JP4116214B2 - High frequency inductively coupled plasma optical emission spectrometer - Google Patents

High frequency inductively coupled plasma optical emission spectrometer Download PDF

Info

Publication number
JP4116214B2
JP4116214B2 JP2000014059A JP2000014059A JP4116214B2 JP 4116214 B2 JP4116214 B2 JP 4116214B2 JP 2000014059 A JP2000014059 A JP 2000014059A JP 2000014059 A JP2000014059 A JP 2000014059A JP 4116214 B2 JP4116214 B2 JP 4116214B2
Authority
JP
Japan
Prior art keywords
light
inductively coupled
coupled plasma
frequency inductively
dimensional surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000014059A
Other languages
Japanese (ja)
Other versions
JP2000329697A (en
Inventor
正夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2000014059A priority Critical patent/JP4116214B2/en
Publication of JP2000329697A publication Critical patent/JP2000329697A/en
Application granted granted Critical
Publication of JP4116214B2 publication Critical patent/JP4116214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【0001】
【発明の属する技術分野】
高周波誘導結合プラズマ発光分光分析装置に関し、特に二次元面検出器を用いた装置に関する。
【0002】
【従来の技術】
従来は、二次元面検出器ではなく光電子増倍管を用いた装置が使われていた。光電子増倍管を用いた装置では、ある特定波長の光強度しか測定できないため、近傍の波長の光強度を測定する際には、分光器の波長を微小に動かす必要があった。
【0003】
【発明が解決しようとする課題】
光電子増倍管を用いる場合には、分析する光のみが検出器に入射するように分光器が構成される。したがって、目的波長の近傍のデータを取得するためには、分光器の波長を微少に駆動する必要がある。単純に光電子増倍管を二次元面検出器に置き換えた場合には分析する光の近傍の光がすべて入射できるが、光電子増倍管で短時間に測定が可能であるのに対し、二次元面検出器では、露光後電荷を転送する時間が必要となるので、データの取得に時間がかかる。また、強い光のピークの近傍に弱い光のピークがある場合には、露光時間を強い光用と弱い光用に分けて2回露光する必要がある。
【0004】
【課題を解決するための手段】
結像する前の分光された光を別方向に分割するために光軸上に光分割装置を配置し、分割された光路上に光遮断装置と二次元面検出器を複数個備える手段である。
【0005】
【作用】
複数個の光遮断装置と二次元面検出器を用い、強い光用と弱い光用の露光時間で各々測定することにより、一度に目的波長の近傍の測定を行うことができる。また片方の二次元面検出器が電荷を転送している間に、もう一方の露光が行えるため測定時間の短縮が計れる。
【0006】
【発明の実施の形態】
以下実施例に基づき、詳細に説明する。
図1は、本発明の実施例である。図示しないプラズマ発生装置によってプラズマ1が生成し、図示しない試料導入装置によってプラズマ1に試料が導入され、プラズマ1から分析に供される光が発光する。プラズマ1から出た光は、レンズ2により入口スリット3に集光され、コリメーティングミラー4により平行光線となり、平行光線はグレーティング5により分光され、分光された光はカメラミラー6により結像される。結像される直前の光路上に光分割装置7を配置し、透過した光は光遮断装置A8を通り二次元面検出器A9に結像し、反射した光は光遮断装置B10を通り二次元面検出器B11に結像する。
【0007】
光分割装置7として石英板にアルミニウムを蒸着したハーフミラーを用いた。アルミニウムの蒸着膜の厚さを変えることにより、透過と反射の比を変更することができる。また、別の方法として鏡面を有する円盤の一部を短冊状に複数切り取り、中心にモーターを取り付け回転させた。切り取る部分を多くすることで、透過と反射の比を変更することができる。
【0008】
光遮断装置8および10は機械的シャッターを用い、二次元面検出器9および11はCCD(電荷結合素子)を用いた。検出器としては、CID、ダイオードアレイでもよく、CCDに限定されるものではない。
はじめに、透過光と反射光の比が1(透過光:反射光=1:1)である場合について説明する。
【0009】
複数の分析線を測定する場合、二次元検出器を用いると電荷の転送に時間がかかるため測定時間がより多くかかってしまう。そこで図3に示したように、光遮断装置A8を開閉し二次元面検出器A9の露光終了後電荷を読み出している間に、グレーティング5を駆動し波長を動かした後、光遮断装置B10を開閉し二次元面検出器B11で露光する事ができる。二次元面検出器B11で露光終了後電荷を読み出している間に、再度グレーティング5を駆動し波長を動かした後、光遮断装置A8を開閉し二次元面検出器A9で露光することができる。この様に複数個の光遮断装置と二次元検出器を交互に露光し電荷を読み出すことにより測定時間の短縮が計れる。
【0010】
二次元面検出器の測定される範囲に強い光と弱い光が混在した場合、強い光を基準に露光した場合は弱い光が十分な強度で検出できず、逆に弱い光を基準に露光した場合は強い光は飽和してしまい測定できない。このため2回露光して読み出さねばならず測定に時間がかかる。このとき図4に示したように、光遮断装置A8の開時間を長くして二次元面検出器A9の露光時間を弱い光用として長く設定し、光遮断装置B10の開時間を短くして二次元面検出器B11の露光時間を強い光用として短く設定することにより、一度の露光で強い光と弱い光のデータを得ることができ、測定時間の短縮が計れる。
【0011】
実際の測定データを図6に示した。これはAが2秒露光、Bが1秒露光した時の結果である。2秒露光(A)した場合一番右のピークは飽和してしまっているが、2番目のピークはほぼ最大の強度を示している。また、2秒露光(A)のピークは、1秒露光(B)のピークの2倍となっており、測定がきちんと行われた事が確認できた。
【0012】
つぎに、透過光と反射光の比が4(透過光:反射光=4:1)である場合について説明する。透過光と反射光の比は1以上であればいくつでもよく、限定されるものではない。
前述したように、二次元面検出器の測定される範囲に強い光と弱い光が混在した場合、強い光を基準に露光した場合は弱い光が十分な強度で検出できず、逆に弱い光を基準に露光した場合は強い光は飽和してしまい測定できない。異なる露光時間で測定しても良い結果が得られるが、片方の露光終了後にもう一方がまだ露光している間に時間的揺らぎが発生する場合がある。そのため、図5に示したように同じ露光時間で同じ時刻に測定する。光分割装置7を透過した光は光遮断装置A8を通り二次元面検出器A9に結像する。反射した光は光遮断装置B10を通り二次元面検出器B11に結像する。この時の光強度は透過/反射比と同じになりA:B=4:1となる。すなわち、露光時間が同じ二次元面検出器A9と二次元面検出器B11の光強度比は4:1となる。この場合でも、一度の露光で強い光と弱い光のデータを得ることができ、時間的揺らぎに左右される事のないデータが得られる。
【0013】
【発明の効果】
複数の二次元面検出器を用いることにより、短時間で多くの波長の強度を測定することができる。また、強い光強度のピークと弱い光強度のピークを同時に測定することができる。
【図面の簡単な説明】
【図1】本発明の実施例である。
【図2】従来の実施例である。
【図3】逐次測定時のタイミングチャートである。
【図4】異なる露光時間の場合のタイミングチャートである。
【図5】光分割装置7の分割比が異なる場合のタイミングチャートである。
【図6】実際のスペクトルデータである。
【符号の説明】
1 プラズマ
2 レンズ
3 入口スリット
4 コリメーティングミラー
5 グレーティング
6 カメラミラー
7 光分割装置
8 光遮断装置A
9 2次元面検出器A
10 光遮断装置B
11 2次元面検出器B
12 出口スリット
13 光電子増倍管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency inductively coupled plasma optical emission spectrometer, and more particularly to an apparatus using a two-dimensional surface detector.
[0002]
[Prior art]
Conventionally, an apparatus using a photomultiplier tube instead of a two-dimensional surface detector has been used. In an apparatus using a photomultiplier tube, only the light intensity of a specific wavelength can be measured. Therefore, when measuring the light intensity of a nearby wavelength, it is necessary to move the wavelength of the spectrometer minutely.
[0003]
[Problems to be solved by the invention]
When a photomultiplier tube is used, the spectroscope is configured so that only the light to be analyzed enters the detector. Therefore, in order to acquire data in the vicinity of the target wavelength, it is necessary to slightly drive the wavelength of the spectrometer. If the photomultiplier tube is simply replaced with a two-dimensional surface detector, all the light in the vicinity of the light to be analyzed can enter, but it can be measured in a short time with a photomultiplier tube. In the surface detector, since it takes time to transfer the charge after exposure, it takes time to acquire data. If there is a weak light peak in the vicinity of the strong light peak, it is necessary to divide the exposure time into a strong light and a weak light and perform exposure twice.
[0004]
[Means for Solving the Problems]
In order to divide the dispersed light before imaging into different directions, a light splitting device is arranged on the optical axis, and a plurality of light blocking devices and two-dimensional surface detectors are provided on the split optical path. .
[0005]
[Action]
By using a plurality of light blocking devices and a two-dimensional surface detector and measuring each with an exposure time for strong light and weak light, measurement near the target wavelength can be performed at a time. In addition, while one of the two-dimensional surface detectors is transferring charges, the other exposure can be performed, so that the measurement time can be shortened.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, it will be described in detail based on examples.
FIG. 1 shows an embodiment of the present invention. Plasma 1 is generated by a plasma generator (not shown), a sample is introduced into plasma 1 by a sample introduction device (not shown), and light used for analysis is emitted from plasma 1. The light emitted from the plasma 1 is condensed on the entrance slit 3 by the lens 2, becomes parallel light by the collimating mirror 4, the parallel light is split by the grating 5, and the split light is imaged by the camera mirror 6. The A light splitting device 7 is disposed on the optical path immediately before the image is formed, and the transmitted light passes through the light blocking device A8 and forms an image on the two-dimensional surface detector A9. The image is formed on the surface detector B11.
[0007]
A half mirror in which aluminum was vapor-deposited on a quartz plate was used as the light splitter 7. By changing the thickness of the deposited aluminum film, the ratio of transmission to reflection can be changed. As another method, a part of a disk having a mirror surface was cut into a plurality of strips, and a motor was attached to the center for rotation. The ratio of transmission and reflection can be changed by increasing the number of parts to be cut.
[0008]
The light blocking devices 8 and 10 used mechanical shutters, and the two-dimensional surface detectors 9 and 11 used CCDs (charge coupled devices). The detector may be a CID or a diode array, and is not limited to a CCD.
First, a case where the ratio of transmitted light to reflected light is 1 (transmitted light: reflected light = 1: 1) will be described.
[0009]
When measuring a plurality of analysis lines, if a two-dimensional detector is used, it takes time to transfer charges, and therefore, it takes more measurement time. Therefore, as shown in FIG. 3, while the light blocking device A8 is opened and closed and the charge is read after the exposure of the two-dimensional surface detector A9, the grating 5 is driven to move the wavelength, and then the light blocking device B10 is moved. It can be opened and closed and exposed by the two-dimensional surface detector B11. While reading the electric charge after the exposure is finished by the two-dimensional surface detector B11, after the grating 5 is driven again and the wavelength is moved, the light blocking device A8 can be opened and closed and the two-dimensional surface detector A9 can perform the exposure. In this way, the measurement time can be shortened by alternately exposing a plurality of light blocking devices and two-dimensional detectors and reading out the charges.
