method of rapidly solidified foil for frusto-conical ring joining material
JP2675930B2 (en) Brazing material for truncated cone ring made of rapidly solidified foil and its manufacturing method
JP3456838B2 (en) Method and apparatus for producing rapidly solidified foil for frusto-conical ring joining material and production nozzle
CN110732770A (en) circular weld friction welding method
JP4264775B2 (en) Dissimilar metal joining method
JP2019209340A (en) Method for confining molten metal using molten metal confinement ring in rolling friction welding
JPS5921477A (en) Saddle shaped automatic welding method
JPH09314376A (en) Conical stand ring joining material composed of quenching solidification hoop sheet, production therefor, producing nozzle and equipment therefor
KR102156116B1 (en) heat pipe
JPH1024348A (en) Production of quenching and solidified foil for truncated conical ring joining material and roll for producing this foil
JP2002292432A (en) Manufacturing method for stepped pipe
KR100967704B1 (en) Line welding method and apparatus for performing the same
JP2852841B2 (en) Manufacturing method of seamless clad pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees