JP4113862B2 - Copper anticorrosive and copper anticorrosion method - Google Patents

Copper anticorrosive and copper anticorrosion method Download PDF

Info

Publication number
JP4113862B2
JP4113862B2 JP2004203409A JP2004203409A JP4113862B2 JP 4113862 B2 JP4113862 B2 JP 4113862B2 JP 2004203409 A JP2004203409 A JP 2004203409A JP 2004203409 A JP2004203409 A JP 2004203409A JP 4113862 B2 JP4113862 B2 JP 4113862B2
Authority
JP
Japan
Prior art keywords
group
copper
compound
general formula
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004203409A
Other languages
Japanese (ja)
Other versions
JP2006022391A (en
Inventor
寛紀 高麗
喜雄 五十嵐
浩文 延嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to JP2004203409A priority Critical patent/JP4113862B2/en
Publication of JP2006022391A publication Critical patent/JP2006022391A/en
Application granted granted Critical
Publication of JP4113862B2 publication Critical patent/JP4113862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、各種工業用水・排水系、冷却水系、ボイラ水系などでの銅系材質を用いた配管や各種機器などと接触する水系において、銅の腐食、特に微生物腐食を防止するための新規な防食剤および防食方法に関する。   The present invention is a novel for preventing copper corrosion, particularly microbial corrosion, in water systems that come into contact with piping and various equipment using copper-based materials in various industrial water / drainage systems, cooling water systems, boiler water systems, etc. The present invention relates to an anticorrosive and a method for preventing corrosion.

各種工業用水・排水系や各種貯水系やボイラ水系などに銅或いは銅合金など銅系材料からなる各種機器や配管などが用いられているが、これら機器および配管などに腐食や孔食が発生して問題となっている。このような腐食・孔食の発生を防止するため、銅系からなる機器と接する水系に防食剤を添加することが多く行われている。このような銅防食剤としては、ベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾールなどが知られている。しかしながら、これら従来の防食剤では場合によって効果が極めて短期間で失われたり、或いは得られる効果が低いという問題があった。
特開2001−172783公報
Various equipment and pipes made of copper-based materials such as copper or copper alloys are used in various industrial water / drainage systems, various water storage systems, boiler water systems, etc., but corrosion and pitting corrosion occur in these equipment and piping. Is a problem. In order to prevent the occurrence of such corrosion and pitting corrosion, an anticorrosive agent is often added to an aqueous system in contact with a copper-based device. As such a copper anticorrosive, benzotriazole, tolyltriazole, mercaptobenzothiazole and the like are known. However, these conventional anticorrosive agents have a problem that the effect is lost in a very short period of time or the obtained effect is low.
JP 2001-172783 A

本発明は、上記従来技術の欠点を改善し、銅に対して高い防食性能を有する優れた防食剤および防食方法を提供することを目的とする。   An object of the present invention is to provide an excellent anticorrosive agent and anticorrosion method having improved anticorrosion performance against copper by improving the above-mentioned drawbacks of the prior art.

従来、銅腐食の要因としては、溶存酸素、pH、腐食性イオンなどが知られている。最近これら従来の要因に加え、微生物が銅腐食に関与しているとの説が提唱されているが、その詳細は不明である。本発明者等は、上記のようなアゾール類やチアゾール類で充分な防食効果が得られないケースでは、微生物が関与している腐食、いわゆる微生物腐食が発生しているのではないかとの仮説を立てて検討を行った。すなわち、従来からよく知られた銅防食剤である前記アゾール類或いはチアゾール類と、水系中の微生物を防除する働きのある微生物防除剤とを併用することにより、水系の微生物の増殖を抑制して、アゾール類或いはチアゾール類の銅に対する防食効果を発揮させようと試みた。   Conventionally, dissolved oxygen, pH, corrosive ions, and the like are known as factors of copper corrosion. Recently, in addition to these conventional factors, the theory that microorganisms are involved in copper corrosion has been proposed, but the details are unknown. The present inventors hypothesized that corrosion involving microorganisms, that is, so-called microbial corrosion may have occurred in cases where sufficient anti-corrosion effects cannot be obtained with azoles and thiazoles as described above. I reviewed it. That is, by using together the azoles or thiazoles, which are well-known copper anticorrosives, and a microorganism control agent having a function of controlling microorganisms in the aqueous system, the growth of aqueous microorganisms is suppressed. An attempt was made to exert the anticorrosive effect of azoles or thiazoles on copper.

しかし、これら薬剤の併用により、水系中の微生物の増殖は抑えられたものの、肝心の銅に対する防食効果の向上は充分とは云えず、満足できるものではなかった。そのため、さらに検討を進めたところ、ある種の化合物は、単独、すなわちアゾール類・チアゾール類などの従来の銅の防食剤を併用しなくても、微生物腐食と思われる銅腐食を効果的に防止し、さらに微生物の関与しない一般の銅腐食をも著しく抑制することを見い出し、本発明に至った。   However, the combined use of these agents suppressed the growth of microorganisms in the water system, but the improvement in the anticorrosive effect against copper was not sufficient and was not satisfactory. As a result, further investigations have shown that certain compounds can effectively prevent copper corrosion, which seems to be microbial corrosion, without using conventional copper anticorrosive agents such as azoles and thiazoles alone. Furthermore, the present inventors have found that general copper corrosion not involving microorganisms is also remarkably suppressed, resulting in the present invention.

前記目的は以下の本発明によって達成される。
1.下記一般式(1)で表される化合物を有効成分として含有することを特徴とする銅防食剤。

Figure 0004113862
The object is achieved by the present invention described below.
1. A copper anticorrosive comprising a compound represented by the following general formula (1) as an active ingredient.
Figure 0004113862

(但し、上記一般式において、R1およびR4は、炭素数1〜4の直鎖若しくは分岐の同一または異なるアルキレン基であり、R2およびR5は、水素原子、同一または異なるハロゲン原子、低級アルキル基または低級アルコキシ基であり、R3は、炭素数2〜12の直鎖若しくは分岐のアルキレン基であり、R6は、炭素数1〜18の直鎖若しくは分岐のアルキル基であり、Zは、塩素原子、臭素原子、ヨウ素原子若しくはOSO27基(R7は、低級アルキル基若しくは置換或いは無置換のフェニル基である)である。) (In the above general formula, R 1 and R 4 are linear or branched identical or different alkylene groups having 1 to 4 carbon atoms, and R 2 and R 5 are hydrogen atoms, identical or different halogen atoms, A lower alkyl group or a lower alkoxy group, R 3 is a linear or branched alkylene group having 2 to 12 carbon atoms, R 6 is a linear or branched alkyl group having 1 to 18 carbon atoms, Z is a chlorine atom, a bromine atom, an iodine atom or an OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted or unsubstituted phenyl group).

2.前記一般式(1)において、R1およびR4は、ピリジン環の3または4位置に結合しているメチレン基であり、R2およびR5は、水素原子であり、R3は、テトラメチレン基であり、R6は、オクチル基、デシル基およびドデシル基から選ばれる基であり、Zは、塩素原子、臭素原子、ヨウ素原子若しくはOSO27基(R7は、低級アルキル基若しくは置換或いは無置換のフェニル基である)である前記1に記載の銅防食剤。 2. In the general formula (1), R 1 and R 4 are methylene groups bonded to the 3 or 4 position of the pyridine ring, R 2 and R 5 are hydrogen atoms, and R 3 is tetramethylene. R 6 is a group selected from an octyl group, a decyl group and a dodecyl group, Z is a chlorine atom, a bromine atom, an iodine atom or an OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted group) Or a copper anticorrosive agent according to 1 above, which is an unsubstituted phenyl group).

3.前記一般式(1)で表される化合物は、下記式(1)〜(4)で表される少なくとも1種の化合物である前記1に記載の銅防食剤。

Figure 0004113862
Figure 0004113862
3. 2. The copper anticorrosive agent according to 1, wherein the compound represented by the general formula (1) is at least one compound represented by the following formulas (1) to (4).
Figure 0004113862
Figure 0004113862

Figure 0004113862
Figure 0004113862
4.前記一般式(1)で表される化合物の有効量を銅材質と接触する水系に添加することを特徴とする銅防食方法。
Figure 0004113862
Figure 0004113862
4). An effective amount of the compound represented by the general formula (1) is added to an aqueous system in contact with a copper material.

本発明の銅防食剤は、前記一般式(1)で表される化合物を有効成分とするもので、かかる銅防食剤を水系中に添加することにより、他の薬剤の併用を必要とせず、さらに、極めて低い濃度の使用でも、微生物腐食と思われる銅腐食を効果的に防止し、さらに微生物の関与しない一般の銅腐食をも著しく抑制することができる。また、微生物防除剤と銅防食剤を併用するに際しては、薬注ポンプ、薬液タンク、薬液調整などを別々に必要とし、そのため設備投資が過大となり、それらのメンテナンスも煩雑であったが、本発明の方法によれば薬注は1系列で済み、その結果メンテナンスも容易である。   The copper anticorrosive agent of the present invention comprises the compound represented by the general formula (1) as an active ingredient, and by adding such a copper anticorrosive agent to the aqueous system, it is not necessary to use other agents in combination, Furthermore, even at extremely low concentrations, it is possible to effectively prevent copper corrosion that appears to be microbial corrosion, and to significantly suppress general copper corrosion that does not involve microorganisms. In addition, when a microbial control agent and a copper anticorrosive agent are used in combination, a chemical injection pump, a chemical solution tank, a chemical solution adjustment and the like are separately required, and therefore, capital investment is excessive and maintenance thereof is complicated. According to this method, only one line of chemical injection is required, and as a result, maintenance is easy.

以下に発明を実施するための最良の形態を挙げて本発明をさらに詳細に説明する。本発明に用いられる前記一般式(1)で表される化合物のなかで好ましい化合物は、前記一般式(1)において、R1およびR4が、ピリジン環の3または4位置に結合しているメチレン基であり、R2およびR5が、水素原子であり、R3が、テトラメチレン基であり、R6が、オクチル基、デシル基およびドデシル基から選ばれる基であり、Zが塩素原子、臭素原子、ヨウ素原子若しくはOSO27基(R7は、低級アルキル基若しくは置換或いは無置換のフェニル基である)である化合物であり、特に好ましい化合物は前記式(1)〜(4)の化合物である。前記一般式(1)で表される化合物は、単独でも混合物としても使用できる。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the best mode for carrying out the invention. Among the compounds represented by the general formula (1) used in the present invention, a preferable compound is that in the general formula (1), R 1 and R 4 are bonded to the 3 or 4 position of the pyridine ring. A methylene group, R 2 and R 5 are hydrogen atoms, R 3 is a tetramethylene group, R 6 is a group selected from an octyl group, a decyl group and a dodecyl group, and Z is a chlorine atom , a bromine atom, an iodine atom or OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted or unsubstituted phenyl group), a compound, particularly preferred compound is the formula (1) to (4) It is a compound of this. The compound represented by the general formula (1) can be used alone or as a mixture.

一般式(1)で表される化合物は、下記一般式(a)

Figure 0004113862
で表されるピリジン化合物と、下記一般式(b)
Figure 0004113862
で表されるジオール類とを、強塩基の存在下に反応させることにより、下記一般式(c)
Figure 0004113862
で表されるピリジン化合物を製し、該化合物と下記一般式(d)
Figure 0004113862
で表されるピリジン化合物とを強塩基の存在下に反応させることにより下記一般式(e)
Figure 0004113862
で表されるピリジン化合物を製し、該化合物と下記一般式(f)
Figure 0004113862
で表されるハロゲン化合物若しくはスルホン酸エステル化合物とを反応させることによって得られる。
(但し、上記一般式(a)〜(f)において、AおよびBは塩基の作用により脱離基として機能し、アルキルカチオンを生成し得る置換基であり、XおよびYは無機、若しくは有機のプロトン酸の対アニオンであり、mおよびnは0〜1であり、R1〜R7、Zは前記と同意義である。) The compound represented by the general formula (1) has the following general formula (a):
Figure 0004113862
A pyridine compound represented by the following general formula (b)
Figure 0004113862
Is reacted in the presence of a strong base to give the following general formula (c):
Figure 0004113862
A pyridine compound represented by the formula:
Figure 0004113862
Is reacted with a pyridine compound represented by the following general formula (e):
Figure 0004113862
A pyridine compound represented by the formula:
Figure 0004113862
It is obtained by reacting with a halogen compound or a sulfonate compound represented by the formula:
(However, in the above general formulas (a) to (f), A and B are substituents that function as a leaving group by the action of a base and can generate an alkyl cation, and X and Y are inorganic or organic. (It is a counter anion of a protonic acid, m and n are 0 to 1 , and R 1 to R 7 and Z are as defined above.)

本発明の銅防食剤を使用して水系に接する銅製各機器の防食を実施するに当たっては、例えば、アクリル酸系重合体、マレイン酸系重合体、メタクリル酸系重合体、スルホン酸系重合体、燐酸系重合体、イタコン酸系重合体、イソブチレン系重合体、ホスホン酸、ホスフィン酸、或いはこれらの水溶性塩などのスケール防止剤、例えば、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、2−メチル−4−イソチアゾリン−3−オン、1,2−ベンゾイソチアゾリン−3−オンなどのイソチアゾロン系化合物、例えば、グルタルアルデヒド、フタルアルデヒドなどのアルデヒド類、例えば、過酸化水素、ヒドラジン、塩素系殺菌剤(次亜塩素酸ナトリウムなど)、臭素系殺菌剤およびヨウ素系殺菌剤などの無機物類、さらにジチオール系化合物、メチレンビスチオシアネートなどのチオシアネート系化合物、ヨーネンポリマー、第4級アンモニウム塩系化合物などのスライム防止剤、例えば、エチレンジアミン、ジエチレントリアミンなどのアミン系化合物、例えば、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸などのアミノカルボン酸系化合物、例えば、グルコン酸、クエン酸、シュウ酸、ギ酸、酒石酸、フィチン酸、琥珀酸、乳酸などの有機カルボン酸など、各種の水処理剤を併用することができ、場合によっては予め本発明の銅防食剤にこれらの水処理剤を配合した水処理剤として使用してもよい。
さらに、従来技術に係る防食剤であるトリルトリアゾール、ベンゾトリアゾール、メルカプトベンゾチアゾール、モリブデン酸およびその塩、亜鉛およびその塩、リン酸およびその塩、亜硝酸およびその塩、亜硫酸およびその塩などから選ばれる1種或いはそれ以上の成分を併せて添加してもよく、配合して一剤としてもよい。しかしながら、本発明の銅防食剤は、これらを併用することは必須ではなく、単独で優れた防食性能が得られる。
In carrying out the corrosion prevention of each copper device in contact with the water system using the copper corrosion inhibitor of the present invention, for example, an acrylic acid polymer, a maleic acid polymer, a methacrylic acid polymer, a sulfonic acid polymer, Scale inhibitors such as phosphoric acid polymers, itaconic acid polymers, isobutylene polymers, phosphonic acid, phosphinic acid, or water-soluble salts thereof, such as 5-chloro-2-methyl-4-isothiazoline-3- Isothiazolone compounds such as ON, 2-methyl-4-isothiazolin-3-one, 1,2-benzisothiazolin-3-one, for example, aldehydes such as glutaraldehyde, phthalaldehyde, such as hydrogen peroxide, hydrazine, Inorganic substances such as chlorine-based disinfectants (such as sodium hypochlorite), bromine-based disinfectants and iodine-based disinfectants, and dithiols Compounds, thiocyanate compounds such as methylenebisthiocyanate, ionene polymers, slime inhibitors such as quaternary ammonium salt compounds, for example, amine compounds such as ethylenediamine and diethylenetriamine, such as nitrilotriacetic acid, ethylenediaminetetraacetic acid, Various water treatment agents such as aminocarboxylic acid compounds such as diethylenetriaminepentaacetic acid, for example, organic carboxylic acids such as gluconic acid, citric acid, oxalic acid, formic acid, tartaric acid, phytic acid, succinic acid, and lactic acid can be used in combination. In some cases, it may be used as a water treatment agent in which these water treatment agents are blended in advance with the copper anticorrosive of the present invention.
Furthermore, it is selected from tolyltriazole, benzotriazole, mercaptobenzothiazole, molybdic acid and its salt, zinc and its salt, phosphoric acid and its salt, nitrous acid and its salt, sulfurous acid and its salt etc. which are anticorrosives according to the prior art One or more components may be added together, or may be blended to form a single agent. However, it is not essential that the copper anticorrosive agent of the present invention is used in combination, and excellent anticorrosion performance can be obtained by itself.

次に本発明で使用する前記一般式(1)で表される化合物の合成例を挙げる。合成例1(前記化合物(1)の合成)
[下記構造式で示される化合物(1−1)の合成]

Figure 0004113862
DMF(ジメチルホルムアミド)75mlに1,4−ブタンジオール8.24g(91.43mmol)を加え、氷冷下カリウムtert−ブトキシド10.3g(91.79mmol)を添加し、室温で1.5時間撹拌した。このスラリー液に−8〜−3℃で3−クロロメチルピリジン塩酸塩1.0g(6.10mmol)およびカリウムtert−ブトキシド0.68g(6.06mmol)を交互に添加し、これを15回繰り返し、全量で3−クロロメチルピリジン塩酸塩15.0g(91.45mmol)およびカリウムtert−ブトキシド10.2g(90.9mmol)を添加した。 Next, synthesis examples of the compound represented by the general formula (1) used in the present invention will be given. Synthesis Example 1 (Synthesis of Compound (1))
[Synthesis of Compound (1-1) represented by Structural Formula below]
Figure 0004113862
To 75 ml of DMF (dimethylformamide), 8.24 g (91.43 mmol) of 1,4-butanediol was added, and 10.3 g (91.79 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1.5 hours. did. To this slurry solution, 1.0 g (6.10 mmol) of 3-chloromethylpyridine hydrochloride and 0.68 g (6.06 mmol) of potassium tert-butoxide were alternately added at −8 to −3 ° C., and this was repeated 15 times. In total, 15.0 g (91.45 mmol) of 3-chloromethylpyridine hydrochloride and 10.2 g (90.9 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンのピークが確認されたので、3−クロロメチルピリジンのピークが消失するまで、カリウムtert−ブトキシドを5℃以下で添加した。追加したカリウムtert−ブトキシドは1.13g(10.07mmol)であった。反応混合物を固液分離し、ケークをDMF30mlで洗浄、ろ洗液からDMFを減圧下に留去して油状の粗生成物(化合物(1−1))17.1gを得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(1−1)の面積%は76.0%であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, a peak of 3-chloromethylpyridine was confirmed. Therefore, potassium tert-butoxide was kept at 5 ° C. or lower until the peak of 3-chloromethylpyridine disappeared. Added. The added potassium tert-butoxide was 1.13 g (10.07 mmol). The reaction mixture was subjected to solid-liquid separation, the cake was washed with 30 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure to obtain 17.1 g of an oily crude product (compound (1-1)). When the obtained oil was analyzed by HPLC (Condition 1), the area% of the compound (1-1) was 76.0%.

前記化合物(1−1)の粗生成物を水30mlに溶解し、トルエンで洗浄した。その後、水層に食塩6gを加え、ジクロロメタン20ml×2で抽出し、無水硫酸マグネシウムで脱水後、溶媒を留去し、油状の前記化合物(1−1)9.21g(収率(1,4−ブタンジオールより):57.2%)を得た。得られたオイルをHPLC(条件1)で分析すると、面積%は99.4%であった。(1H−NMR(CDCl3):δ1.67−1.75(4H,m,−(C 22−)、δ2.35(1H,s,O)、δ3.52−3.56(2H,t,J=6.0Hz,C 2)、δ3.64−3.68(2H,t,J=6.0Hz,C 2 )、δ4.52(2H,s,C 2)、δ7.27−7.31(1H,m,arom)、δ7.66−7.70(1H,m,arom)、δ8.52−8.56(2H,m,arom ×2)、MS(APCl):m/z=182[M+H]+The crude product of the compound (1-1) was dissolved in 30 ml of water and washed with toluene. Thereafter, 6 g of sodium chloride was added to the aqueous layer, followed by extraction with 20 ml of dichloromethane × 2, dehydration with anhydrous magnesium sulfate, the solvent was distilled off, and 9.21 g of the oily compound (1-1) (yield (1,4 -From butanediol): 57.2%). When the obtained oil was analyzed by HPLC (Condition 1), the area% was 99.4%. (1 H-NMR (CDCl 3 ): δ1.67-1.75 (4H, m, - (C H 2) 2 -), δ2.35 (1H, s, O H), δ3.52-3. 56 (2H, t, J = 6.0 Hz, C H 2 ), δ 3.64-3.68 (2H, t, J = 6.0 Hz, C H 2 ), δ 4.52 (2H, s, C H 2 ), δ 7.27-7.31 (1H, m, arom H ), δ 7.66-7.70 (1 H, m, arom H ), δ 8.52-8.56 (2H, m, arom H × 2), MS (APCl): m / z = 182 [M + H] + )

HPLC(条件1)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:B=70:30(一定)
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 1)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: B = 70: 30 (constant)
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

[下記構造式で示される化合物(1−2)の合成]

Figure 0004113862
DMF25mlに前記化合物(1−1)5.0g(27.59mmol)を加え、氷冷下カリウムtert−ブトキシド3.1g(27.63mmol)を添加した。このスラリーに5〜6℃で3−クロロメチルピリジン塩酸塩0.5g(3.05mmol)およびカリウムtert−ブトキシド0.34g(3.03mmol)を交互に添加し、これを9回繰り返し、全量で3−クロロメチルピリジン塩酸塩4.5g(27.43mmol)およびカリウムtert−ブトキシド3.06g(27.27mmol)を添加した。添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(1−1)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(1−1)のピークが消失するまで、カリウムtert−ブトキシドを5℃以下で添加した。追加したカリウムtert−ブトキシドは0.62g(5.53mmol)であった。 [Synthesis of Compound (1-2) represented by Structural Formula below]
Figure 0004113862
To 25 ml of DMF, 5.0 g (27.59 mmol) of the compound (1-1) was added, and 3.1 g (27.63 mmol) of potassium tert-butoxide was added under ice cooling. To this slurry, 0.5 g (3.05 mmol) of 3-chloromethylpyridine hydrochloride and 0.34 g (3.03 mmol) of potassium tert-butoxide were alternately added at 5 to 6 ° C., and this was repeated 9 times. 4.5 g (27.43 mmol) of 3-chloromethylpyridine hydrochloride and 3.06 g (27.27 mmol) of potassium tert-butoxide were added. After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (1-1) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the compound (1- Potassium tert-butoxide was added at 5 ° C. or lower until the peak of 1) disappeared. The added potassium tert-butoxide was 0.62 g (5.53 mmol).

反応混合物を固液分離し、ケークをDMF30mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン20mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状物5.8gを得た。この粗生成物0.5gについてシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム−メタノール)で精製を行い、油状の前記化合物(1−2)0.3gを得た。(1H−NMR:δ1.70−1.74(4H,m,−(C 22−)、δ3.50−3.54(4H,m,C 2×2)、δ4.51(4H,s,C 2×2)、δ7.25−7.29(2H,dd,J=4.9Hz,7.9Hz,arom×2)、δ7.65−7.69(2H,dt,J=1.7Hz,7.9Hz,arom×2)、δ8.52−8.57(4H,dd,J=1.7Hz,4.9Hz,arom×4)、MS(APCl):m/z=273[M+H]+The reaction mixture was separated into solid and liquid, the cake was washed with 30 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue, 20 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 5.8 g of an oily substance. About 0.5 g of this crude product was purified by silica gel column chromatography (developing solvent: chloroform-methanol) to obtain 0.3 g of oily compound (1-2). ( 1 H-NMR: δ 1.70-1.74 (4H, m,-(C H 2 ) 2- ), δ 3.50-3.54 (4H, m, C H 2 × 2), δ 4.51 (4H, s, C H 2 × 2), δ 7.25-7.29 (2H, dd, J = 4.9 Hz, 7.9 Hz, arom H × 2), δ 7.65-7.69 (2H, dt, J = 1.7 Hz, 7.9 Hz, arom H × 2), δ 8.52-8.57 (4H, dd, J = 1.7 Hz, 4.9 Hz, arom H × 4), MS (APCl) : m / z = 273 [M + H] +)

[化合物(1)の合成]

Figure 0004113862
前記化合物(1−2)5.0g(18.36mmol)にオクチルブロマイド35.5g(183.8mmol)を加え、70〜80℃で20時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(1−2)のピークは消失していた。反応混合物より上層のオクチルブロマイド層を分離し、下層油状物をアセトニトリル−酢酸エチル=1:3(v/v)混液に注加した。混合物を冷却し、析出結晶を0℃でろ過、減圧乾燥を行い、灰白色結晶9.7g(粗収率(前記化合物(1−2)より):85%)を得た。 [Synthesis of Compound (1)]
Figure 0004113862
35.0 g (183.8 mmol) of octyl bromide was added to 5.0 g (18.36 mmol) of the compound (1-2), and reacted at 70 to 80 ° C. for 20 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (1-2) disappeared. The upper octyl bromide layer was separated from the reaction mixture, and the lower oil layer was poured into a mixture of acetonitrile-ethyl acetate = 1: 3 (v / v). The mixture was cooled, and the precipitated crystals were filtered at 0 ° C. and dried under reduced pressure to obtain 9.7 g of grayish white crystals (crude yield (from the compound (1-2)): 85%).

得られた結晶2gについてアセトニトリル−酢酸エチル=1:3(v/v)混液で再結晶を行い、微灰白色結晶の化合物(1)1.6gを得た。(融点:52〜53℃、1H−NMR(d6−DMSO):δ0.82−0.89(6H,t,J=5.3Hz,C 3×2)、δ1.25−1.34(20H,m,−(C 25−×2)、δ1.77−1.80(4H,m,−(C 22−×2)、δ2.04−2.09(4H,t,J=7.0Hz,C 2×2)、δ3.70−3.72(4H,t,J=5.9Hz,C 2×2)、δ4.67−4.71(4H,t,J=7.0Hz,C 2×2)、δ4.84(4H,s,C 2×2)、δ8.11−8.15(2H,dd,J=6.0Hz,8.0Hz,arom×2)、δ8.56−8.59(2H,d,J=8.0Hz,arom×2)、δ8.69−8.92(4H,dd,J=6.0Hz,13.1Hz,arom×4)、MS(ESI):m/z=579[M−Br]+)。 2 g of the obtained crystal was recrystallized with a mixed solution of acetonitrile-ethyl acetate = 1: 3 (v / v) to obtain 1.6 g of compound (1) as a fine grayish white crystal. (Melting point: 52-53 ° C., 1 H-NMR (d 6 -DMSO): δ0.82-0.89 (6H, t, J = 5.3 Hz, C H 3 × 2), δ1.25-1. 34 (20H, m,-(C H 2 ) 5- × 2), δ 1.77-1.80 (4H, m,-(C H 2 ) 2- × 2), δ 2.04-2.09 ( 4H, t, J = 7.0Hz, C H 2 × 2), δ3.70-3.72 (4H, t, J = 5.9Hz, C H 2 × 2), δ4.67-4.71 ( 4H, t, J = 7.0 Hz, C H 2 × 2), δ 4.84 (4H, s, C H 2 × 2), δ 8.11-8.15 (2H, dd, J = 6.0 Hz, 8.0 Hz, arom H × 2), δ 8.56-8.59 (2H, d, J = 8.0 Hz, arom H × 2), δ 8.69-8.92 (4H, dd, J = 6. 0Hz, 13.1Hz, arom × 4), MS (ESI) : m / z = 579 [M-Br] +).

HPLC(条件2)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:70%(12min保持)→(10min)→A:50%(14min保持)→A:70%
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 2)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: 70% (12 min hold) → (10 min) → A: 50% (14 min hold) → A : 70%
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

合成例2(前記化合物(2)の合成)
[下記構造式で示される化合物(2−1)の合成:3−クロロメチルピリジン塩酸塩から4−クロロメチルピリジン塩酸塩に代え、反応条件を以下の通りにした他は合成例1と同様]

Figure 0004113862
DMF75mlに1,4−ブタンジオール8.24g(91.43mmol)を加え、氷冷下カリウムtert−ブトキシド10.3g(91.79mmol)を添加し、室温で1時間撹拌した。このスラリーに−10〜−5℃で4−クロロメチルピリジン塩酸塩1.5g(9.14mmol)、カリウムtert−ブトキシド1.03g(9.18mmol)を交互に添加し、これを10回繰り返した。 Synthesis Example 2 (Synthesis of Compound (2))
[Synthesis of Compound (2-1) Represented by Structural Formula: Same as Synthesis Example 1 except that 3-chloromethylpyridine hydrochloride was replaced with 4-chloromethylpyridine hydrochloride and the reaction conditions were as follows]
Figure 0004113862
To 75 ml of DMF, 8.24 g (91.43 mmol) of 1,4-butanediol was added, and 10.3 g (91.79 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, 1.5 g (9.14 mmol) of 4-chloromethylpyridine hydrochloride and 1.03 g (9.18 mmol) of potassium tert-butoxide were alternately added at −10 to −5 ° C., and this was repeated 10 times. .

添加終了後、反応混合物をHPLC(条件1)で分析すると、4−クロロメチルピリジンのピークが確認されたので、4−クロロメチルピリジンのピークが消失するまでカリウムtert−ブトキシドを10℃以下で添加した。追加したカリウムtert−ブトキシドは1.03g(9.18mmol)であった。反応混合物を固液分離し、ケークをDMF20mlで洗浄、ろ洗液からDMFを減圧下に留去し油状の粗生成物17.0gを得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(2−1)の面積%は63.0%であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, a peak of 4-chloromethylpyridine was confirmed, and potassium tert-butoxide was added at 10 ° C. or lower until the peak of 4-chloromethylpyridine disappeared. did. The added potassium tert-butoxide was 1.03 g (9.18 mmol). The reaction mixture was subjected to solid-liquid separation, the cake was washed with 20 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure to obtain 17.0 g of an oily crude product. When the obtained oil was analyzed by HPLC (Condition 1), the area% of the compound (2-1) was 63.0%.

粗生成物を水30mlに溶解し、トルエンで洗浄した。その後、水層に食塩6gを加え、ジクロロメタン20ml×2で抽出し、無水硫酸マグネシウムで脱水後、溶媒を留去し、油状の前記化合物(2−1)9.21g(収率(1,4−ブタンジオールより):57.2%)を得た。得られたオイルをHPLC(条件1)で分析すると、面積%は99.4%であった。(1H−NMR(CDCl3):δ1.65−1.80(4H,m,−(C 2 2−)、δ2.4(1H,s,O)、δ3.54−3.58(2H,t,J=5.9Hz,C 2 )、δ3.66−3.70(2H,t,J=5.9Hz,C 2 )、δ4.53(2H,s,C 2 )、δ7.24−7.26(2H,dd,J=1.5Hz,4.5Hz,arom×2)、δ8.55−8.57(2H,dd,J=1.5Hz,4.5Hz,arom×2)、MS(APCl):m/z=182[M+H]+The crude product was dissolved in 30 ml of water and washed with toluene. Thereafter, 6 g of sodium chloride was added to the aqueous layer, followed by extraction with 20 ml × 2 dichloromethane, dehydration with anhydrous magnesium sulfate, the solvent was distilled off, and 9.21 g of the oily compound (2-1) (yield (1,4 -From butanediol): 57.2%). When the obtained oil was analyzed by HPLC (Condition 1), the area% was 99.4%. (1 H-NMR (CDCl 3 ): δ1.65-1.80 (4H, m, - (C H 2) 2 -), δ2.4 (1H, s, O H), δ3.54-3. 58 (2H, t, J = 5.9 Hz, C H 2 ), δ 3.66-3.70 (2H, t, J = 5.9 Hz, C H 2 ), δ 4.53 (2H, s, C H 2 ), δ 7.24-7.26 (2H, dd, J = 1.5 Hz, 4.5 Hz, arom H × 2), δ 8.55-8.57 (2H, dd, J = 1.5 Hz, 4 .5Hz, arom H × 2), MS (APCl): m / z = 182 [M + H] +)

[下記構造式で示される化合物(2−2)の合成:3−クロロメチルピリジン塩酸塩から4−クロロメチルピリジン塩酸塩に代え、反応条件を以下の通りにした他は合成例1と同様]

Figure 0004113862
DMF49mlに1,4−ブタンジオール2.7g(30.0mmol)を加え、氷冷下カリウムtert−ブトキシド3.4g(30.0mmol)を添加し、室温で1時間撹拌した。このスラリーに−5〜−3℃で4−クロロメチルピリジン塩酸塩0.98g(6mmol)、カリウムtert−ブトキシド0.68g(6mmol)を交互に添加し、これを5回繰り返した。これ以降の添加は、−5〜−2℃で4−クロロメチルピリジン塩酸塩0.98g(6mmol)、カリウムtert−ブトキシド1.36g(12mmol)を交互に添加し、これを5回繰り返し、全量で4−クロロメチルピリジン塩酸塩9.8g(60mmol)、カリウムtert−ブトキシド10.2g(90mmol)を添加した。 [Synthesis of Compound (2-2) Represented by Structural Formula: Same as Synthesis Example 1 except that 3-chloromethylpyridine hydrochloride was replaced with 4-chloromethylpyridine hydrochloride and the reaction conditions were as follows]
Figure 0004113862
2.7 g (30.0 mmol) of 1,4-butanediol was added to 49 ml of DMF, and 3.4 g (30.0 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, 0.98 g (6 mmol) of 4-chloromethylpyridine hydrochloride and 0.68 g (6 mmol) of potassium tert-butoxide were alternately added at −5 to −3 ° C., and this was repeated 5 times. Thereafter, 0.98 g (6 mmol) of 4-chloromethylpyridine hydrochloride and 1.36 g (12 mmol) of potassium tert-butoxide were alternately added at −5 to −2 ° C., and this was repeated five times. Then, 9.8 g (60 mmol) of 4-chloromethylpyridine hydrochloride and 10.2 g (90 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、4−クロロメチルピリジンおよび前記化合物(2−1)のピークが確認されたので、4−クロロメチルピリジンのピークおよび前記化合物(2−1)のピークが消失するまで、4−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを10℃以下で添加した。追加した4−クロロメチルピリジン塩酸塩は2.0g(12mmol)、カリウムtert−ブトキシドは2.6g(24mmol)であった。反応混合物を固液分離し、ケークをDMF20mlで洗浄、ろ洗液からDMFを減圧下に留去した。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 4-chloromethylpyridine and the compound (2-1) were confirmed. Therefore, the peak of 4-chloromethylpyridine and the compound (2- 4-Chloromethylpyridine hydrochloride and potassium tert-butoxide were added at 10 ° C. or lower until the peak of 1) disappeared. The added 4-chloromethylpyridine hydrochloride was 2.0 g (12 mmol), and potassium tert-butoxide was 2.6 g (24 mmol). The reaction mixture was separated into solid and liquid, the cake was washed with 20 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure.

この濃縮残液に酢酸エチル50mlを添加し、溶解液を水で洗浄後、溶媒を留去し、黄色結晶の前記化合物(2−2)を得た。該化合物の結晶をHPLC(条件1)で分析すると、前記化合物(2−2)の面積%は70.5%であった。得られた粗生成物5g(18mmol)をイソプロピルアルコール23.3gで再結晶を行い、白色結晶の前記化合物(2−2)2.7gを得た。(融点:98.6〜100.2℃、1H−NMR(CDCl3):δ1.75−1.79(4H,m,−(C 22−)、δ3.53−3.57(4H,m,C 2×2)、δ4.52(4H,s,C 2×2)、δ7.23−7.27(4H,dd,J=0.8Hz,6.0Hz,arom×4)、δ8.55−8.57(4H,dd,J=1.6Hz,6.0Hz,arom×4)、MS(APCl):m/z=273[M+H]+50 ml of ethyl acetate was added to the concentrated residue, and the solution was washed with water, and then the solvent was distilled off to obtain the compound (2-2) as yellow crystals. When the crystals of the compound were analyzed by HPLC (Condition 1), the area% of the compound (2-2) was 70.5%. 5 g (18 mmol) of the obtained crude product was recrystallized with 23.3 g of isopropyl alcohol to obtain 2.7 g of the compound (2-2) as white crystals. (Melting point: 98.6 to 100.2 ° C., 1 H-NMR (CDCl 3 ): δ1.75-1.79 (4H, m, — (C H 2 ) 2 —), δ3.53-3.57 (4H, m, C H 2 × 2), δ 4.52 (4H, s, C H 2 × 2), δ 7.23-7.27 (4H, dd, J = 0.8 Hz, 6.0 Hz, arom H × 4), δ 8.55-8.57 (4H, dd, J = 1.6 Hz, 6.0 Hz, arom H × 4), MS (APCl): m / z = 273 [M + H] + )

[下記構造式の化合物(2)の合成:前記化合物(2−2)を4−クロロメチルピリジン塩酸塩から誘導したものに代え、反応条件を以下の通りにした他は合成例1と同様]

Figure 0004113862
前記化合物(2−2)2.0g(7.34mmol)にオクチルブロマイド21.3g(110.3mmol)を加え、70〜80℃で53時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(2−2)のピークは消失していた。反応混合物からオクチルブロマイドを減圧下で留去し、油状の前記化合物(2)5.2g(粗収率:107.7%)を得た。得られたオイルをHPLC(条件2)で分析すると、化合物(2)のピークの面積%は81.3%であった。 [Synthesis of Compound (2) of the following Structural Formula: Same as Synthesis Example 1 except that the compound (2-2) was replaced with one derived from 4-chloromethylpyridine hydrochloride and the reaction conditions were as follows]
Figure 0004113862
21.3 g (110.3 mmol) of octyl bromide was added to 2.0 g (7.34 mmol) of the compound (2-2), and the reaction was performed at 70 to 80 ° C. for 53 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (2-2) disappeared. Octyl bromide was distilled off from the reaction mixture under reduced pressure to obtain 5.2 g (crude yield: 107.7%) of the oily compound (2). When the obtained oil was analyzed by HPLC (condition 2), the peak area% of the compound (2) was 81.3%.

合成例3(前記化合物(3)の合成)

Figure 0004113862
前記化合物(1−2)5.0g(18.36mmol)にデシルブロマイド40.6g(183.8mmol)を加え、70〜80℃で20時間反応を行った。 Synthesis Example 3 (Synthesis of Compound (3))
Figure 0004113862
40.6 g (183.8 mmol) of decyl bromide was added to 5.0 g (18.36 mmol) of the compound (1-2), and reacted at 70 to 80 ° C. for 20 hours.

反応混合物をHPLC(条件3)で分析すると、前記化合物(1−2)のピークは消失していた。反応混合物より上層のデシルブロマイド層を分離し、下層油状物をアセトニトリル−酢酸エチル=1:3(v/v)混液に注加した。混合物を冷却し、析出結晶を0℃でろ過、減圧乾燥を行い、灰白色結晶11.6g(粗収率(前記化合物(1−2)より):88.5%)を得た。該化合物の結晶をHPLC(条件1)で分析すると、前記化合物(3)の面積%は98.4%であった。融点およびNMR分析値は以下の通りであった。
(融点:76.8〜79.2℃、1H−NMR(CD3OD):δ0.9(6H、t、C 3×2)、δ1.29〜1.40(28H、m、(C 27×2)、δ1.77〜1.84(4H、m、C 2×2)、δ2.00〜2.05(4H、t、C 2×2)、δ3.69〜3.70(4H、t、C 2×2)、δ4.64〜4.68(4H、t、C 2×2)、δ4.77(4H、s、C 2×2)、δ8.07〜8.11(2H、dd、J=、arom×2)、δ8.55〜8.57(2H、d、arom×2)、δ8.93〜8.94(2H、d、arom×2)、δ9.02(2H、s、arom×2)
When the reaction mixture was analyzed by HPLC (condition 3), the peak of the compound (1-2) disappeared. The upper decyl bromide layer was separated from the reaction mixture, and the lower oil layer was poured into a mixture of acetonitrile-ethyl acetate = 1: 3 (v / v). The mixture was cooled, and the precipitated crystals were filtered at 0 ° C. and dried under reduced pressure to obtain 11.6 g of grayish white crystals (crude yield (from the compound (1-2)): 88.5%). When the crystals of the compound were analyzed by HPLC (Condition 1), the area% of the compound (3) was 98.4%. Melting points and NMR analysis values were as follows.
(Melting point: 76.8 to 79.2 ° C., 1 H-NMR (CD 3 OD): δ 0.9 (6H, t, C H 3 × 2), δ 1.29 to 1.40 (28H, m, ( C H 2 ) 7 × 2), δ 1.77 to 1.84 (4H, m, C H 2 × 2), δ 2.00 to 2.05 (4H, t, C H 2 × 2), δ 3.69 ˜3.70 (4H, t, C H 2 × 2), δ 4.64 to 4.68 (4H, t, C H 2 × 2), δ 4.77 (4H, s, C H 2 × 2), δ 8.07-8.11 (2H, dd, J =, arom H × 2), δ 8.55-8.57 (2H, d, arom H × 2), δ 8.93-8.94 (2H, d , Arom H × 2), δ 9.02 (2H, s, arom H × 2)

HPLC(条件3)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:60%(5min保持)→(10min)→A:30%(30min保持)→A:60%
・流量:1.0ml/min
・検出器:UV254nm
・注入量:10μL
HPLC (condition 3)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: 60% (5 min hold) → (10 min) → A: 30% (30 min hold) → A : 60%
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 10 μL

合成例4(前記化合物(4)の合成)
合成例3におけるデシルブロマイドに代えて当モル量のドデシルブロマイドを用いた以外は合成例3と同様にして下記構造式で表される化合物(4)13.0g(粗収率:91.5%)を得た。得られた化合物(4)をHPLC(条件4)で分析すると、化合物(4)のピークの面積%は97.5%であった。また、融点およびNMR分析値は以下の通りであった。

Figure 0004113862
Synthesis Example 4 (Synthesis of Compound (4))
13.0 g of compound (4) represented by the following structural formula (crude yield: 91.5%) in the same manner as in Synthesis Example 3 except that an equimolar amount of dodecyl bromide was used instead of decyl bromide in Synthesis Example 3. ) When the obtained compound (4) was analyzed by HPLC (condition 4), the peak area% of the compound (4) was 97.5%. Moreover, melting | fusing point and NMR analysis value were as follows.
Figure 0004113862

(融点:90.0〜91.4℃、1H−NMR(CD3OD):δ0.89(6H、t、C 3×2)、δ1.26〜1.39(36H、m、(C 29×2)、δ1.79〜1.82(4H、m、C 2×2)、δ1.84〜2.05(4H、m、C 2×2)、δ3.67〜3.70(4H、t、C 2×2)、δ4.65〜4.68(4H、t、C 2×2)、δ4.77(4H、s、C 2×2)、δ8.07〜8.11(2H、dd、arom×2)、δ8.55〜8.57(2H、d、arom×2)、δ8.93〜8.94(2H、d、arom×2)、δ9.02(2H、s、arom×2) (Melting point: 90.0 to 91.4 ° C., 1 H-NMR (CD 3 OD): δ 0.89 (6H, t, C H 3 × 2), δ 1.26 to 1.39 (36H, m, ( C H 2 ) 9 × 2), δ 1.79 to 1.82 (4H, m, C H 2 × 2), δ 1.84 to 2.05 (4H, m, C H 2 × 2), δ 3.67 ˜3.70 (4H, t, C H 2 × 2), δ 4.65 to 4.68 (4H, t, C H 2 × 2), δ 4.77 (4H, s, C H 2 × 2), δ8.07~8.11 (2H, dd, arom H × 2), δ8.55~8.57 (2H, d, arom H × 2), δ8.93~8.94 (2H, d, arom H × 2), δ9.02 (2H, s, arom H × 2)

HPLC(条件4)
・カラム:CAPCELL PAK C18 SG120(資生堂)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.1Mリン酸二水素カリウム(0.05%燐酸)水溶液、B−80%アセトニトリル水溶液 A:B=30:70
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 4)
・ Column: CAPCELL PAK C 18 SG120 (Shiseido) 4.6mmφ × 250mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.1M potassium dihydrogen phosphate (0.05% phosphoric acid) aqueous solution, B-80% acetonitrile aqueous solution A: B = 30: 70
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
本発明の銅防食剤の有効成分である前記一般式(1)で表される化合物として、前記化合物(1)〜(4)を用意した。また、比較のために、従来技術において銅の防食剤として用いられているトリルトリアゾール、ベンゾトリアゾール(BZTと略記)と、微生物防除剤として知られているメチレンビスチオシアネート(MBTCと略記)、グルタルアルデヒド(GAと略記)を準備した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to only these examples.
The said compound (1)-(4) was prepared as a compound represented by the said General formula (1) which is an active ingredient of the copper anticorrosive of this invention. For comparison, tolyltriazole and benzotriazole (abbreviated as BZT), which are used as copper anticorrosives in the prior art, and methylenebisthiocyanate (abbreviated as MBTC), which is known as a microorganism control agent, glutaraldehyde. (Abbreviated as GA) was prepared.

実施例1
まず、微生物腐食ではない、一般の腐食を想定して検討を行った。つくば市水(分析結果を表1に示す)に上記薬剤を各1mg/Lの濃度となるようテスト溶液(1L)を得た。なお、薬剤添加によるpHの変化は殆どなく、最大でも±0.1程度の変化であった。これら薬剤添加液1Lに、それぞれ液中にテストピース(タフピッチ銅(JIS・C1100)、表面積0.294dm2)を浸漬し、35℃に保って3日間300rpmで撹拌した。終了後、テストピースを取り出し、その腐食減量から腐食度を算出した。結果を表2に示す。
Example 1
First, the study was conducted assuming general corrosion, not microbial corrosion. A test solution (1 L) was obtained in Tsukuba city water (analysis results are shown in Table 1) so that each drug had a concentration of 1 mg / L. There was almost no change in pH due to the addition of the drug, and the change was about ± 0.1 at the maximum. A test piece (tough pitch copper (JIS C1100), surface area 0.294 dm 2 ) was immersed in each of these chemical additive solutions 1 L, and stirred at 300 rpm for 3 days while keeping at 35 ° C. After completion, the test piece was taken out and the degree of corrosion was calculated from the weight loss. The results are shown in Table 2.

Figure 0004113862
Figure 0004113862

Figure 0004113862
Figure 0004113862

表2より、化合物(1)〜(4)を添加した系で銅の腐食が防止されることが判る。なお、微生物防除剤として知られるメチレンビスチオシアネートおよびグルタルアルデヒドではこのような効果が得られないことも判る。   From Table 2, it can be seen that corrosion of copper is prevented in the system to which the compounds (1) to (4) are added. It can also be seen that methylene bis thiocyanate and glutaraldehyde, which are known as microorganism control agents, do not provide such an effect.

