JP4118971B2 - Multi-tone LCD driver - Google Patents

Multi-tone LCD driver Download PDF

Info

Publication number
JP4118971B2
JP4118971B2 JP04246797A JP4246797A JP4118971B2 JP 4118971 B2 JP4118971 B2 JP 4118971B2 JP 04246797 A JP04246797 A JP 04246797A JP 4246797 A JP4246797 A JP 4246797A JP 4118971 B2 JP4118971 B2 JP 4118971B2
Authority
JP
Japan
Prior art keywords
liquid crystal
string
taps
voltage
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04246797A
Other languages
Japanese (ja)
Other versions
JPH10240192A (en
Inventor
長生 神谷
Original Assignee
ティーピーオー ホンコン ホールディング リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーピーオー ホンコン ホールディング リミテッド filed Critical ティーピーオー ホンコン ホールディング リミテッド
Priority to JP04246797A priority Critical patent/JP4118971B2/en
Publication of JPH10240192A publication Critical patent/JPH10240192A/en
Application granted granted Critical
Publication of JP4118971B2 publication Critical patent/JP4118971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えばTFTマトリクス液晶表示素子の各信号バス等を駆動する多階調液晶ドライバに関し、特に該ドライバ及び該ドライバに動作電源を供給する電源回路の消費電力の軽減に関する。
【0002】
【従来の技術】
近年、マルチメディアの発達に伴い、コンピュータの表示色数は飛躍的に増大した。それに伴って、ノートパソコンに搭載されるTFTマトリクス液晶表示素子(LCD)もその表示色数を増やしてきた。表示色数を増やすために、LCDで使われる信号バス(ソースバス)用のドライバの階調数を増やすことになる。これはドライバ内にDAC(ディジタル・アナログ・変換器)を設置して解決される。反面、色数の増大に比例して回路規模を増大し、ドライバの消費電力が増えることは避けられない。LCDはその用途に鑑みて、でき得る限り低消費電力であることが望ましいので、ドライバメーカは様々の方式を採用し、低消費電力への努力をしている。
【0003】
信号バス用ドライバのDAC方式の一つに、直列接続された一連の抵抗器(STRING抵抗器と言う)をもつR−STRING方式がある。この方式の回路ブロック図を電源回路と共に図3に示す。これは、例えば符号1がN=64階調のドライバであれば64個のストリング抵抗器2を直列に接続し、その抵抗分割により生じた電圧を64個のスイッチSWで一つだけ選択することにより階調電圧を発生させるものである。
【0004】
図3において、各ストリング抵抗器の抵抗値を全てRとし、隣接する端子、タップ5i 〜5i-1 (i=1〜n)間の抵抗値をRt(=m×R)、スイッチのオン抵抗をrとする。
このR−STRING方式の液晶ドライバ1及び電源回路4の消費電力は以下の4つに分けられる。
【0005】
▲1▼ m×n=N個分のSTRING抵抗R×m×nに電源回路4より電圧を印加することによる消費電力
▲2▼ とりこんだ6bit データに従って、N=64個の電圧を選択するスイッチSWを制御するデコーダ部分の消費電力
▲3▼ 出力端子OUTを経由してソースバス(信号バス)を充放電するのに使われる電力
▲4▼ 液晶ドライバ1の内部のロジック回路(図示せず)が消費する電力
次に、図3の液晶ドライバ1の構成上の特徴を挙げると次の点である。
【0006】
イ)N=m×n=64個の抵抗Rが全て等しい値になっている。
ロ)N=64個の各ストリング抵抗器2のm=8個ごとにγ補正用のタップ5i (i=1〜n−1)を有する。
LCDは一般的に図4に示すような透過率−電圧特性(T−V特性)を有するため、階調の変化がなめらかな変化として目視できるよう、階調ごとに印加電圧Vを変えなければならない。いわゆるγ補正と呼ばれるものである。
【0007】
従来のR−STRING方式のドライバは、ロ)のタップ5i (i=1〜n−1)及び両端の端子50 ,5n にγ補正電圧Vi を印加することによってLCDのT−V特性に合わせてきた。そのため、隣合った端子、タップ5i 〜5i-1 間の電位差ΔVi (i=1〜n)は各々異なる。各隣接端子、タップ間の抵抗値m×R=Rtは等しいので、各端子5i に異なる電圧Vi が印加されることにより、合成抵抗Rtを流れる電流Ii は図5より明らかなように、
i =ΔVi /Rt ………… (1)
中間のタップ5i (i=1〜n−1)には(2)式で表される電流ΔIi が流れることとなる。
【0008】

Figure 0004118971
(2)式で表される電流ΔIi は中間タップに接続されるγ補正電圧発生回路4i (i=1〜n−1)での電力消費Pi をもたらす。
【0009】
i =Vi ×ΔIi =Vi (ΔVi+1 −ΔVi )/Rt
(i=1…,n−1) ………… (3)
また、回路4n 及び40 内でそれぞれ消費される電力は、電源電圧をVccとすれば
