JP4115136B2 - Method for producing titanium tetrachloride - Google Patents

Method for producing titanium tetrachloride Download PDF

Info

Publication number
JP4115136B2
JP4115136B2 JP2002026952A JP2002026952A JP4115136B2 JP 4115136 B2 JP4115136 B2 JP 4115136B2 JP 2002026952 A JP2002026952 A JP 2002026952A JP 2002026952 A JP2002026952 A JP 2002026952A JP 4115136 B2 JP4115136 B2 JP 4115136B2
Authority
JP
Japan
Prior art keywords
titanium tetrachloride
inert gas
supply
gas
producing titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002026952A
Other languages
Japanese (ja)
Other versions
JP2003226522A (en
Inventor
謙介 木村
健 川口
浩 大久保
清 前田
利浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2002026952A priority Critical patent/JP4115136B2/en
Publication of JP2003226522A publication Critical patent/JP2003226522A/en
Application granted granted Critical
Publication of JP4115136B2 publication Critical patent/JP4115136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チタン含有鉱石の流動塩素化において、塩素化反応を停止する際に、円滑な反応の再開を可能とする工業的、経済的に有利な四塩化チタンの製造方法に関する。
【0002】
【従来の技術】
四塩化チタンは酸化チタン、金属チタンの原料や触媒として、広く用いられている。四塩化チタンは一般的に、コークス等の還元剤の存在下、チタン含有鉱石と塩素ガスとを、塩化炉等の反応器中で流動させながら、約1000℃の高温で反応させることで製造されている。工業規模で四塩化チタンを製造する場合、製造プラントのトラブルやメインテナンス等で塩素化反応を一時的に停止させる必要が生じる。塩素ガスの供給を止めて反応を停止させている間、反応器の温度が緩やかに低下するので、液状化した内容物が反応器の底に堆積し固結して、塩素ガスを再供給しても流動性が悪くなり、反応性が低下したり、場合によっては流動化せず、塩化炉から固結した堆積物を排出しなければならなかった。
また、従来より、安全対策及び内容物の酸化を防ぐために、塩素ガスの供給停止後、窒素ガス等の不活性ガスで、反応器内をパージすることは行われていた。しかし、このような不活性ガスパージでは、強固な固結物が形成され反応再開に支障を来す場合があった。
【0003】
【発明が解決しようとする課題】
本発明は、以上に述べた従来技術の問題点を克服し、塩素化反応を停止した後の反応の再開が容易な四塩化チタンの製造方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明者らは、これらの問題を解決すべく鋭意研究を重ねた結果、塩素化反応の停止時に不活性ガスの供給により、塩化炉内の内容物の流動状態を維持しながら冷却すれば良いことを見出した。
【0005】
すなわち、本発明はチタン含有鉱石と塩素ガスとを流動状態で反応させて四塩化チタンを製造する方法において、塩素ガスの供給を止めて反応を停止する際に、反応器内の内容物が流動状態を維持するよう不活性ガスを供給して冷却することを特徴とする四塩化チタンの製造方法である。
【0006】
【発明の実施の形態】
本発明は、四塩化チタンの製造方法であって、チタン含有鉱石と塩素ガスとを流動状態で反応させて四塩化チタンを製造する方法において、塩素ガスの供給を止めて反応を停止する際に、反応器内の内容物が流動状態を維持するよう不活性ガスを供給して冷却することを特徴とする。流動状態を維持して冷却された内容物は、ほとんど固結しないか、固結しても強固な固結物を生成したり、反応器に固着することがないので、再び塩素ガスを供給すると速やかに流動状態に戻り、四塩化チタンが製造できる。本発明では塩素ガスを再供給するまで不活性ガスの供給を継続しても良いが、ある程度冷却が進んだ時点で不活性ガスの供給を停止しても良い。
【0007】
反応停止後の反応器内の内容物の流動状態を維持させるには、塩素ガスの供給を停止した後、不活性ガスを反応器に供給することにより行なう。反応器内部の流動状態を確認するには、工業的には流動層上部と下部と圧力差を測定することで行なわれており、本発明においては、不活性ガス供給中の上記の圧力差、すなわち図1に示すP1、P2で測定した圧力の差を5〜50kPaの範囲にするのが好ましく、10〜30kPaの範囲が更に好ましい。流動状態を維持させるための不活性ガスの供給は、3〜30cm/秒の範囲の流速で供給するのが好ましく、10〜20cm/秒の範囲が更に好ましい。流速が3cm/秒より低いと、十分な流動状態になりにくく、また冷却も進みにくい。また、30cm/秒より流速を高くしても更なる効果は得られないので経済的でない。不活性ガスの供給期間は、内容物の温度が不活性ガスの供給開始時より少なくとも20℃低下するまでとするのが好ましく、少なくとも30℃低下するまで供給を続けると更に好ましい。
【0008】
本発明において用いる不活性ガスとしては、窒素ガス、アルゴンガス、二酸化炭素ガス等が挙げられるが、特に窒素ガスが安価であるので工業的に好ましい。反応器には特に制限は無く、種々の構成、形状、大きさのものに本発明を適用できるが、例えば一般的な底部に多孔分散盤を有する流動塩化炉や、多孔分散盤を有さないもの、噴射型流動塩化炉等に用いることができ、特に底部に多孔分散盤を有するものに用いると、塩素ガス供給口の閉塞防止にもなり、好ましい。また、チタン含有鉱石にも制限は無く、イルミナイト鉱、ルチル鉱、アナターゼ鉱、チタンスラグ、合成ルチルやそれらの混合物等公知のものを用いることができる。特に、本発明の製造方法は、固結物を形成し易い夾雑物を多く含むチタン含有鉱石を原料として使用する場合に有用であり、そのようなチタン含有鉱石として、例えばカルシウム等のアルカリ土類金属を多く含むチタンスラグが挙げられる。
【0009】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。
【0010】
実施例1
コークスの存在下、チタンスラグと合成ルチルの混合物(夾雑物としてカルシウムをCaO換算で0.10%含有)と塩素ガスとを、流動塩化炉中で1050℃の温度で反応させ、四塩化チタンを製造した。塩素ガスの供給を停止した後、窒素ガスを15cm/秒の流速で塩化炉に供給し、流動状態を保持しながら内容物を冷却した。窒素ガス供給中の流動層上部と下部(図1のP1、P2)との圧力差は20kPa、窒素ガス供給開始から1時間後の内容物の温度は1000℃であった。その後、窒素ガスを停止し、塩素ガスを供給したところ、流動層上面と下面との圧力差から良好な流動状態で反応を再開することができた。その後は同様の方法により、必要に応じて反応の停止、再開を繰り返したが、特に問題は認められず、1年間塩化炉の運転を継続した。
【0011】
比較例1
窒素ガスのを流速を1cm/秒とした以外は実施例1と同様にした。窒素ガス供給中の図1のP1、P2に相当する内容物上部と下部との圧力差は1.0kPaであり、内容物は流動状態とはならなかったと推測される。窒素ガス供給開始から1時間後の内容物の温度は1040℃であった。その後は同様の方法により、必要に応じて反応の停止、再開を繰り返したところ、最初の反応再開から60日後、塩化炉内の内容物の流動不良が生じたので、塩化炉の運転が不可能となった。反応停止後、塩化炉を開放すると、内部に固結した堆積物が形成されていたので、これを排出して運転を再開した。
【0012】
【発明の効果】
本発明は、チタン含有鉱石の流動塩素化による四塩化チタンの製造方法において、塩素化反応を一時的に停止した後の円滑な反応の再開を可能とするものであり、特に原料として夾雑物を多く含むチタン含有鉱石を用いる場合に有用である。
【図面の簡単な説明】
【図1】流動塩化炉の一例
【符号の説明】
1 流動塩化炉
2 チタン含有鉱石導入口
3 ガス供給口
4 排出口
5 上部圧力測定端(P1)
6 下部圧力測定端(P2)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an industrially and economically advantageous method for producing titanium tetrachloride that enables a smooth resumption of reaction when the chlorination reaction is stopped in fluid chlorination of titanium-containing ores.
[0002]
[Prior art]
Titanium tetrachloride is widely used as a raw material and catalyst for titanium oxide and titanium metal. Titanium tetrachloride is generally produced by reacting titanium-containing ore and chlorine gas at a high temperature of about 1000 ° C. while flowing in a reactor such as a chlorination furnace in the presence of a reducing agent such as coke. ing. When producing titanium tetrachloride on an industrial scale, it is necessary to temporarily stop the chlorination reaction due to troubles and maintenance of the production plant. While the supply of chlorine gas is stopped and the reaction is stopped, the temperature of the reactor gradually decreases, so the liquefied contents accumulate on the bottom of the reactor and solidify, and chlorine gas is supplied again. However, the fluidity deteriorated, the reactivity was lowered, and in some cases, the fluidized material was not fluidized, and the solidified sediment had to be discharged from the chlorination furnace.
Conventionally, in order to prevent safety measures and oxidation of the contents, purging the inside of the reactor with an inert gas such as nitrogen gas after stopping the supply of chlorine gas. However, with such an inert gas purge, a strong solidified substance is formed, which may hinder the reaction restart.
[0003]
[Problems to be solved by the invention]
The present invention overcomes the problems of the prior art described above, and provides a method for producing titanium tetrachloride that can easily restart the reaction after stopping the chlorination reaction.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve these problems, the present inventors may cool the chlorination reaction by supplying an inert gas while maintaining the flow state of the contents in the chlorination furnace. I found out.
[0005]
That is, the present invention is a method of producing titanium tetrachloride by reacting titanium-containing ore and chlorine gas in a fluid state, and when the reaction is stopped by stopping the supply of chlorine gas, the contents in the reactor flow. An inert gas is supplied and cooled so as to maintain the state.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for producing titanium tetrachloride, in which titanium tetrachloride is produced by reacting a titanium-containing ore and chlorine gas in a fluid state, and when the reaction is stopped by stopping the supply of chlorine gas. The reactor is cooled by supplying an inert gas so that the contents in the reactor are maintained in a fluid state. The contents cooled while maintaining the fluid state hardly consolidate, or even if solidified, they do not produce a strong solidified substance or stick to the reactor. It quickly returns to a fluid state and titanium tetrachloride can be produced. In the present invention, the supply of the inert gas may be continued until the chlorine gas is supplied again. However, the supply of the inert gas may be stopped when the cooling proceeds to some extent.
[0007]
In order to maintain the flow state of the contents in the reactor after the reaction is stopped, the supply of chlorine gas is stopped and then an inert gas is supplied to the reactor. In order to confirm the flow state inside the reactor, it is industrially carried out by measuring the pressure difference between the upper and lower parts of the fluidized bed. In the present invention, the above pressure difference during the supply of the inert gas, That is, the pressure difference measured at P1 and P2 shown in FIG. 1 is preferably in the range of 5 to 50 kPa, and more preferably in the range of 10 to 30 kPa. The inert gas for maintaining the fluid state is preferably supplied at a flow rate in the range of 3 to 30 cm / second, more preferably in the range of 10 to 20 cm / second. When the flow rate is lower than 3 cm / sec, it is difficult to achieve a sufficient fluid state and cooling is difficult to proceed. Further, even if the flow velocity is increased from 30 cm / second, no further effect can be obtained, which is not economical. The period during which the inert gas is supplied is preferably until the temperature of the contents has decreased by at least 20 ° C. from the start of the supply of the inert gas, and more preferably by continuing to supply until the temperature has decreased by at least 30 ° C.