実施例2
微生物腐食ではない一般の腐食、ただし、高腐食性条件を想定して検討を行った。すなわち、前記つくば市水に塩化ナトリウムおよび硫酸ナトリウムを添加して、塩化物イオン濃度および硫酸イオン濃度をそれぞれ500mg/Lとした高腐食性水(pH:7.2)を得た。この高腐食性水にそれぞれ薬剤を5mg/Lの濃度となるよう添加し、薬剤添加液を得た。なお、薬剤添加によるpHの変化は殆どなく、最大でも±0.1程度の変化であった。これら薬剤添加液1Lに、実施例1と同様にそれぞれ液中にタフピッチ銅のテストピースを浸漬し、35℃に保って3日間300rpmで撹拌した。終了後、テストピースを取り出し、その腐食減量から腐食度を算出した。結果を表3に示す。なお、メチレンビスチオシアネート或いはグルタルアルデヒドとベンゾトリアゾールとを併用した系についても同様に検討し、その結果を表3に併記した。
Example 2
The investigation was conducted under the assumption of general corrosion that is not microbial corrosion, but highly corrosive conditions. That is, sodium chloride and sodium sulfate were added to the Tsukuba city water to obtain highly corrosive water (pH: 7.2) having a chloride ion concentration and a sulfate ion concentration of 500 mg / L, respectively. The drug was added to the highly corrosive water so as to have a concentration of 5 mg / L to obtain a drug additive solution. There was almost no change in pH due to the addition of the drug, and the change was about ± 0.1 at the maximum. A test piece of tough pitch copper was immersed in each of these chemical additive solutions 1L in the same manner as in Example 1, and stirred at 300 rpm for 3 days while maintaining the temperature at 35 ° C. After completion, the test piece was taken out and the degree of corrosion was calculated from the weight loss. The results are shown in Table 3. A system in which methylene bis-thiocyanate or glutaraldehyde and benzotriazole were used in combination was similarly examined, and the results are also shown in Table 3.

Figure 0004113862
Figure 0004113862

表3より、前記化合物(1)〜(4)を添加した系では銅の腐食が防止されることが判る。さらに、前記化合物(1)〜(4)と同じように微生物防除剤として知られるメチレンビスチオシアネートおよびグルタルアルデヒドではこのような効果が得られないか、或いは得られてもわずかであることが判る。特に前記化合物(1)〜(4)をそれぞれ添加した系では、銅の防食剤として用いられているトリルトリアゾール或いはベンゾトリアゾールを添加した系と比べても良好な防食性が得られることが判る。   From Table 3, it can be seen that corrosion of copper is prevented in the system to which the compounds (1) to (4) are added. Furthermore, it can be seen that methylene bis thiocyanate and glutaraldehyde, which are known as microorganism control agents, as in the case of the compounds (1) to (4), do not have such effects, or even if obtained. In particular, it can be seen that the system to which each of the compounds (1) to (4) is added can obtain better anticorrosive properties than the system to which tolyltriazole or benzotriazole used as a copper anticorrosive is added.

ここで、メチレンビスチオシアネート或いはグルタルアルデヒドとベンゾトリアゾールとを併用した系に関しては、ある程度防食効果が得られることが判ったが、その効果は充分でなく、さらにコストが高くなり、また、2種薬剤の併用となるため、薬注ポンプ、タンクなどが別々に必要となり、設備的にも煩雑となる。これに比べ本発明の防食方法では単独の薬剤の添加で良く、しかも、そのときの添加濃度も極めて低濃度で極めて高い効果が得られる。   Here, it was found that the anti-corrosion effect was obtained to some extent with respect to the system in which methylene bis-thiocyanate or glutaraldehyde and benzotriazole were used in combination, but the effect was not sufficient, and the cost was further increased. Therefore, a chemical injection pump, a tank, and the like are separately required, and the facility is complicated. In contrast, in the anticorrosion method of the present invention, a single agent may be added, and the addition concentration at that time is extremely low and an extremely high effect can be obtained.

実施例3
次に実際の冷却水系への応用について検討した。保有水量3m3、循環水量120m3、濃縮倍率4倍、蒸発量0.60m3/h、ブロー量0.20m3/h、補給水量0.80m3/hで稼働している冷却水系(水の分析結果を表4に示す)に前記化合物(1)〜(4)を濃度が1.0mg/Lとなるよう添加し、この濃度に維持した。この水系に前記タフピッチ銅のテストピースを7日間浸漬し、その後取り出し、腐食減量より腐食度を算出すると同時に、目視観察した。その結果を、予め同様に、ただし前記化合物(1)〜(4)を添加することなく7日間水系に浸漬したテストピースでの結果と併せて表5に示す。
Example 3
Next, the application to the actual cooling water system was examined. Held water volume 3m 3, the circulating water 120 m 3, the concentration ratio 4 times, the amount of evaporation 0.60 m 3 / h, blowing amount 0.20 m 3 / h, cooling water running replenishing water 0.80 m 3 / h (water (The analysis results are shown in Table 4) The compounds (1) to (4) were added to a concentration of 1.0 mg / L and maintained at this concentration. The tough pitch copper test piece was dipped in this water system for 7 days, then taken out, and the corrosion degree was calculated from the corrosion weight loss, and at the same time visually observed. The results are shown in Table 5 together with the results of test pieces immersed in an aqueous system for 7 days in the same manner except that the compounds (1) to (4) were not added.

Figure 0004113862
Figure 0004113862

Figure 0004113862
表5より、実際の水系であっても、本発明の銅防食剤である前記化合物(1)〜(4)を添加することにより銅の防食効果が得られることが確認された。
Figure 0004113862
From Table 5, it was confirmed that even if it is an actual aqueous system, the anticorrosive effect of copper is acquired by adding the said compounds (1)-(4) which are the copper anticorrosive of this invention.

実施例4
次に、微生物腐食に対する効果を調べた。すなわち、実際の冷却循環水系であって、銅の腐食が生じた水系からスライムを採取した。このスライム(含水状態のまま)を実施例2で使用したのと同じ高腐食性水に5g/Lとなるように添加し、テスト液(pH:8.0)を調製した。このテスト液に実施例2と同様に各種薬剤を濃度が5mg/Lとなるよう添加して薬剤添加液を得た。なお、薬剤添加によるpHの変化は殆どなく、最大でも±0.1程度の変化であった。
Example 4
Next, the effect on microbial corrosion was examined. That is, slime was collected from an actual cooling circulation water system in which copper corrosion occurred. This slime (with water) was added to the same highly corrosive water as used in Example 2 so as to be 5 g / L to prepare a test solution (pH: 8.0). In the same manner as in Example 2, various drugs were added to this test solution so as to have a concentration of 5 mg / L to obtain a drug additive solution. There was almost no change in pH due to the addition of the drug, and the change was about ± 0.1 at the maximum.

これら薬剤添加液に実施例1と同様にテストピースを浸漬し、35℃に保って撹拌しながら、3日間保った。テスト終了後の腐食度を調べ、また、そのときの腐食の形態を目視にて観察した。結果を表6に示す。なお、グルタルアルデヒドとベンゾトリアゾールとを併用した系についても同様に検討し、その結果を表6に併記した。   Test pieces were immersed in these chemical additive solutions in the same manner as in Example 1, and maintained at 35 ° C. for 3 days while stirring. The degree of corrosion after completion of the test was examined, and the form of corrosion at that time was visually observed. The results are shown in Table 6. In addition, it examined similarly about the system which used glutaraldehyde and benzotriazole together, The result was written together in Table 6.

Figure 0004113862
Figure 0004113862

表6より、銅腐食が発生した水系から採取したスライムを高腐食性水に添加して得られた環境であっても、本発明に係る銅防食剤を添加することにより銅の腐食を効果的に防止できることが判る。   From Table 6, even in an environment obtained by adding slime collected from an aqueous system in which copper corrosion has occurred to highly corrosive water, it is possible to effectively prevent copper corrosion by adding the copper anticorrosive according to the present invention. It can be seen that it can be prevented.

ここで、メチレンビスチオシアネート或いはグルタルアルデヒドとベンゾトリアゾールとを併用した系に関しては、2種併用した効果は殆どなく、特に熱交換器や配管などで完全な防止が必要とされる孔食の発生が防止できないことが確認された。   Here, with respect to a system in which methylene bis-thiocyanate or glutaraldehyde and benzotriazole are used in combination, there is almost no effect of using two types in combination, and pitting corrosion that needs to be completely prevented particularly in a heat exchanger or piping is generated. It was confirmed that it cannot be prevented.

このように本発明の防食方法では単独で、しかも、極めて低濃度の薬剤を添加するだけでスライム存在下の高腐食性水という極めて過酷な条件であるにもかかわらず高い効果が得られる。   Thus, in the anticorrosion method of the present invention alone, a high effect can be obtained only by adding a very low concentration of chemicals, despite the extremely severe conditions of highly corrosive water in the presence of slime.

本発明の銅防食剤は、前記一般式(1)で表される化合物を有効成分とするもので、かかる銅防食剤を水系中に添加することにより、他の薬剤の併用を必要とせず、さらに、極めて低い濃度の使用でも、微生物腐食と思われる銅腐食を効果的に防止し、さらに微生物の関与しない一般の銅腐食をも著しく抑制することができる。また、微生物防除剤と銅防食剤を併用するに際しては、薬注ポンプ、薬液タンク、薬液調整などを別々に必要とし、そのため設備投資が過大となり、それらのメンテナンスも煩雑であったが、本発明の方法によれば薬注は1系列で済み、その結果メンテナンスも容易である。   The copper anticorrosive agent of the present invention comprises the compound represented by the general formula (1) as an active ingredient, and by adding such a copper anticorrosive agent to the aqueous system, it is not necessary to use other agents in combination, Furthermore, even at extremely low concentrations, it is possible to effectively prevent copper corrosion that appears to be microbial corrosion, and to significantly suppress general copper corrosion that does not involve microorganisms. In addition, when a microbial control agent and a copper anticorrosive agent are used in combination, a chemical injection pump, a chemical solution tank, a chemical solution adjustment and the like are separately required, and therefore, capital investment is excessive and maintenance thereof is complicated. According to this method, only one line of chemical injection is required, and as a result, maintenance is easy.

Claims (4)

下記一般式(1)で表される化合物を有効成分として含有することを特徴とする銅防食剤。
Figure 0004113862
(但し、上記一般式において、R1およびR4は、炭素数1〜4の直鎖若しくは分岐の同一または異なるアルキレン基であり、R2およびR5は、水素原子、同一または異なるハロゲン原子、低級アルキル基または低級アルコキシ基であり、R3は、炭素数2〜12の直鎖若しくは分岐のアルキレン基であり、R6は、炭素数1〜18の直鎖若しくは分岐のアルキル基であり、Zは、塩素原子、臭素原子、ヨウ素原子若しくはOSO27基(R7は、低級アルキル基若しくは置換或いは無置換のフェニル基である)である。)
A copper anticorrosive comprising a compound represented by the following general formula (1) as an active ingredient.
Figure 0004113862
(In the above general formula, R 1 and R 4 are linear or branched identical or different alkylene groups having 1 to 4 carbon atoms, and R 2 and R 5 are hydrogen atoms, identical or different halogen atoms, A lower alkyl group or a lower alkoxy group, R 3 is a linear or branched alkylene group having 2 to 12 carbon atoms, R 6 is a linear or branched alkyl group having 1 to 18 carbon atoms, Z is a chlorine atom, a bromine atom, an iodine atom or an OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted or unsubstituted phenyl group).
前記一般式(1)において、R1およびR4は、ピリジン環の3または4位置に結合しているメチレン基であり、R2およびR5は、水素原子であり、R3は、テトラメチレン基であり、R6は、オクチル基、デシル基およびドデシル基から選ばれる基であり、Zは、塩素原子、臭素原子、ヨウ素原子若しくはOSO27基(R7は、低級アルキル基若しくは置換或いは無置換のフェニル基である)である請求項1に記載の銅防食剤。 In the general formula (1), R 1 and R 4 are methylene groups bonded to the 3 or 4 position of the pyridine ring, R 2 and R 5 are hydrogen atoms, and R 3 is tetramethylene. R 6 is a group selected from an octyl group, a decyl group and a dodecyl group, Z is a chlorine atom, a bromine atom, an iodine atom or an OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted group) The copper anticorrosive agent according to claim 1, which is an unsubstituted phenyl group. 前記一般式(1)で表される化合物は、下記式(1)〜(4)で表される少なくとも1種の化合物である請求項1に記載の銅防食剤。
Figure 0004113862
Figure 0004113862
Figure 0004113862
Figure 0004113862
The copper anticorrosive agent according to claim 1, wherein the compound represented by the general formula (1) is at least one compound represented by the following formulas (1) to (4).
Figure 0004113862
Figure 0004113862
Figure 0004113862
Figure 0004113862
前記一般式(1)で表される化合物の有効量を銅材質と接触する水系に添加することを特徴とする銅防食方法。   An effective amount of the compound represented by the general formula (1) is added to an aqueous system in contact with a copper material.
JP2004203409A 2004-07-09 2004-07-09 Copper anticorrosive and copper anticorrosion method Active JP4113862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203409A JP4113862B2 (en) 2004-07-09 2004-07-09 Copper anticorrosive and copper anticorrosion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203409A JP4113862B2 (en) 2004-07-09 2004-07-09 Copper anticorrosive and copper anticorrosion method

Publications (2)

Publication Number Publication Date
JP2006022391A JP2006022391A (en) 2006-01-26
JP4113862B2 true JP4113862B2 (en) 2008-07-09

Family

ID=35795878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203409A Active JP4113862B2 (en) 2004-07-09 2004-07-09 Copper anticorrosive and copper anticorrosion method

Country Status (1)

Country Link
JP (1) JP4113862B2 (en)

Also Published As

Publication number Publication date
JP2006022391A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
EP0129506B1 (en) Heterocyclically substituted thio(cyclo)alkane polycarboxylic acids
US4450174A (en) Decyl quaternary ammonium compounds
US4188359A (en) Thioether containing quartenary ammonium derivatives of 1,4-thiazines
EP1258472A2 (en) Quaternary ammonium salts having a tertiary alkyl group
PL76033B1 (en) N-trityl-imidazoles as plant fungicides[us3665076a]
JP4113862B2 (en) Copper anticorrosive and copper anticorrosion method
US5380466A (en) Reaction product of nitrogen bases and phosphate esters as corrosion inhibitors
US4217329A (en) Sulfone containing quaternary ammonium derivatives of 1,4-thiazines
US6399827B1 (en) Quaternary ammonium phosphate compound and method of preparing same
US4323459A (en) Process of inhibiting scale formation in aqueous systems using quaternary ammonium salts of α-1,4-thiazine alkanephosphonic acids
US4048167A (en) N,N-disubstituted derivatives of 3-carboxamide or 3-thiocarboxamide-7-(3-chloro-2-propenyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane and preparation II
JP2006022031A (en) Algae-controlling agent and algae-controlling method
CA2819655C (en) Protected antimicrobial compounds for high temperature applications
US4200633A (en) Thioether containing quaternary ammonium derivatives of 1,4-thiazines as microbiocides
US4336156A (en) Quaternary ammonium salts of α-1,4-thiazine alkanephosphonic acids
JP4960107B2 (en) Microbial control agent and microorganism control method
US4200634A (en) Sulfone containing quaternary ammonium derivatives of 1,4-thiazines as microbiocides
JPH0790639A (en) One pack type water treating agent and water treating method
US3775057A (en) Use as corrosion inhibitors, nitrogen-heterocyclic phosphonates
US4146711A (en) Sulfone containing quaternary ammonium derivatives of 1,4-thiazines
US10858742B2 (en) Nitrogen substituted aromatic triazoles as corrosion control agents
US4146709A (en) Thioether containing quaternary ammonium derivatives of 1,4-thiazines
US4101654A (en) Microbiocidal process employing full quaternary nitrogen-heterocyclic phosphonates
JPS62167396A (en) Alkylbenzoylacrylic acid type corrosion inhibitor
JP2006022069A (en) Exterminating/sterilizing agent of protozoa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

R150 Certificate of patent or registration of utility model

Ref document number: 4113862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250