n =(Vcc−Vn )In
0 =V0 1 ………… (4)
ドライバ1内部でのR−STRING2そのものが消費する電力もある。このR−STRING2そのものの電力消費はR−STRING2の値が大きい程少なくなるのは明らかであるが、ドライド1の出力インピーダンスとLCDパネルの容量との合成時定数がLCDパネルを充放電する時間に対して十分小さい値でないと、LCDに適正な電圧を与えることができなくなる。これはコントラストの低下やクロストークの増大となって表示品位を低下させる。そのため、端子、タップ5i (i=0〜n)に電圧源を接続することは単にγ補正のための入力としてだけでなく、R−STRINGの抵抗値を大きくし、かつドライバの出力インピーダンスを下げるという側面がある。
【0010】
ドライバ1の出力インピーダンスは選択されるスイッチSWの位置によって変化する。スイッチSWにより分割されるRtの分割比をkとすると、出力インピーダンスRout は抵抗(1−k)RtとkRtの並列抵抗値と、オン抵抗rの和となり、以下の(5)式で表される。
Figure 0004118971
と置くと、k=1/2が得られる。このときRout が最大になり、その値は(7)式となる。
【0011】
〔Rout 〕max =(Rt/4)+r ………… (7)
一般に、R−STRING方式のドライバでは出力インピーダンスの最大値とLCDの容量との時定数が1水平時間Hに対して十分小さくなるように設定される。
【0012】
【発明が解決しようとする課題】
従来のR−STRING方式のドライバはN=m×n=64個の抵抗が全て等しい値(R)になっているため、外部からγ補正用の端子、タップ5i に電圧を印加して、γ特性を補正していた。このγ補正のために各中間のタップ5i には(2)式で表される電流ΔIi がγ補正電圧発生回路4i (i=1〜n−1)に流れるため、その電流ΔIi ×出力電圧Vi =Pi は回路4i での電力消費となる。また、この不平衡電流ΔIi はストリング抵抗器を流れるので、それだけストリング抵抗器の消費電力が増加する。
【0013】
この発明は、γ補正電圧発生回路4i (i=1〜n−1)に吸込まれる電流ΔIi をほぼゼロにして、ドライバ1のストリング抵抗器及び電源回路4の消費電力を低減することを目的としている。
【0014】
【課題を解決するための手段】
(1)請求項1の発明は、直流電圧を直列接続されたN個(Nは3以上の整数)のストリング抵抗器により分割して、N個の階調電圧を得、入力ディジタルデータに基づいて階調電圧の1つを選択して液晶素子に出力すると共に、ストリング抵抗器のN−1個の接続点よりn−1個(1≦n−1<N−1)の接続点を抽出して、それらの抽出された接続点よりタップを導出し、それらのタップ(51 〜5n-1 )及び一連のストリング抵抗器の両端の端子(50 ,5n )にγ補正電圧(V0 ,V1 …,Vn )を印加するようにした多階調液晶ドライバに関する。
【0015】
請求項1では特に、γ補正電圧を、前記隣接の端子、タップ間の電位差(ΔVj )が全て相等しくなるように印加すると共に、それら隣接の端子、タップ間のストリング抵抗器の抵抗値(Rtj )を全てほぼ等しく設定する。
(2)請求項2の発明では、前記(1)において、N個の各ストリング抵抗器の抵抗値R(p)が、液晶素子の透過率対印加電圧特性における1階調当たりの透過率の一定変化幅に対応する印加電圧の変化幅(Δ(p);p=1,2…,N)に応じた値に設定される。
【0016】
(3)請求項3の発明では、前記(1)において、一連のストリング抵抗器の隣接する端子、タップ間に存在する個々のストリング抵抗器の個数(m1 ,m2,…,mn )は、前記液晶素子の透過率対印加電圧特性曲線の傾斜に応じて一連のストリング抵抗器の両端側で少なく、中間で多く設定される。
【0017】
【発明の実施の形態】
N(例えばN=64)階調表示を行うものとして、図2に示す液晶のT−V特性より、階調に対応する一定ピッチ幅の透過率T(0),T(1)…,T(N)に対応する印加電圧E(0),E(1),…,E(N)を求める。従来と同様にn+1個(例えばn=8)の端子(タップ)50 〜5n を設けるものとする。隣接端子、タップ間の電位差ΔVj をjに関係なくΔVに等しくする。即ち、
ΔVj (j=1〜n)=ΔV …………(8)
また、隣接タップ間の抵抗値Rti を全てほぼ等しくする。即ち、
Rtj (j=1〜n)≒Rt(一定) …………(9)
このとき、隣接端子、タップ間のストリング抵抗器を流れる電流Ii
j =ΔVj /Rtj =ΔV/Rt …………(10)
即ち、Ij はjに依らず一定値となる。従って、γ電圧補正回路4j に流れ込むΔIj は、
ΔIj =Ij+1 −Ij =0 (j=1〜n−1) …………(11)
となり、低消費電力化が図られる。
【0018】
透過率T(j)(j=0〜N)に対応する印加電圧E(p)(p=0〜N)より1階調増すごとのステップ電圧Δ(p)(図2)を求める。
Δ(1)=E(1)−E(0)
Δ(2)=E(2)−E(1),
・・・
Δ(p)=E(p)−E(p−1),
・・・
Δ(N)=E(N)−E(N−1), …………(12)
隣接端子、タップ間のストリング抵抗の合計Rtj (j=1〜n)を全てほぼ等しくするために、この発明では、各ストリング抵抗器R(p)の値を、比例定数をKとして、下式のように設定する。
【0019】
R(p)=KΔ(p)(p=1〜N) …………(13)
即ち、各ストリング抵抗値R(p)はLCDのTーV特性における1階調当たりの透過率Tの一定変化幅に対応する印加電圧の変化幅Δ(p)に応じた値とする。
隣接の端子、タップ間の電圧ΔVを下式より求める。
【0020】
ΔV={E(N)−E(0)}/n …………(14)
従って、γ補正電圧発生回路4j (j=0〜n)より各端子、タップ5j に印加する電圧Vj (j=0〜n)を次のように設定する。
0 =E(0)
1 =E(0)+ΔV,
2 =E(0)+2ΔV,
・・・
j =E(0)+jΔV,
・・・
n-1 =E(0)+(n−1)ΔV,
n =E(0)+nΔV=E(N), …………(15)
N−1(例えば63)個の階調電圧系列E(1),E(2)…,E(N−1)の中から、n−1(例えば7)個のタップ電圧系列V1 ,V2 …,Vn-1 にそれぞれ最も近い階調電圧E(x)を抽出する。即ち、
E(0)=V0
E(m1 )≒V1
E(m1 +m2 )≒V2
・・・
E(m1 +…+mj )≒Vj
・・・
E(m1 +…+mn-1 )≒Vn-1
E(m1 +…+mn )=Vn …………(16)
j はタップ5j-1 〜5j 間の階調数、つまりストリング抵抗器R(p)の個数であり、m1 〜mn の総和はNに等しい。即ち、
Σmn =m1 +m2 +…+mn =N …………(17)
図1から明らかなように、タップ51 はストリング抵抗器R(m1)とR(m1 +1)との接続点から出せばよく、タップ52 はストリング抵抗器R(m1 +m2 )とR(m1 +m2 +1)との接続点から出せばよく、以下同様である。
【0021】
このようにして一連のストリング抵抗器の途中からタップ5j (j=1〜n−1)を導出すると共に、各ストリング抵抗器R(p)(p=1〜N)の値をT−V特性における1階調ごとのステップ電圧Δ(p)に応じた値に設定したとき、確かに隣接端子、タップ5j ,5j-1 間の抵抗値Rtj (j=1〜n)がjに依らず、全てほぼ同じ値になることを検証してみる。
【0022】
Rtj =R(1+Σmj-1)+R(2+Σmj-1)+…+R(mj +Σmj-1)…………(18)
(13)式を代入して、
=K{Δ(1+Σmj-1)+Δ(2+Σmj-1)+…+Δ(mj +Σmj-1)}
(12)式を代入して
=K{E(1+Σmj-1)−E(Σmj-1)
+E(2+Σmj-1)−E(1+Σmj-1)
・・・
+E(mj +Σmj-1)−E(mj-1 +Σmj-1)}
=K{E(Σmj )−E(Σmj-1)}
(16)式を代入して
≒K{Vj −Vj-1 } …………(19)
(15)式を代入して
=K{E(0)+jΔV−E(0)−(j−1)ΔV}
=KΔV …………(20)
以上により、各隣接端子、タップ間の抵抗値Rtj (j=1〜n)はjの値に依らずほぼKΔVの一定値となっていることが検証できた。
【0023】
実際にγ補正電圧発生回路4j (j=0〜n)よりタップに供給する電圧は(15)式より求めた電圧V0 ,V1 …Vn であるので、隣接タップ間の電位差は全てΔVであり、両端の40 と4n を除く中間のγ補正電圧発生回路41 〜4n-1 の出力端子を出入りする不平衡電流(従来技術で述べたΔIj )はほぼゼロとなり、省電力化が図られる。この場合、中間の補正電圧発生回路41 〜4n-1 は液晶ドライバ1の出力抵抗を下げる機能を発揮していることは勿論である。不平衡電流ΔIj はストリング抵抗器を流れる。この発明ではΔIj =0であるので、ストリング抵抗器での消費電力もそれだけ少なくなる。
【0024】
各γ補正電圧発生回路4j の印加電圧V1 ,V2 …,Vn-1 は、図2のT−V特性より求めたE(m1 ),E(m1 +m2 )…,E(Σmn-1 )とそれぞれ僅かの差をもつので、出力端子OUTよりLCDに供給する階調電圧は両端のE(0),E(N)を除いて僅かな誤差が存在する。しかし、この誤差は僅かであり、また階調数が例えばN=64と多いので何ら問題になることはない。
【0025】
図2からも分かるように、この発明では隣接端子、タップ間のストリング抵抗器の数、即ち階調数は、T−V特性の傾斜に応じて設定され、T(0)(ゼロ階調)側及びT(N−1)(N−1階調)側では、従来の例えばm=8に比べて、例えばm1 =5,mn =5と少なく、中間のタップ間の階調数は例えばmj =20と多くなる。
【0026】
隣接端子、タップ間のストリング抵抗Rtの消費電力は
P=(ΔV)2 /Rt …………(21)
であるので、ストリング抵抗は液晶の画像表示に影響の出ない範囲で、できるだけ大きくするのが望ましい。
【0027】
【発明の効果】
この発明では、γ補正電圧Vj (j=0〜n)を隣接端子、タップ間の電位差ΔVj が全て相等しくなるように印加すると共に、それら隣接端子、タップ間のストリング抵抗Rtj を全てほぼ等しく設定したので、中間のタップ51 〜5n-1 からγ補正電圧発生回路41 〜4n-1 側に流れる不平衡電流ΔIj はほぼゼロとなり、それだけ電源回路41及びストリング抵抗器2の消費電力を低減できる。
【図面の簡単な説明】
【図1】この発明の実施例を示す回路図。
【図2】この発明における階調電圧E(p)(p=0,1…,N),透過率T(p)及びγ補正電圧Vj (j=0〜n)の対応を説明するためのLCDの透過率対印加電圧特性を示すグラフ。
【図3】従来の液晶ドライバを電源回路と共に示す回路図。
【図4】従来の階調電圧E(p)(p=0〜N),透過率T(p)及びγ補正電圧Vi (i=0〜n)の対応を説明するためのLCDの透過率対印加電圧特性を示すグラフ。
【図5】図3の要部の電圧、電流を示すための回路図。
【図6】図3の液晶ドライバ1の出力抵抗を説明するための回路図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-tone liquid crystal driver that drives each signal bus of a TFT matrix liquid crystal display element, for example, and more particularly to reduction of power consumption of the driver and a power supply circuit that supplies operation power to the driver.
[0002]
[Prior art]