[0008]
Examples of the inert gas used in the present invention include nitrogen gas, argon gas, carbon dioxide gas, and the like, but since nitrogen gas is particularly inexpensive, it is industrially preferable. There is no particular limitation on the reactor, and the present invention can be applied to those of various configurations, shapes, and sizes. For example, there is no fluid chlorination furnace having a porous dispersion disk at the bottom, or a porous dispersion disk. It can be used for an injection type flow chlorination furnace or the like, and it is preferable to use it for a thing having a porous dispersion disk at the bottom, since it also prevents the chlorine gas supply port from being blocked. Moreover, there is no restriction | limiting also in a titanium containing ore, Well-known things, such as an ilmenite ore, a rutile ore, anatase ore, titanium slag, a synthetic rutile, or those mixtures, can be used. In particular, the production method of the present invention is useful when using, as a raw material, a titanium-containing ore containing a large amount of impurities that easily form a consolidated product. As such a titanium-containing ore, for example, an alkaline earth such as calcium is used. An example is titanium slag containing a large amount of metal.
[0009]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
[0010]
Example 1
In the presence of coke, a mixture of titanium slag and synthetic rutile (contains 0.10% calcium as CaO) and chlorine gas is reacted in a fluid chlorination furnace at a temperature of 1050 ° C. Manufactured. After the supply of chlorine gas was stopped, nitrogen gas was supplied to the chlorination furnace at a flow rate of 15 cm / second, and the contents were cooled while maintaining a fluid state. The pressure difference between the upper part and lower part (P1, P2 in FIG. 1) of the fluidized bed during supply of nitrogen gas was 20 kPa, and the temperature of the contents one hour after the start of nitrogen gas supply was 1000 ° C. Then, when nitrogen gas was stopped and chlorine gas was supplied, the reaction could be resumed in a good fluidized state due to the pressure difference between the upper and lower surfaces of the fluidized bed. Thereafter, the reaction was stopped and restarted as necessary by the same method, but no particular problem was observed, and the operation of the chlorination furnace was continued for one year.
[0011]
Comparative Example 1
The same procedure as in Example 1 was performed except that the flow rate of nitrogen gas was changed to 1 cm / second. The pressure difference between the upper and lower contents corresponding to P1 and P2 in FIG. 1 during the supply of nitrogen gas is 1.0 kPa, and it is estimated that the contents did not flow. The temperature of the contents one hour after the start of nitrogen gas supply was 1040 ° C. Thereafter, when the reaction was repeatedly stopped and restarted as necessary by the same method, the chlorination furnace could not be operated because the flow of the contents in the chlorination furnace occurred 60 days after the first reaction was resumed. It became. When the chlorination furnace was opened after the reaction was stopped, a solidified deposit was formed inside, and this was discharged and the operation was resumed.
[0012]
【The invention's effect】
The present invention, in a method for producing titanium tetrachloride by fluid chlorination of titanium-containing ore, enables smooth resumption of the reaction after temporarily stopping the chlorination reaction, and in particular, impurities as a raw material. This is useful when using a large amount of titanium-containing ore.
[Brief description of the drawings]
[Fig.1] An example of fluidized chlorination furnace [Explanation of symbols]
1 Flow Chlorination Furnace 2 Titanium-containing Ore Inlet 3 Gas Supply Port 4 Outlet 5 Upper Pressure Measuring End (P1)
6 Lower pressure measurement end (P2)

Claims (5)

反応器中でアルカリ土類金属を酸化物換算で少なくとも0.10%含むチタン含有鉱石と塩素ガスとを流動状態で反応させて四塩化チタンを製造する方法において、塩素ガスの供給を止めて反応を停止する際に、反応器内の内容物が流動状態を維持するよう不活性ガスを供給して冷却し、固結物の形成を防止することを特徴とする四塩化チタンの製造方法。In a method for producing titanium tetrachloride by reacting a titanium-containing ore containing at least 0.10% of an alkaline earth metal in terms of oxide and chlorine gas in a reactor in a fluid state, the supply is stopped by stopping the supply of chlorine gas. When the process is stopped, an inert gas is supplied and cooled so that the contents in the reactor maintain a fluid state, thereby preventing the formation of a solidified product . 不活性ガスを3〜30cm/秒の範囲の流速で供給することを特徴とする請求項1記載の四塩化チタンの製造方法。The method for producing titanium tetrachloride according to claim 1, wherein the inert gas is supplied at a flow rate in the range of 3 to 30 cm / sec. 流動層上部と下部との差圧を5〜50kPaの範囲になるよう不活性ガスを供給することを特徴とする請求項1記載の四塩化チタンの製造方法。The method for producing titanium tetrachloride according to claim 1, wherein the inert gas is supplied so that the differential pressure between the upper part and the lower part of the fluidized bed is in the range of 5 to 50 kPa. 内容物の温度が不活性ガスの供給開始時より少なくとも20℃低下するまで不活性ガスを供給することを特徴とする請求項1記載の四塩化チタンの製造方法。2. The method for producing titanium tetrachloride according to claim 1, wherein the inert gas is supplied until the temperature of the contents decreases by at least 20 [deg.] C. from the start of the supply of the inert gas. 不活性ガスが窒素ガスであることを特徴とする請求項1記載の四塩化チタンの製造方法。2. The method for producing titanium tetrachloride according to claim 1, wherein the inert gas is nitrogen gas.
JP2002026952A 2002-02-04 2002-02-04 Method for producing titanium tetrachloride Expired - Lifetime JP4115136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026952A JP4115136B2 (en) 2002-02-04 2002-02-04 Method for producing titanium tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026952A JP4115136B2 (en) 2002-02-04 2002-02-04 Method for producing titanium tetrachloride

Publications (2)

Publication Number Publication Date
JP2003226522A JP2003226522A (en) 2003-08-12
JP4115136B2 true JP4115136B2 (en) 2008-07-09

Family

ID=27748619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026952A Expired - Lifetime JP4115136B2 (en) 2002-02-04 2002-02-04 Method for producing titanium tetrachloride

Country Status (1)

Country Link
JP (1) JP4115136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086423A (en) * 2011-11-03 2013-05-08 攀钢集团研究院有限公司 Method for producing titanium tetrachloride from rutile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314595C (en) * 2004-02-05 2007-05-09 中国科学院过程工程研究所 Reactor, its device for making titanium tetrachloride using rich state material chlorination and its method
JP5851502B2 (en) * 2010-06-30 2016-02-03 ガルダ,ケキ,ホルムスジ Metal extraction from aluminum-containing iron ore and titanium-containing iron ore and residues
CN106430297B (en) * 2016-08-31 2017-11-07 于京辉 A kind of serialization prepares the method and its special equipment of synthetic rutile
JP6944342B2 (en) * 2017-10-30 2021-10-06 東邦チタニウム株式会社 Manufacturing method of titanium tetrachloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086423A (en) * 2011-11-03 2013-05-08 攀钢集团研究院有限公司 Method for producing titanium tetrachloride from rutile
CN103086423B (en) * 2011-11-03 2014-10-29 攀钢集团研究院有限公司 Method for producing titanium tetrachloride from rutile

Also Published As

Publication number Publication date
JP2003226522A (en) 2003-08-12

Similar Documents

Publication Publication Date Title
US5958106A (en) Method of making metals and other elements from the halide vapor of the metal
US6409797B2 (en) Method of making metals and other elements from the halide vapor of the metal
KR100875575B1 (en) Manganese Fluoride Manufacturing Method
KR100241134B1 (en) Method of making metals and other elements
US2828187A (en) Preparation of titanium dioxide
JP4115136B2 (en) Method for producing titanium tetrachloride
CA2581749A1 (en) Magnesium removal from magnesium reduced metal powders
JPH08502945A (en) Improved TiO2 manufacturing method
US4405589A (en) Process for producing silicon nitride powder
CA1289364C (en) Method for melting and reducing chrome ore
JP2001192711A (en) Method for producing powdery titanium
US20030061907A1 (en) Gel of elemental material or alloy and liquid metal and salt
JP2009525407A (en) Metal matrix with dispersed ceramic particles
US20030145682A1 (en) Gel of elemental material or alloy and liquid metal and salt
US3932598A (en) Process for producing alkali metal chromates and dichromates
US20020152844A1 (en) Elemental material and alloy
US20020148327A1 (en) Elemental material and alloy
CA2391939C (en) Carbonyl process for recovery of purified cobalt
JPH061613A (en) Production of titanium tetrachloride
CN106241815A (en) A kind of reactor preparing Silicon chloride. and application
US3378338A (en) Production of high-purity aluminium chloride
JP2009046337A (en) Method and apparatus for producing ticl4
EP1080035B1 (en) Particle size control in pyrohydrolysis of metal chlorides
JPH1120895A (en) Method for storing trichlorosilane and silicon tetrachloride
JP3734687B2 (en) Method for producing aqueous titanium tetrachloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4115136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term