[0010]
When strong light and weak light are mixed in the measurement range of the two-dimensional surface detector, when the exposure is based on the strong light, the weak light cannot be detected with sufficient intensity, and conversely, the exposure is based on the weak light. In this case, strong light is saturated and cannot be measured. For this reason, it is necessary to expose and read twice, which takes time. At this time, as shown in FIG. 4, the opening time of the light blocking device A8 is lengthened, the exposure time of the two-dimensional surface detector A9 is set longer for weak light, and the opening time of the light blocking device B10 is shortened. By setting the exposure time of the two-dimensional surface detector B11 to be short for strong light, data of strong light and weak light can be obtained with one exposure, and the measurement time can be shortened.
[0011]
The actual measurement data is shown in FIG. This is the result when A is exposed for 2 seconds and B is exposed for 1 second. In the case of exposure (A) for 2 seconds, the rightmost peak is saturated, but the second peak shows almost the maximum intensity. Moreover, the peak of 2 second exposure (A) was twice the peak of 1 second exposure (B), and it was confirmed that the measurement was performed properly.
[0012]
Next, a case where the ratio of transmitted light to reflected light is 4 (transmitted light: reflected light = 4: 1) will be described. The ratio of transmitted light to reflected light is not limited as long as it is 1 or more.
As described above, when strong light and weak light are mixed in the measurement range of the two-dimensional surface detector, weak light cannot be detected with sufficient intensity when exposed to strong light, but weak light is conversely When the exposure is performed based on, strong light is saturated and cannot be measured. Although good results can be obtained by measuring at different exposure times, time fluctuations may occur while one is still exposed after the other. Therefore, measurement is performed at the same time with the same exposure time as shown in FIG. The light transmitted through the light splitting device 7 passes through the light blocking device A8 and forms an image on the two-dimensional surface detector A9. The reflected light passes through the light blocking device B10 and forms an image on the two-dimensional surface detector B11. The light intensity at this time is the same as the transmission / reflection ratio, and A: B = 4: 1. That is, the light intensity ratio between the two-dimensional surface detector A9 and the two-dimensional surface detector B11 having the same exposure time is 4: 1. Even in this case, data of strong light and weak light can be obtained by one exposure, and data that is not affected by temporal fluctuation can be obtained.
[0013]
【The invention's effect】
By using a plurality of two-dimensional surface detectors, the intensity of many wavelengths can be measured in a short time. Also, a strong light intensity peak and a weak light intensity peak can be measured simultaneously.
[Brief description of the drawings]
FIG. 1 is an embodiment of the present invention.
FIG. 2 is a conventional example.
FIG. 3 is a timing chart during sequential measurement.
FIG. 4 is a timing chart for different exposure times.
FIG. 5 is a timing chart when the division ratio of the light dividing device 7 is different;
FIG. 6 shows actual spectrum data.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma 2 Lens 3 Entrance slit 4 Collimating mirror 5 Grating 6 Camera mirror 7 Light splitting device 8 Light blocking device A
9 Two-dimensional surface detector A
10 Light blocking device B
11 Two-dimensional surface detector B
12 Exit slit 13 Photomultiplier tube

Claims (4)

高周波誘導結合プラズマ発生装置と、プラズマへ試料を導入する試料導入装置と、プラズマからの発光を入口スリットへ導く入射光学系と、入口スリットからの光を平行光線に変換するコリメーティングミラーと、平行光線を分光するグレーティングと、分光された光を結像するカメラミラーと、結像面に配置され分光された光を検出する二次元面検出器と、二次元面検出器の直前に配置され二次元面検出器への光の入射を制御する光遮断装置とから構成される高周波誘導結合プラズマ発光分光分析装置において、結像する前の分光された光を別方向に分割する光軸上に配置された光分割装置と、分割された光路上に光遮断装置と二次元面検出器を複数個備えることを特徴とする高周波誘導結合プラズマ発光分光分析装置。A high-frequency inductively coupled plasma generator, a sample introduction device that introduces a sample into the plasma, an incident optical system that guides light emitted from the plasma to an entrance slit, a collimating mirror that converts light from the entrance slit into parallel rays, A grating that divides parallel rays, a camera mirror that forms an image of the dispersed light, a two-dimensional surface detector that detects the dispersed light that is placed on the imaging surface, and is placed immediately before the two-dimensional surface detector. In a high-frequency inductively coupled plasma optical emission spectrometer comprising a light blocking device that controls the incidence of light on a two-dimensional surface detector, on the optical axis that divides the dispersed light before imaging into another direction A high frequency inductively coupled plasma emission spectroscopic analysis apparatus comprising: a light splitting device disposed; and a plurality of light blocking devices and two-dimensional surface detectors on the split light path. 前記光分割装置が光軸上に45度の角度で配置される鏡で、透過光と反射光に分割できるハーフミラーであることを特徴とする請求項1記載の高周波誘導結合プラズマ発光分光分析装置。2. The high frequency inductively coupled plasma emission spectrometer according to claim 1, wherein the light splitting device is a mirror disposed at an angle of 45 degrees on the optical axis, and is a half mirror capable of splitting into transmitted light and reflected light. . 前記光分割装置が光軸上に45度の角度で配置され、反射面と開口が交互に配置されている円盤を回転することにより透過光と反射光に分割できる光チョッパーであることを特徴とする請求項1記載の高周波誘導結合プラズマ発光分光分析装置。The light splitting device is an optical chopper that can be split into transmitted light and reflected light by rotating a disk that is arranged at an angle of 45 degrees on the optical axis and in which reflecting surfaces and openings are alternately arranged. The high frequency inductively coupled plasma optical emission spectrometer according to claim 1. 前記光分割装置の透過光/反射光の比が1以上であることを特徴とする請求項2または請求項3記載の高周波誘導結合プラズマ発光分光分析装置。4. The high frequency inductively coupled plasma emission spectrometer according to claim 2, wherein the ratio of transmitted light / reflected light of the light splitting device is 1 or more.
JP2000014059A 1999-03-18 2000-01-19 High frequency inductively coupled plasma optical emission spectrometer Expired - Lifetime JP4116214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014059A JP4116214B2 (en) 1999-03-18 2000-01-19 High frequency inductively coupled plasma optical emission spectrometer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-73849 1999-03-18
JP7384999 1999-03-18
JP2000014059A JP4116214B2 (en) 1999-03-18 2000-01-19 High frequency inductively coupled plasma optical emission spectrometer

Publications (2)

Publication Number Publication Date
JP2000329697A JP2000329697A (en) 2000-11-30
JP4116214B2 true JP4116214B2 (en) 2008-07-09

Family

ID=26414999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014059A Expired - Lifetime JP4116214B2 (en) 1999-03-18 2000-01-19 High frequency inductively coupled plasma optical emission spectrometer

Country Status (1)

Country Link
JP (1) JP4116214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593743C (en) * 2007-12-21 2010-03-10 中国科学院上海技术物理研究所 Linetype broad visual field image space division optical assembly

Also Published As

Publication number Publication date
JP2000329697A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
JP3385164B2 (en) How to operate the spectrometer
US5442438A (en) Spectroscopic apparatus and methods
US7130041B2 (en) On-chip spectral filtering using CCD array for imaging and spectroscopy
US6141100A (en) Imaging ATR spectrometer
NL1032793C2 (en) Spectroscopy system.
US6184985B1 (en) Spectrometer configured to provide simultaneous multiple intensity spectra from independent light sources
CN114450575A (en) Sensitive optical metrology in scanning and static modes
US4630925A (en) Compact temporal spectral photometer
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
JP4116214B2 (en) High frequency inductively coupled plasma optical emission spectrometer
JP3160622B2 (en) Plasma temperature distribution measuring method and apparatus
US7209229B2 (en) Wavelength selectable spectroheliograph
JP2000352556A (en) Spectroscopic analysis apparatus
JP3593559B2 (en) High-speed spectrometer
KR102442981B1 (en) Instant raman imaging apparatus
Walton et al. The use of area detectors in Brillouin spectroscopy
JP2000258249A (en) Spectrum analyzer
US5438407A (en) Spectrometer and apparatus including the spectrometer
WO2019136579A1 (en) Miniature spectral detection apparatus
JP2550650B2 (en) Optical spectrum analyzer
JPS6226411B2 (en)
RU2217697C1 (en) Method for determining surface quality of object and apparatus for performing the same
JPS63115018A (en) Infrared camera
JPH04315928A (en) Emission spectrophotometer
JPH04184150A (en) Analytic optical system for centrifugal separator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term