In recent years, with the development of multimedia, the number of display colors of computers has increased dramatically. Along with this, TFT matrix liquid crystal display elements (LCD) mounted on notebook personal computers have also increased the number of display colors. In order to increase the number of display colors, the number of gradations of the driver for the signal bus (source bus) used in the LCD is increased. This can be solved by installing a DAC (digital / analog converter) in the driver. On the other hand, it is inevitable that the circuit scale increases in proportion to the increase in the number of colors and the power consumption of the driver increases. Since it is desirable that the LCD has as low power consumption as possible in view of its use, driver manufacturers adopt various methods and make efforts to reduce power consumption.
[0003]
One DAC system for signal bus drivers is an R-STRING system having a series of resistors connected in series (referred to as STRING resistors). A circuit block diagram of this system is shown in FIG. 3 together with a power supply circuit. For example, if the code 1 is a driver of N = 64 gradations, 64 string resistors 2 are connected in series, and only one voltage generated by the resistance division is selected by 64 switches SW. Thus, a gradation voltage is generated.
[0004]
In FIG. 3, the resistance values of the string resistors are all R, the resistance values between adjacent terminals and taps 5 i to 5 i-1 (i = 1 to n) are Rt (= m × R), Let the on-resistance be r.
The power consumption of the R-STRING type liquid crystal driver 1 and the power supply circuit 4 is divided into the following four types.
[0005]
(1) Power consumption by applying voltage from the power supply circuit 4 to m × n = N STRING resistors R × m × n (2) Switch for selecting N = 64 voltages according to the 6-bit data taken Power consumption of decoder part controlling SW (3) Power used to charge / discharge source bus (signal bus) via output terminal OUT (4) Logic circuit (not shown) in liquid crystal driver 1 Next, the structural features of the liquid crystal driver 1 shown in FIG. 3 are as follows.
[0006]
B) N = m × n = 64 resistors R are all equal.
B) A tap 5 i (i = 1 to n−1) for γ correction is provided for every m = 8 of N = 64 string resistors 2.
Since the LCD generally has a transmittance-voltage characteristic (TV characteristic) as shown in FIG. 4, the applied voltage V must be changed for each gradation so that the gradation can be visually recognized as a smooth change. Don't be. This is so-called γ correction.
