JP4115071B2 - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
JP4115071B2
JP4115071B2 JP2000090563A JP2000090563A JP4115071B2 JP 4115071 B2 JP4115071 B2 JP 4115071B2 JP 2000090563 A JP2000090563 A JP 2000090563A JP 2000090563 A JP2000090563 A JP 2000090563A JP 4115071 B2 JP4115071 B2 JP 4115071B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000090563A
Other languages
Japanese (ja)
Other versions
JP2001284611A (en
Inventor
英治 丸山
武志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000090563A priority Critical patent/JP4115071B2/en
Publication of JP2001284611A publication Critical patent/JP2001284611A/en
Application granted granted Critical
Publication of JP4115071B2 publication Critical patent/JP4115071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光起電力装置に関し、特に光散乱効果等を有する表面に凹凸が形成された透明導電膜を用いた光起電力装置に関する。
【0002】
【従来の技術】
従来、非晶質太陽電池装置用の透明導電膜としては、基板に熱CVD法により形成した表面に凹凸形状が設けられたSnO2膜が用いられている。このSnO2膜の凹凸は太陽電池の光反射ロス防止効果、光散乱効果により短絡電流の大幅向上及びエネルギー変換効率の向上に寄与してきた。
【0003】
しかしながら、熱CVD法による凹凸形状を有するSnO2膜の作製は、500℃以上の高温プロセスを必要とし、しかも良好な凹凸形状と低い抵抗率を得るためには7000Å程度の膜厚が必要であり、太陽電池のコストアップの大きな要因となっていた。
【0004】
これに対して、ガラス基板上に200℃以下の低温でZnO膜をスパッタリングにより形成し、塩酸(HCl)でエッチングすることにより、表面を凹凸化する技術が報告され、太陽電池装置のコスト低減が期待されている。
【0005】
図2に上記したZnO膜による透明導電膜の製造方法を示す。図2(a)に示すように、5wt%のGaドープZnOをターゲットに用いてDCスパッタリング法によりガラス基板1上に約1μmのZnO:Ga膜2を形成する。この形成条件は、100℃、200W、66.5PaでArガスを用いて堆積した。その後、0.5%の塩酸(HCl)水溶液を用いて室温にて20秒間エッチングすることにより、図2(b)に示す如く、表面に約2500Å程度の凹凸が形成される。これは、多結晶と非晶質状態の混在したZnO:Ga膜内のエッチングされやすい非晶質部が選択的にエッチングにより除去されたためであると考えられる。
【0006】
しかしながら、上記した方法によると、局所的に平均的な凹凸よりも大きく且つ深いエッチング部が形成される。この凹凸の山と谷の高低差は2500ű2000Åと±80%もの分布が見られる。このように、凹凸の山と谷の高低差が大きい場合には、この上に形成される非晶質薄膜半導体層の膜厚の不均一性に起因した電界分布による電圧及びF.F.の低下、リーク成分の増加によるF.F.の低下、光閉じこめ効果の低下による電流の低下が発生し、変換効率の大幅な低下に繋がることが確認されている。
【0007】
【発明が解決しようとする課題】
上記したように、従来多く用いられている熱CVDにより形成した凹凸を有するSnO2透明導電膜では、500℃以上の高温プロセスを必要とし、しかも良好な凹凸形状と低い抵抗率を得るためには7000Å程度の厚膜が必要となり、太陽電池のコストアップの大きな要因となっていた。
【0008】
また、ガラス基板上に200℃以下の低温でZnO単膜をスパッタリングにより形成し、塩酸によりエッチングすることにより表面を凹凸化する技術を用いた透明導電膜ではコスト低減が期待されるものの、高い変換効率実現に重要な凹凸の大きさ及び山谷の高さが揃った均一な凹凸表面を有するZnO膜を得るのが困難であった。
【0009】
この発明は、これら問題点を解決して、安価で高い変換効率を有する光起電力装置を得ることを目的とする。
【0010】
【課題を解決するための手段】
この発明は、表面にエッチングにより凹凸が形成された透明導電膜上に内部に半導体接合を有する非晶質薄膜半導体層と裏面金属膜とがこの順序で形成された光起電力装置であって、前記透明導電膜は、前記半導体層と接する側から透明導電膜層とエッチングストッパとなる薄膜金属層と透明導電膜層との多層構造で形成されていることを特徴とする。
【0011】
前記薄膜金属層の膜厚は100Å以下25Å以上にするとよい。
【0012】
また、前記エッチングは酸を用いたウェットエッチング又はハロゲン系ガスを用いたドライエッチングにより行うことができる。
【0013】
上記した構成によれば、エッチングが薄膜金属層により停止され、半導体層と接する側から透明導電膜層の膜厚により深さ方向の凹凸の大きさを制御することができる。その結果、従来困難であった、高い変換効率実現に重要な凹凸の大きさ及び山谷の高さが揃った均一な凹凸形状を有する透明導電膜を薄膜にて得ることが可能となり、太陽電池のコスト低減と特性の向上を両立することが可能となる。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態につき図面を参照して説明する。
上述したように、スパッタリング法により形成されたZnO膜をエッチングすると、多結晶と非晶質状態の混在したZnO膜内のエッチングされやすい非晶質部が選択的にエッチングにより除去され、表面に凹凸が形成される。しかしながら、局所的に平均的な凹凸よりも大きく且つ深いエッチング部が観察される。この発明は、この局所的な過剰エッチングによる凹凸の山と谷の高低差を±20%以下望ましくは±10%以下の分布に抑制するものである。
【0015】
このため、この発明では、光起電力装置の光入射側に用いる透明導電膜2として、表面にエッチングにより凹凸を形成するための出発透明導電膜が、少なくとも半導体と接する側から第1の透明導電膜層21、薄膜金属層22、第2の透明導電膜層23の多層積層膜で構成する。そして、この多層積層膜をエッチングすると、エッチングが薄膜金属層22により停止する。この結果、最表面の第1の透明導電膜21の膜厚により深さ方向の凹凸の大きさが制御される。
【0016】
次に、この発明にかかる透明導電膜の具体的製造方法につき説明する。
図1(a)に示すように、まず、5wt%のGaドープZnOをターゲットに用いてDCスパッタリング法により、100℃、200W、66.5Paの条件でArガスを用いてガラス基板1上に第2透明導電膜層23として、膜厚500ÅのZnO:Ga膜を堆積する。そして、その上に同じくスパッタリング法にて、100℃、200W、66.5Paの条件で、Arガスを用いて薄膜金属層22として膜厚50ÅのAg膜を堆積する。最後に最表面の第1透明導電膜層21として、100℃、200W、66.5Paの条件で形成した膜厚5000ÅのZnO:Ga膜を堆積する。
【0017】
その後、0.5%のHCl水溶液を用いて室温にて20秒間エッチングする。このエッチング処理により、図1(b)の如く、Ag膜からなる薄膜金属層22近傍でエッチングが停止し、凹凸の山と谷の高低差が約±5%と極めて良好な範囲でおさまることが確認された。
【0018】
次に、第2透明導電膜層23、薄膜金属層22の形成条件及び膜厚を固定し、最表面の第1透明導電膜層21であるZnO:Ga膜を100℃、200W、66.5Paの条件にて、膜厚を5000Å、4500Å、4000Åと変化させて形成した。このようにして形成した3種類の透明導電膜2を0.5%のHCl水溶液を用いて室温にて20秒間エッチングした。エッチング後の凹凸の山と谷の高低差及び高低差の分布を表1にまとめる。表1の結果より、出発材料の最表面の第1透明導電膜層21の膜厚を変化させることにより、凹凸の山谷の高低差を極めて精度良く制御できることが明らかになった。更に、いずれの場合も凹凸の山と谷の高低差が約±5%以下の極めて良好な分布が得られた。
【0019】
また、比較のために、5wt%のGaドープZnOをターゲットに用いてDCスパッタリング法によりガラス基板上に約1μmのZnO:Gaを図2(a)の如く形成した。形成条件は、100℃、200W、66.5PaでArガスを用いて堆積を行った。その後、0.5%のHCl水溶液を用いて室温にて20秒間エッチングした。この結果、図2(b)の如く約2500Å程度の凹凸が形成された。
【0020】
しかし、図2(b)を見ると、局所的に平均的な凹凸よりも大きく且つ深いエッチング部が観察され、凹凸の山と谷の高低差は2500ű2000Åと±80%もの分布が見られ、太陽電池に適用した際には後述する表2のように曲線因子(F.F.)が大幅に低下することがわかっている。凹凸の山と谷の高低差が大きい場合は、ドープ層の膜厚の不均一性に起因した電界分布による電圧及びF.F.の低下、リーク成分の増加によるF.F.の低下、光閉じこめ効果の低下による電流の低下が発生し、変換効率の大幅な低下に繋がることが確認されている。
【0021】
【表1】

Figure 0004115071
【0022】
次に、上記した方法により透明導電膜が形成された基板を用いて図3に示す非晶質太陽電池装置を形成した。ガラス基板1上に形成されたこの発明の特徴とする透明導電膜2上に膜厚100Åのp型の非晶質シリコンカーバイトからなる第1の非晶質薄膜半導体層3、膜厚2500Åのi型の非晶質シリコン膜からなる第2の非晶質薄膜半導体層4、膜厚200Åのn型の非晶質シリコン膜からなる第3の非晶質薄膜半導体層5がプラズマCVD法により順次積層されて設けられる。そして、この上にアルミ(Al)、銀(Ag)等からなる裏面金属膜6がスパッタ法により形成される。
【0023】
非晶質半導体層は、公知のRFプラズマCVD(13.56MHz)を用いて形成温度は100〜300℃、反応圧力は5〜100Pa、RFパワーは1〜500mW/cm2にて形成した。発電層の光学ギャップEoptは1.60eV、膜厚〜2500Åのシングル接合構造であり、p、n層も公知のRFプラズマCVDを用いて形成し、ドーピング量(p層ではボロン原子/シリコン原子、n層ではリン原子/シリコン原子)1%、p層膜厚〜100Å一定、n層膜厚100Åとした。
【0024】
表2は、この発明の実施形態である表1に示す3種類の透明導電膜2を形成したガラス基板を用いた太陽電池装置及び図2(b)に示す従来の方法により形成した基板を用いた太陽電池装置の規格化I−Vパラメータを示す。
【0025】
規格化は、従来標準的に用いられている熱CVDにより形成した膜厚7000ÅのSnO2基板を用いた場合の各パラメータにより行った。
【0026】
【表2】
Figure 0004115071
【0027】
その結果、図2(b)の基板を用いた場合には局所的に平均的な凹凸よりも大きく且つ深いエッチング部が形成されたために、従来標準的に用いられている熱CVDにより形成したSnO2を透明導電膜として設けた基板に比べて約2割のF.F.の低下が見られた。それに対して、この発明の実施の形態である表1に示す透明導電膜を設けた基板を用いた場合は、比較的大きな凹凸構造が従来のSnO2基板よりも均一に形成されたため、短絡電流、F.F.とともに良好な値が得られた。
【0028】
また、第1透明導電膜層21の膜厚が5000Åから4000Åと薄くなるにつれて、短絡電流が減少するのは、凹凸の大きさが小さくなることと対応し、F.F.が増加するのは凹凸の山谷高低差が小さくなることにより、ドープ層(非晶質薄膜半導体)の膜厚の不均一性に起因した電界分布が軽減されたことと対応すると思われる。
【0029】
以上の如くこの発明の実施の形態を用いることにより、出発材料の透明導電膜を従来の1μmから4550Å((第2透明導電膜層23(ZnO:Ga)〜500Å/金属薄膜層22(Ag)〜50Å/第1透明導電膜層21(ZnO:Ga)〜4000Å)と薄膜化した状態でなおかつ高い変換効率が得られた。
【0030】
次に、第2透明導電膜層23、最表面の第1透明導電膜層21であるZnO:Gaの膜厚を500Å、4000Åにそれぞれ固定し、薄膜金属層22であるAg膜を100℃、200W、66.5Paの条件にて、膜厚を25Å、50Å、100Å、200Åと変化させて形成する。そして、これら膜を、0.5%のHCl水溶液を用いて室温にて20秒間エッチングした。このようにして形成したこの発明にかかる透明導電膜を有するガラス基板を用いて太陽電池装置を形成した。この太陽電池装置の規格化I−Vパラメータを表3に示す。規格化は従来標準的に用いられている熱CVDにより形成した膜厚7000ÅのSnO2基板を用いた場合の各パラメータにより行った。
【0031】
【表3】
Figure 0004115071
【0032】
表3より、薄膜金属層膜22の膜厚が25Åから200Åのいずれの場合も、薄膜金属層がエッチング停止層として極めて有効であり、凹凸の大きさ、分布が1500ű1%の極めて良好な範囲であることが確認された。しかし、薄膜金属層が100Å以上では急激に短絡電流が低下している。これはAg層の吸収、光干渉パターンの変化によると思われる。
【0033】
更に同様の実験を透明導電膜2の材料としてZnO:Alを用いて行ったところ、同じ効果が確認された。
【0034】
以上の如く、光起電力装置の光入射側に用いる透明導電膜にエッチングにより凹凸を形成するための出発透明導電膜が、少なくとも半導体と接する側から第1透明導電膜層/薄膜金属層/第2透明導電膜層から構成され、エッチングが薄膜金属層により停止することを利用して最表面の第1透明導電膜の膜厚により深さ方向の凹凸の大きさを制御する。この結果、従来困難であった、高い変換効率実現に重要な凹凸の大きさ及び山谷の高さが揃った均一な凹凸透明導電膜付基板を薄膜にて得ることが可能となり、太陽電池のコスト低減と特性の向上を両立することが可能となることが確認された。
【0035】
また、上記した実施の形態においては、薄膜金属層としてAgを用いたが、これ以外にAu、Ti、TiNなどの金属も用いても同様の効果が得られる。
【0036】
また、上記した実施形態においては、透明導電膜のエッチングを塩酸を用いてウェットエッチングにより行っているが、ハロゲン系ガスを用いたドライエッチングにより透明導電膜のエッチングを行ってもよい。
【0037】
さらに、透明導電膜の材料として、ZnOを用いているが、ITO膜や、SnO2膜を用いても同様の効果が得られる。
【0038】
【発明の効果】
以上説明したように、この発明は、光起電力装置の光入射側に用いる透明導電膜にエッチングにより凹凸を形成するための出発透明導電膜が、少なくとも半導体と接する側から第1透明導電膜層/薄膜金属層/第2透明導電膜層で構成し、エッチングが薄膜金属層により停止することを利用して最表面の第1透明導電膜の膜厚により深さ方向の凹凸の大きさを制御することができ、高い変換効率実現に重要な凹凸の大きさ及び山谷の高さが揃った均一な凹凸形状を有する透明導電膜が薄膜にて得ることが可能となり、太陽電池のコスト低減と特性の向上を両立することができる。
【図面の簡単な説明】
【図1】この発明に用いられる透明導電膜を示す断面図であり、(a)は、5wt%のGaドープのZnOをターゲットに用いてDCスパッタリング法により基板上にZnO膜を形成した状態を示し、(b)はエッチングにより表面に凹凸を形成した状態を示す。
【図2】従来の透明導電膜を示す断面図であり、(a)は、5wt%のGaドープのZnOをターゲットに用いてDCスパッタリング法により基板上にZnO膜を形成した状態を示し、(b)はエッチングにより表面に凹凸を形成した状態を示す。
【図3】この発明の光起電力装置を示す断面図である。
【符号の説明】
1 ガラス基板
2 透明導電膜
21 第1透明導電膜層
22 薄膜金属
23 第2透明導電膜層
3 第1の非晶質薄膜半導体層
4 第2の非晶質薄膜半導体層
5 第3の非晶質薄膜半導体層
6 裏面金属膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photovoltaic device, and more particularly to a photovoltaic device using a transparent conductive film in which irregularities are formed on a surface having a light scattering effect or the like.
[0002]
[Prior art]
Conventionally, as a transparent conductive film for an amorphous solar cell device, an SnO 2 film having a concavo-convex shape provided on a surface formed on a substrate by a thermal CVD method has been used. The unevenness of the SnO 2 film has contributed to the significant improvement of the short-circuit current and the improvement of the energy conversion efficiency by the light reflection loss preventing effect and the light scattering effect of the solar cell.
[0003]
However, fabrication of a SnO 2 film having a concavo-convex shape by a thermal CVD method requires a high-temperature process of 500 ° C. or more, and a film thickness of about 7000 mm is required to obtain a good concavo-convex shape and a low resistivity. This was a major factor in increasing the cost of solar cells.
[0004]
On the other hand, a technique has been reported in which a ZnO film is formed on a glass substrate by sputtering at a low temperature of 200 ° C. or less and etched with hydrochloric acid (HCl) to make the surface uneven, thereby reducing the cost of the solar cell device. Expected.
[0005]
FIG. 2 shows a method for producing a transparent conductive film using the ZnO film described above. As shown in FIG. 2A, a ZnO: Ga film 2 of about 1 μm is formed on a glass substrate 1 by DC sputtering using 5 wt% Ga-doped ZnO as a target. The deposition conditions were 100 ° C., 200 W, 66.5 Pa, using Ar gas. Thereafter, etching is performed for 20 seconds at room temperature using a 0.5% hydrochloric acid (HCl) aqueous solution, whereby irregularities of about 2500 mm are formed on the surface as shown in FIG. This is considered to be because the amorphous part easily etched in the ZnO: Ga film mixed with the polycrystalline and amorphous states was selectively removed by etching.