[0007]
A conventional R-STRING type driver applies the γ correction voltage V i to the taps 5 i (i = 1 to n−1) and the terminals 5 0 and 5 n at both ends of the LCD 5). It has been tailored to the characteristics. Therefore, the potential difference ΔV i (i = 1 to n) between the adjacent terminals and the taps 5 i to 5 i−1 is different. Since resistance values m × R = Rt between adjacent terminals and taps are equal, the current I i flowing through the combined resistor Rt is apparent from FIG. 5 by applying different voltages V i to the respective terminals 5 i . ,
I i = ΔV i / Rt (1)
The current ΔI i expressed by the equation (2) flows through the intermediate tap 5 i (i = 1 to n−1).
[0008]
Figure 0004118971
The current ΔI i expressed by the equation (2) causes the power consumption P i in the γ correction voltage generation circuit 4 i (i = 1 to n−1) connected to the intermediate tap.
[0009]
P i = V i × ΔI i = V i (ΔV i + 1 −ΔV i ) / Rt
(I = 1 ..., n-1) (3)
The circuit 4 n and power consumed respectively 4 within 0, P if the supply voltage and V cc n = (V cc -V n) I n
P 0 = V 0 I 1 (4)
There is also power consumed by the R-STRING 2 itself in the driver 1. Although it is clear that the power consumption of the R-STRING 2 itself decreases as the value of the R-STRING 2 increases, the combined time constant of the output impedance of the dry 1 and the capacity of the LCD panel determines the time for charging and discharging the LCD panel. If the value is not sufficiently small, an appropriate voltage cannot be applied to the LCD. This lowers the display quality as contrast decreases and crosstalk increases. Therefore, connecting a voltage source to the terminal and tap 5 i (i = 0 to n) is not only an input for γ correction, but also increases the resistance value of R-STRING and increases the output impedance of the driver. There is an aspect of lowering.
[0010]
The output impedance of the driver 1 varies depending on the position of the selected switch SW. Assuming that the division ratio of Rt divided by the switch SW is k, the output impedance Rout is the sum of the parallel resistance value of the resistors (1-k) Rt and kRt and the on-resistance r, and is expressed by the following equation (5). The
Figure 0004118971
Then k = 1/2 is obtained. At this time, Rout becomes maximum, and its value is given by equation (7).
[0011]
[Rout] max = (Rt / 4) + r (7)
In general, in the R-STRING driver, the time constant between the maximum value of output impedance and the capacity of the LCD is set to be sufficiently small with respect to one horizontal time H.
[0012]
[Problems to be solved by the invention]
In the conventional R-STRING type driver, since N = m × n = 64 resistors all have the same value (R), a voltage is applied from the outside to the terminal for γ correction, tap 5 i , The gamma characteristic was corrected. To flow to the current [Delta] I i to each intermediate tap 5 i represented by the formula (2) for the γ correction γ correction voltage generation circuit 4 i (i = 1~n-1 ), the current [Delta] I i X The output voltage V i = P i is the power consumption in the circuit 4 i . Also, since this unbalanced current ΔI i flows through the string resistor, the power consumption of the string resistor increases accordingly.
[0013]
The present invention reduces the power consumption of the string resistor of the driver 1 and the power supply circuit 4 by making the current ΔI i sucked into the γ correction voltage generation circuit 4 i (i = 1 to n−1) substantially zero. It is an object.
[0014]
[Means for Solving the Problems]
(1) The invention of claim 1 divides a DC voltage by N string resistors (N is an integer of 3 or more) connected in series to obtain N grayscale voltages, and based on input digital data One of the gradation voltages is selected and output to the liquid crystal element, and n−1 (1 ≦ n−1 <N−1) connection points are extracted from the N−1 connection points of the string resistor. Then, taps are derived from the extracted connection points, and γ correction voltages (5 0 , 5 n ) are applied to the taps (5 1 to 5 n-1 ) and the terminals (5 0 , 5 n ) of the series string resistors. V 0 , V 1 ..., V n ).
[0015]
In particular, the γ correction voltage is applied so that the potential differences (ΔV j ) between the adjacent terminals and taps are all equal, and the resistance value of the string resistor between the adjacent terminals and taps ( Rt j ) are all set approximately equal.
(2) In the invention of claim 2, in (1), the resistance value R (p) of each of the N string resistors is the transmittance per one gradation in the transmittance versus applied voltage characteristics of the liquid crystal element. A value corresponding to the change width (Δ (p); p = 1, 2,..., N) of the applied voltage corresponding to the constant change width is set.
[0016]
(3) In the invention of claim 3, in (1), the number of individual string resistors (m 1 , m 2 ,..., M n ) existing between adjacent terminals and taps of a series of string resistors. Is reduced at both ends of a series of string resistors according to the slope of the transmittance versus applied voltage characteristic curve of the liquid crystal element, and is set at a large value in the middle.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Assuming that N (for example, N = 64) gradation display is performed, transmittances T (0), T (1),... Applied voltages E (0), E (1),..., E (N) corresponding to (N) are obtained. As in the conventional case, n + 1 (for example, n = 8) terminals (tap) 5 0 to 5 n are provided. The potential difference ΔV j between adjacent terminals and taps is made equal to ΔV regardless of j. That is,
ΔV j (j = 1 to n) = ΔV (8)
Further, the resistance values Rt i between adjacent taps are all made substantially equal. That is,
Rt j (j = 1 to n) ≈Rt (constant) (9)
At this time, the current I i flowing through the string resistor between the adjacent terminal and the tap is I j = ΔV j / Rt j = ΔV / Rt (10)
That is, I j is a constant value regardless of j. Thus, [Delta] I j flowing into γ voltage correction circuit 4 j is
ΔI j = I j + 1 −I j = 0 (j = 1 to n−1) (11)
Thus, low power consumption is achieved.
[0018]
A step voltage Δ (p) (FIG. 2) is obtained for each gradation increase from the applied voltage E (p) (p = 0 to N) corresponding to the transmittance T (j) (j = 0 to N).
Δ (1) = E (1) −E (0)
Δ (2) = E (2) −E (1),
...
Δ (p) = E (p) −E (p−1),
...
Δ (N) = E (N) −E (N−1), (12)
In order to make all of the string resistances Rt j (j = 1 to n) between adjacent terminals and taps substantially equal, in the present invention, the value of each string resistor R (p) is Set as an expression.
[0019]
R (p) = KΔ (p) (p = 1 to N) (13)
That is, each string resistance value R (p) is a value corresponding to the change width Δ (p) of the applied voltage corresponding to the constant change width of the transmittance T per gradation in the TV-V characteristic of the LCD.
The voltage ΔV between adjacent terminals and taps is obtained from the following equation.
[0020]
ΔV = {E (N) −E (0)} / n (14)
Therefore, the voltage V j (j = 0 to n) applied to each terminal and the tap 5 j from the γ correction voltage generation circuit 4 j (j = 0 to n) is set as follows.
V 0 = E (0)
V 1 = E (0) + ΔV,
V 2 = E (0) + 2ΔV,
...
V j = E (0) + jΔV,
...
V n−1 = E (0) + (n−1) ΔV,
V n = E (0) + nΔV = E (N), (15)
From N−1 (for example, 63) grayscale voltage series E (1), E (2)..., E (N−1), n−1 (for example, 7) tap voltage series V 1 , V 2 ..., the gradation voltage E (x) closest to V n-1 is extracted. That is,
E (0) = V 0 ,
E (m 1 ) ≈V 1 ,
E (m 1 + m 2 ) ≈V 2 ,
...
E (m 1 +... + M j ) ≈V j ,
...
E (m 1 + ... + m n-1 ) ≈V n-1 ,
E (m 1 + ... + m n ) = V n (16)
m j is the number of gradations between the taps 5 j-1 to 5 j , that is, the number of string resistors R (p), and the sum of m 1 to mn is equal to N. That is,
Σm n = m 1 + m 2 + ... + m n = N (17)
As is apparent from FIG. 1, the tap 5 1 may be taken out from the connection point between the string resistors R (m 1 ) and R (m 1 +1), and the tap 5 2 is the string resistor R (m 1 + m 2 ). And R (m 1 + m 2 +1) may be taken out from the connection point, and so on.
[0021]
In this way, the tap 5 j (j = 1 to n−1) is derived from the middle of a series of string resistors, and the value of each string resistor R (p) (p = 1 to N) is set to TV. When the characteristic is set to a value corresponding to the step voltage Δ (p) for each gradation, the resistance value Rt j (j = 1 to n) between the adjacent terminals and the taps 5 j and 5 j−1 is certainly j. Let's verify that all values are almost the same regardless of.
[0022]
Rt j = R (1 + Σm j-1 ) + R (2 + Σm j-1 ) +... + R (m j + Σm j-1 ) (18)
(13) Substituting the equation,
= K {Δ (1 + Σm j-1 ) + Δ (2 + Σm j-1 ) + ... + Δ (m j + Σm j-1 )}
Substituting equation (12) = K {E (1 + Σm j-1 ) −E (Σm j-1 )
+ E (2 + Σm j-1 ) -E (1 + Σm j-1 )
...
+ E (m j + Σm j−1 ) −E (m j−1 + Σm j−1 )}
= K {E (Σm j ) -E (Σm j-1 )}
Substituting equation (16) ≈ K {V j −V j−1 } (19)
Substituting equation (15) = K {E (0) + jΔV−E (0) − (j−1) ΔV}
= KΔV ............ (20)
From the above, it was verified that the resistance value Rt j (j = 1 to n) between each adjacent terminal and the tap was a constant value of KΔV regardless of the value of j.