[0006]
However, according to the above-described method, an etched portion that is larger and deeper than the average unevenness locally is formed. The height difference between the peaks and valleys of the unevenness is 2500Å ± 2000Å with a distribution of ± 80%. As described above, when the height difference between the uneven peaks and valleys is large, the voltage due to the electric field distribution due to the non-uniformity of the film thickness of the amorphous thin film semiconductor layer formed thereon and the F.V. F. F. due to a decrease in leakage and an increase in leak components. F. It has been confirmed that a decrease in current due to a decrease in light and a light confinement effect occurs, leading to a significant decrease in conversion efficiency.
[0007]
[Problems to be solved by the invention]
As described above, the SnO 2 transparent conductive film having unevenness formed by thermal CVD, which has been widely used in the past, requires a high-temperature process of 500 ° C. or more, and in addition to obtain a good uneven shape and low resistivity. A thick film of about 7000 mm was required, which was a major factor in increasing the cost of solar cells.
[0008]
Moreover, although a transparent conductive film using a technology that forms a ZnO single film on a glass substrate by sputtering at a low temperature of 200 ° C. or less and makes the surface uneven by etching with hydrochloric acid is expected to reduce the cost, high conversion It has been difficult to obtain a ZnO film having a uniform concavo-convex surface in which the size of the concavo-convex important for realizing the efficiency and the height of the peaks and valleys are uniform.
[0009]
An object of the present invention is to solve these problems and to obtain a photovoltaic device that is inexpensive and has high conversion efficiency.
[0010]
[Means for Solving the Problems]
The present invention is a photovoltaic device in which an amorphous thin film semiconductor layer having a semiconductor junction therein and a back metal film are formed in this order on a transparent conductive film having irregularities formed by etching on the surface, The transparent conductive film is formed of a multilayer structure of a transparent conductive film layer, a thin film metal layer serving as an etching stopper, and a transparent conductive film layer from the side in contact with the semiconductor layer.
[0011]
The film thickness of the thin metal layer is preferably 100 mm or less and 25 mm or more.
[0012]
The etching can be performed by wet etching using an acid or dry etching using a halogen-based gas.
[0013]
According to the above configuration, the etching is stopped by the thin film metal layer, and the size of the unevenness in the depth direction can be controlled by the film thickness of the transparent conductive film layer from the side in contact with the semiconductor layer. As a result, it was possible to obtain a transparent conductive film having a uniform concavo-convex shape in which the size of the concavo-convex and the height of the valleys and valleys, which had been difficult in the past, which were difficult to achieve, in a thin film, It is possible to achieve both cost reduction and improvement of characteristics.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As described above, when the ZnO film formed by the sputtering method is etched, the amorphous portion that is easily etched in the polycrystalline and amorphous ZnO film is selectively removed by etching, and the surface is uneven. Is formed. However, an etching part larger and deeper than the average unevenness is locally observed. In the present invention, the height difference between the uneven peaks and valleys due to this local over-etching is suppressed to a distribution of ± 20% or less, preferably ± 10% or less.
[0015]
For this reason, in this invention, as the transparent conductive film 2 used on the light incident side of the photovoltaic device, the starting transparent conductive film for forming irregularities on the surface by etching is at least the first transparent conductive film from the side in contact with the semiconductor. The film layer 21, the thin metal layer 22, and the second transparent conductive film layer 23 are composed of a multilayer laminated film. When this multilayer laminated film is etched, the etching is stopped by the thin metal layer 22. As a result, the size of the unevenness in the depth direction is controlled by the film thickness of the first transparent conductive film 21 on the outermost surface.
[0016]
Next, a specific method for producing the transparent conductive film according to the present invention will be described.
As shown in FIG. 1A, first, on a glass substrate 1 by using Ar gas under conditions of 100 ° C., 200 W, 66.5 Pa by DC sputtering using 5 wt% Ga-doped ZnO as a target. As a transparent conductive film layer 23, a ZnO: Ga film having a thickness of 500 mm is deposited. Then, an Ag film having a thickness of 50 mm is deposited as the thin metal layer 22 using Ar gas under the conditions of 100 ° C., 200 W, and 66.5 Pa by the same sputtering method. Finally, a 5000-thick ZnO: Ga film formed under the conditions of 100 ° C., 200 W, 66.5 Pa is deposited as the outermost first transparent conductive film layer 21.
[0017]
Thereafter, etching is performed at room temperature for 20 seconds using a 0.5% aqueous HCl solution. By this etching process, as shown in FIG. 1B, the etching is stopped in the vicinity of the thin film metal layer 22 made of an Ag film, and the height difference between the ridges and valleys of the unevenness is kept within a very good range of about ± 5%. confirmed.
[0018]
Next, the formation conditions and film thicknesses of the second transparent conductive film layer 23 and the thin film metal layer 22 are fixed, and the ZnO: Ga film that is the first transparent conductive film layer 21 on the outermost surface is formed at 100 ° C., 200 W, 66.5 Pa. Under these conditions, the film thickness was changed to 5000 mm, 4500 mm, and 4000 mm. The three types of transparent conductive films 2 thus formed were etched using a 0.5% aqueous HCl solution for 20 seconds at room temperature. Table 1 summarizes the height difference between the peaks and valleys of the unevenness after etching and the distribution of the height difference. From the results shown in Table 1, it has been clarified that the height difference of the uneven valleys can be controlled with extremely high accuracy by changing the film thickness of the first transparent conductive film layer 21 on the outermost surface of the starting material. Furthermore, in any case, a very good distribution was obtained in which the height difference between the uneven peaks and valleys was about ± 5% or less.
[0019]
For comparison, about 1 μm of ZnO: Ga was formed on a glass substrate by DC sputtering using 5 wt% Ga-doped ZnO as a target as shown in FIG. Deposition was performed using Ar gas at 100 ° C., 200 W, 66.5 Pa. Then, it etched for 20 second at room temperature using 0.5% HCl aqueous solution. As a result, irregularities of about 2500 mm were formed as shown in FIG.
[0020]
However, when looking at FIG. 2 (b), locally and deeply etched portions larger than the average unevenness are observed, and the unevenness of the peaks and valleys of the unevenness is 2500Å ± 2000Å with a distribution of ± 80%. When applied to a solar cell, it is known that the fill factor (FF) is significantly reduced as shown in Table 2 described later. When the difference in height between the peaks and valleys of the unevenness is large, the voltage due to the electric field distribution due to the nonuniformity of the film thickness of the doped layer and the F.V. F. F. due to a decrease in leakage and an increase in leak components. F. It has been confirmed that a decrease in current due to a decrease in light and a light confinement effect occurs, leading to a significant decrease in conversion efficiency.
[0021]
[Table 1]
Figure 0004115071
[0022]
Next, the amorphous solar cell device shown in FIG. 3 was formed using the substrate on which the transparent conductive film was formed by the method described above. A first amorphous thin film semiconductor layer 3 made of p-type amorphous silicon carbide having a film thickness of 100 mm and a transparent film 2 having a film thickness of 2500 mm are formed on the transparent conductive film 2 characterized by the present invention formed on the glass substrate 1. A second amorphous thin film semiconductor layer 4 made of an i-type amorphous silicon film and a third amorphous thin film semiconductor layer 5 made of an n-type amorphous silicon film having a thickness of 200 mm are formed by plasma CVD. It is provided by being sequentially laminated. A back metal film 6 made of aluminum (Al), silver (Ag), or the like is formed thereon by sputtering.
[0023]
The amorphous semiconductor layer was formed using a known RF plasma CVD (13.56 MHz) at a forming temperature of 100 to 300 ° C., a reaction pressure of 5 to 100 Pa, and an RF power of 1 to 500 mW / cm 2 . The power generation layer has an optical gap Eopt of 1.60 eV and a single junction structure with a film thickness of ˜2500 mm. The p and n layers are also formed by using known RF plasma CVD, and the doping amount (in the p layer, boron atoms / silicon atoms, In the n layer, phosphorus atoms / silicon atoms) were set to 1%, the p layer thickness to 100 Å constant, and the n layer thickness to 100 Å.
[0024]
Table 2 uses a solar cell device using a glass substrate on which three kinds of transparent conductive films 2 shown in Table 1 which are embodiments of the present invention are formed and a substrate formed by the conventional method shown in FIG. The standardized IV parameter of the solar cell device was shown.
[0025]
Standardization was performed according to each parameter in the case of using a SnO 2 substrate having a film thickness of 7000 mm formed by thermal CVD, which is conventionally used as a standard.
[0026]
[Table 2]
Figure 0004115071
[0027]
As a result, when the substrate shown in FIG. 2B is used, an etched portion that is locally larger and deeper than the average unevenness is formed. Therefore, SnO formed by thermal CVD that is conventionally used as a standard is used. Compared to a substrate provided with 2 as a transparent conductive film, approximately 20% F.V. F. Decrease was observed. On the other hand, when the substrate provided with the transparent conductive film shown in Table 1, which is an embodiment of the present invention, was used, a relatively large uneven structure was formed more uniformly than the conventional SnO 2 substrate. , F. F. A good value was obtained.
[0028]
Further, as the film thickness of the first transparent conductive film layer 21 is reduced from 5000 mm to 4000 mm, the short-circuit current is reduced corresponding to the size of the unevenness being reduced. F. It seems that this increase corresponds to the fact that the electric field distribution due to the non-uniformity of the thickness of the doped layer (amorphous thin film semiconductor) has been reduced by reducing the height difference of the uneven valleys.
[0029]
As described above, by using the embodiment of the present invention, the transparent conductive film as a starting material is changed from the conventional 1 μm to 4550 mm ((second transparent conductive film layer 23 (ZnO: Ga) to 500 mm / metal thin film layer 22 (Ag)). A high conversion efficiency was obtained in a state where the film thickness was reduced to ˜50Å / first transparent conductive film layer 21 (ZnO: Ga) ˜4000Å).
[0030]
Next, the film thickness of ZnO: Ga which is the 2nd transparent conductive film layer 23 and the 1st transparent conductive film layer 21 of the outermost surface is fixed to 500 mm and 4000 mm, respectively, and the Ag film which is the thin film metal layer 22 is 100 ° C. The film thickness is changed to 25 mm, 50 mm, 100 mm, and 200 mm under the conditions of 200 W and 66.5 Pa. These films were etched for 20 seconds at room temperature using a 0.5% aqueous HCl solution. A solar cell device was formed using the glass substrate having the transparent conductive film according to the present invention thus formed. Table 3 shows the normalized IV parameters of this solar cell device. The standardization was performed according to each parameter when a SnO 2 substrate having a film thickness of 7000 mm formed by thermal CVD, which is conventionally used as a standard.
[0031]
[Table 3]
Figure 0004115071
[0032]
From Table 3, the thin film metal layer is extremely effective as an etching stop layer in the case where the film thickness of the thin film metal layer film 22 is 25 mm to 200 mm, and the unevenness size and distribution are very good with 1500 mm ± 1%. The range was confirmed. However, when the thickness of the thin metal layer is 100 mm or more, the short-circuit current rapidly decreases. This seems to be due to the absorption of the Ag layer and the change of the light interference pattern.
[0033]
Furthermore, when the same experiment was conducted using ZnO: Al as the material of the transparent conductive film 2, the same effect was confirmed.
[0034]
As described above, the starting transparent conductive film for forming irregularities by etching on the transparent conductive film used on the light incident side of the photovoltaic device is at least the first transparent conductive film layer / thin film metal layer / second layer from the side in contact with the semiconductor. The size of the unevenness in the depth direction is controlled by the film thickness of the first transparent conductive film on the outermost surface using the fact that the etching is stopped by the thin film metal layer. As a result, it has become possible to obtain a substrate with a uniform concavo-convex transparent conductive film in which the size of the concavo-convex and the height of the valleys and valleys, both of which have been difficult to achieve in the past, have been achieved, and the cost of solar cells It was confirmed that it was possible to achieve both reduction and improvement of characteristics.
[0035]
In the above-described embodiment, Ag is used as the thin film metal layer, but the same effect can be obtained by using other metals such as Au, Ti, TiN.
[0036]
In the above embodiment, the transparent conductive film is etched by wet etching using hydrochloric acid. However, the transparent conductive film may be etched by dry etching using a halogen-based gas.
[0037]
Furthermore, although ZnO is used as the material of the transparent conductive film, the same effect can be obtained by using an ITO film or a SnO 2 film.
[0038]
【The invention's effect】
As described above, according to the present invention, the starting transparent conductive film for forming irregularities by etching on the transparent conductive film used on the light incident side of the photovoltaic device is at least the first transparent conductive film layer from the side in contact with the semiconductor. / Thin film metal layer / Second transparent conductive film layer is used, and the thickness of the first transparent conductive film on the outermost surface is controlled by the fact that the etching is stopped by the thin film metal layer. It is possible to obtain a transparent conductive film with a uniform concavo-convex shape in which the size of the concavo-convex and the height of the peaks and valleys that are important for realizing high conversion efficiency can be obtained as a thin film, reducing the cost and characteristics of solar cells Can be improved at the same time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a transparent conductive film used in the present invention, wherein (a) shows a state in which a ZnO film is formed on a substrate by DC sputtering using 5 wt% Ga-doped ZnO as a target. (B) shows the state which formed the unevenness | corrugation in the surface by the etching.
FIG. 2 is a cross-sectional view showing a conventional transparent conductive film, wherein (a) shows a state in which a ZnO film is formed on a substrate by DC sputtering using 5 wt% Ga-doped ZnO as a target; b) shows a state in which irregularities are formed on the surface by etching.
FIG. 3 is a cross-sectional view showing a photovoltaic device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent conductive film 21 First transparent conductive film layer 22 Thin film metal 23 Second transparent conductive film layer 3 First amorphous thin film semiconductor layer 4 Second amorphous thin film semiconductor layer 5 Third amorphous Thin film semiconductor layer 6 Back metal film

Claims (3)

表面にエッチングにより凹凸が形成された透明導電膜上に内部に半導体接合を有する非晶質薄膜半導体層と裏面金属膜とがこの順序で形成された光起電力装置であって、前記透明導電膜は、前記半導体層と接する側から透明導電膜層とエッチングストッパとなる薄膜金属層と透明導電膜層との多層構造で形成されていることを特徴とする光起電力装置。A photovoltaic device in which an amorphous thin film semiconductor layer having a semiconductor junction therein and a back metal film are formed in this order on a transparent conductive film having irregularities formed by etching on the surface, wherein the transparent conductive film Is a multilayer structure of a transparent conductive film layer, a thin film metal layer serving as an etching stopper, and a transparent conductive film layer from the side in contact with the semiconductor layer. 前記薄膜金属層の膜厚は100Å以下25Å以上であることを特徴とする請求項1に記載の光起電力装置。2. The photovoltaic device according to claim 1, wherein the thin film metal layer has a thickness of 100 to 25 mm. 前記エッチングは酸を用いたウェットエッチング又はハロゲン系ガスを用いたドライエッチングにより行われることを特徴とする請求項1に記載の光起電力装置。The photovoltaic device according to claim 1, wherein the etching is performed by wet etching using an acid or dry etching using a halogen-based gas.
JP2000090563A 2000-03-29 2000-03-29 Photovoltaic device Expired - Lifetime JP4115071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090563A JP4115071B2 (en) 2000-03-29 2000-03-29 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090563A JP4115071B2 (en) 2000-03-29 2000-03-29 Photovoltaic device

Publications (2)

Publication Number Publication Date
JP2001284611A JP2001284611A (en) 2001-10-12
JP4115071B2 true JP4115071B2 (en) 2008-07-09

Family

ID=18606156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090563A Expired - Lifetime JP4115071B2 (en) 2000-03-29 2000-03-29 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP4115071B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4456107B2 (en) * 2004-02-20 2010-04-28 シャープ株式会社 Photoelectric conversion device and substrate for photoelectric conversion device
US7517465B2 (en) * 2004-10-21 2009-04-14 United Solar Ovonic Llc Ultra lightweight photovoltaic device and method for its manufacture
CN101308882A (en) * 2008-07-22 2008-11-19 东莞宏威数码机械有限公司 Preparing method of transparent electricity conductive oxide suede

Also Published As

Publication number Publication date
JP2001284611A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP7212786B2 (en) Crystalline silicon solar cell and manufacturing method thereof
US11637213B2 (en) Hybrid polysilicon heterojunction back contact cell
AU2015210421B9 (en) Hybrid polysilicon heterojunction back contact cell
JP3349308B2 (en) Photovoltaic element
TWI408816B (en) A solar cell manufacturing method, a solar cell, and a method of manufacturing a semiconductor device
US20120055547A1 (en) High-efficiency solar cell structures and methods of manufacture
JP2002025350A (en) Substrate with transparent conductive film and manufacturing method of the same, etching method using the same, and light electromotive force device
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
JP2001189478A (en) Semiconductor element and manufacturing method therefor
CN113809205B (en) Preparation method of solar cell
JP3819632B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2023213088A1 (en) Solar cell and preparation method therefor, and photovoltaic system
WO2022142343A1 (en) Solar cell and preparation method therefor
WO2023202132A1 (en) Solar cell and manufacturing method therefor
CN112054070A (en) Silicon heterojunction solar cell and manufacturing method thereof
NL2032065A (en) Back contact structure and selective contact region embedded solar cell comprising the same
CN115458612A (en) Solar cell and preparation method thereof
WO2012162905A1 (en) Method for manufacturing back contact crystalline silicon solar cell sheet
US9711669B2 (en) Thin-film photoelectric converter
KR101830775B1 (en) Solar cell with dielectric back reflective coating and method for the production thereof
JP4115071B2 (en) Photovoltaic device
TWI783063B (en) Manufacturing method of solar cell
JP3652128B2 (en) Method for manufacturing solar cell element
JP2003273382A (en) Solar cell element
JPH07106612A (en) Fabrication of photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4115071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term