[0023]
Actually, the voltages supplied to the taps from the γ correction voltage generation circuit 4 j (j = 0 to n ) are the voltages V 0 , V 1 ... V n obtained from the equation (15). a [Delta] V, 4 0 an intermediate γ correction voltage generating circuit 4 1 ~4 n-1 of the unbalanced current into and out of the output terminal, except for 4 n at both ends ([Delta] I described in the prior art j) becomes substantially zero, Power saving is achieved. In this case, it goes without saying that the intermediate correction voltage generating circuits 4 1 to 4 n-1 exhibit a function of reducing the output resistance of the liquid crystal driver 1. The unbalanced current ΔI j flows through the string resistor. Since ΔI j = 0 in the present invention, the power consumption in the string resistor is reduced accordingly.
[0024]
The applied voltages V 1 , V 2, ..., V n-1 of each γ correction voltage generation circuit 4 j are E (m 1 ), E (m 1 + m 2 ),. Since there is a slight difference between (Σm n-1 ) and the gradation voltage supplied to the LCD from the output terminal OUT, there is a slight error except for E (0) and E (N) at both ends. However, this error is slight, and there are no problems because the number of gradations is as large as N = 64, for example.
[0025]
As can be seen from FIG. 2, in the present invention, the number of string resistors between adjacent terminals and taps, that is, the number of gradations is set according to the slope of the TV characteristic, and T (0) (zero gradation). On the side and the T (N-1) (N-1 gradation) side, for example, m 1 = 5 and mn = 5 are smaller than, for example, m = 8, and the number of gradations between intermediate taps is For example, m j = 20.
[0026]
The power consumption of the string resistor Rt between the adjacent terminal and the tap is P = (ΔV) 2 / Rt (21)
Therefore, it is desirable to increase the string resistance as much as possible within a range that does not affect the liquid crystal image display.
[0027]
【The invention's effect】
In the present invention, the γ correction voltage V j (j = 0 to n) is applied so that the potential differences ΔV j between the adjacent terminals and taps are all equal, and the string resistances Rt j between these adjacent terminals and taps are all applied. Since they are set to be approximately equal, the unbalanced current ΔI j flowing from the intermediate taps 5 1 to 5 n-1 to the γ correction voltage generation circuit 4 1 to 4 n-1 side becomes substantially zero, and the power supply circuit 41 and the string resistor are correspondingly increased. 2 power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
FIG. 2 is a diagram for explaining the correspondence among gradation voltage E (p) (p = 0, 1,..., N), transmittance T (p), and γ correction voltage V j (j = 0 to n) in the present invention; The graph which shows the transmittance | permeability with respect to the applied voltage of LCD of no.
FIG. 3 is a circuit diagram showing a conventional liquid crystal driver together with a power supply circuit.
FIG. 4 shows LCD transmission for explaining the correspondence between conventional gradation voltage E (p) (p = 0 to N), transmittance T (p), and γ correction voltage V i (i = 0 to n). The graph which shows a rate versus applied voltage characteristic.
5 is a circuit diagram for showing voltages and currents in the main part of FIG. 3;
6 is a circuit diagram for explaining an output resistance of the liquid crystal driver 1 of FIG. 3;

Claims (3)

直流電圧を直列接続されたN個(Nは3以上の整数)のストリング抵抗器により分割して、N個の階調電圧を得、入力ディジタルデータに基づいて前記階調電圧の1つを選択して液晶素子に出力すると共に、前記一連のストリング抵抗器の中間のN−1個の接続点よりn−1個(1≦n−1<N−1)の接続点を抽出して、それらの抽出された接続点よりタップを導出し、それらのタップ及び一連のストリング抵抗器の両端の端子に前記階調電圧を液晶素子の透過率対印加電圧特性に合わせるためのγ補正電圧を印加するようにした多階調液晶ドライバにおいて、前記γ補正電圧を、前記隣接の端子、タップ間の電位差が全て相等しくなるように印加すると共に、それら隣接の端子、タップ間のストリング抵抗器の抵抗値の合計を全てほぼ等しく設定したことを特徴とする多階調液晶ドライバ。The DC voltage is divided by N (N is an integer of 3 or more) string resistors connected in series to obtain N grayscale voltages, and one of the grayscale voltages is selected based on the input digital data. Are output to the liquid crystal element, and n-1 (1 ≦ n-1 <N-1) connection points are extracted from N-1 connection points in the middle of the series of string resistors. Taps are derived from the extracted connection points, and a γ correction voltage is applied to the taps and terminals at both ends of the series of string resistors in order to match the gradation voltage to the transmittance versus applied voltage characteristics of the liquid crystal element. In the multi-tone liquid crystal driver thus configured, the γ correction voltage is applied so that the potential differences between the adjacent terminals and taps are all equal, and the resistance value of the string resistor between the adjacent terminals and taps. approximately equal all the sum of the Multi-gradation liquid crystal driver, characterized in that the set. 前記各ストリング抵抗器の抵抗値が、前記液晶素子の透過率対印加電圧特性における1階調当たりの透過率の一定変化幅に対応する印加電圧の変化幅に応じた値に設定されていることを特徴とする請求項1記載の多階調液晶ドライバ。  The resistance value of each string resistor is set to a value corresponding to the change width of the applied voltage corresponding to the constant change width of the transmittance per gradation in the transmittance versus applied voltage characteristic of the liquid crystal element. The multi-tone liquid crystal driver according to claim 1. 前記の一連のストリング抵抗器の隣接する端子、タップ間に存在する個々のストリング抵抗器の個数は、前記液晶素子の透過率対印加電圧特性曲線の傾斜に応じて一連のストリング抵抗器の両端側で少なく、中間で多く設定されていることを特徴とする請求項1記載の多階調液晶ドライバ。  The number of individual string resistors existing between adjacent terminals and taps of the series of string resistors depends on the slope of the transmittance vs. applied voltage characteristic curve of the liquid crystal element. 2. The multi-tone liquid crystal driver according to claim 1, wherein the multi-tone liquid crystal driver is set to a small number and a large number in the middle.
JP04246797A 1997-02-26 1997-02-26 Multi-tone LCD driver Expired - Fee Related JP4118971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04246797A JP4118971B2 (en) 1997-02-26 1997-02-26 Multi-tone LCD driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04246797A JP4118971B2 (en) 1997-02-26 1997-02-26 Multi-tone LCD driver

Publications (2)

Publication Number Publication Date
JPH10240192A JPH10240192A (en) 1998-09-11
JP4118971B2 true JP4118971B2 (en) 2008-07-16

Family

ID=12636887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04246797A Expired - Fee Related JP4118971B2 (en) 1997-02-26 1997-02-26 Multi-tone LCD driver

Country Status (1)

Country Link
JP (1) JP4118971B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456987B1 (en) 2001-04-10 2004-11-10 가부시키가이샤 히타치세이사쿠쇼 Display device and display driving device for displaying display data
KR100835925B1 (en) * 2001-08-17 2008-06-09 엘지디스플레이 주식회사 Gamma voltage generator, integrated circuit with the same and driving method thereof
KR102017827B1 (en) * 2013-01-11 2019-10-21 엘지디스플레이 주식회사 Gamma voltage generator and liquid crystal display having the same
JP2016099555A (en) * 2014-11-25 2016-05-30 ラピスセミコンダクタ株式会社 Gradation voltage generation circuit and picture display device
US11212424B2 (en) * 2018-10-05 2021-12-28 Synaptics Incorporated Device and method for compensation of power source voltage drop

Also Published As

Publication number Publication date
JPH10240192A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP4437378B2 (en) Liquid crystal drive device
US6437716B2 (en) Gray scale display reference voltage generating circuit capable of changing gamma correction characteristic and LCD drive unit employing the same
JP4936854B2 (en) Display device and display panel driver
TW417077B (en) Liquid crystal driving circuit and liquid crystal display device
JP2005010276A (en) Gamma correction circuit, liquid crystal driving circuit, display device, power supply circuit
JP4278510B2 (en) Liquid crystal display device and driving method
US7173597B2 (en) Signal-adjusted LCD control unit
US6750839B1 (en) Grayscale reference generator
KR100936788B1 (en) Gamma Correction Apparatus for a Liquid Crystal Display
US7714811B2 (en) Light-emitting device and method of driving the same
US20080252665A1 (en) Current driver and display device
US7248254B2 (en) Gamma correcting circuit and panel drive apparatus equipped with gamma correcting circuit
US20090167659A1 (en) Liquid crystal display and driving method thereof
US8022910B2 (en) Liquid crystal display and driving method thereof
JP2007286525A (en) Gradation voltage generating circuit, driver ic and liquid crystal display
US7385581B2 (en) Driving voltage control device, display device and driving voltage control method
JP2002014656A (en) Driving circuit for displaying multi-level digital video data and its method
US7944411B2 (en) Current-drive circuit and apparatus for display panel
KR100209643B1 (en) Driving circuit for liquid crystal display element
US6424281B1 (en) DAC with adjusting digital codes corresponded to reference voltages
CN112037702A (en) Driving circuit for gamma voltage generator and gamma voltage generator thereof
KR20080012069A (en) Digital to analog converter and source driver including thereof
JP4118971B2 (en) Multi-tone LCD driver
US20090219307A1 (en) Lcd driver circuit
JP2007171911A (en) Driver and display device including the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees