JP4112786B2 - Granule manufacturing system - Google Patents

Granule manufacturing system Download PDF

Info

Publication number
JP4112786B2
JP4112786B2 JP2000265385A JP2000265385A JP4112786B2 JP 4112786 B2 JP4112786 B2 JP 4112786B2 JP 2000265385 A JP2000265385 A JP 2000265385A JP 2000265385 A JP2000265385 A JP 2000265385A JP 4112786 B2 JP4112786 B2 JP 4112786B2
Authority
JP
Japan
Prior art keywords
moisture
amount
moisture content
raw material
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000265385A
Other languages
Japanese (ja)
Other versions
JP2002066299A (en
Inventor
健太郎 野沢
康夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000265385A priority Critical patent/JP4112786B2/en
Publication of JP2002066299A publication Critical patent/JP2002066299A/en
Application granted granted Critical
Publication of JP4112786B2 publication Critical patent/JP4112786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄された種々のプラスチック材(廃棄合成樹脂類)を湿式選別工程により選別し、その後脱水処理して竪型冶金炉等用の燃料に加工する造粒物の製造方法及び製造システムに関するものである。
【0002】
【従来の技術】
近年、資源の有効利用の観点より、上述した廃棄合成樹脂類をリサイクル使用することが検討され、その一例として、廃棄合成樹脂類を一定範囲内の大きさに造粒し、その造粒物を高炉等の竪型冶金炉などの補助燃料として用いることが提案されている。
【0003】
ところで、廃棄合成樹脂類は種々の合成樹脂が一緒に廃棄されているため、炉に悪影響を与える含塩素合成樹脂(塩化ビニルや塩化ビニリデン等)が含まれている虞がある。
【0004】
したがって、上述したように廃棄合成樹脂類を竪型冶金炉用の燃料として利用する場合には、含塩素合成樹脂を分離除去する必要があり、その際には各合成樹脂の比重を利用した湿式選別が一般に行われている。また、含塩素合成樹脂を分離除去した後の廃棄合成樹脂類は、一般に溶融造粒機により一定範囲内の大きさに造粒されている。なお、溶融造粒機としては、射出成形機の先にカッタを配し、射出成形機により得られた棒状樹脂をカッタにて所定寸法に切断する構成となっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した溶融造粒機により造粒する場合には、以下の2つの課題があった。
【0006】
即ち、第1の課題は、廃棄合成樹脂類を湿式選別した場合、樹脂の形状や形態により選別後の樹脂粒子の含水率が大きく影響を受け、その含水率の変動に伴って、造粒物の形状が変動し、竪型冶金炉などへ吹き込み供給する際の安定性が悪化することである。
【0007】
第2の課題は、樹脂粒子の含水率が大きく変動すると、溶融造粒機の安定稼働率(熱バランスがとれた安定状態での運転継続時間比率)が低下することである。
【0008】
本発明は、このような従来技術の課題を解決すべくなされたものであり、湿式選別された造粒原料に含まれる水分量の均一化を図り、これにより造粒物の形状変動を安定化させ、しかも溶融造粒機の安定稼働率の低下を抑制することができる造粒物の製造方法及び製造システムを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る造粒物の製造システムは、湿式選別装置により含塩素合成樹脂を分離除去して回収された廃棄合成樹脂類からなる造粒原料を溶融造粒機へ搬送して造粒物を製造するシステムにおいて、前記湿式選別装置と前記溶融造粒機との間の搬送経路に、造粒原料の水分量を検出する水分量検出手段および造粒原料の水分量を制御する水分量制御手段を設け、更に水分量検出手段で得られた検出水分量に基づいて水分量制御手段を駆動制御する演算制御手段を具備することを前提とする。
【0012】
この造粒物の製造システムによる場合には、水分量検出手段が湿式選別装置から供給される造粒原料の水分量を検出し、その水分量検出値に基づいて演算制御装置が運転負荷を求めてその運転負荷で水分量制御手段を駆動制御するので、溶融造粒機に供給される造粒原料の水分量が均一化される。これにより、造粒物の形状変動が安定化され得ると共に溶融造粒機の安定稼働率の低下が抑制される。
【0013】
請求項1に係る造粒物の製造システムは、前記湿式選別装置と前記水分量制御手段との間の搬送経路に前記水分量検出手段が配設されていることを特徴とする。
【0014】
この構成にあっては、水分量検出手段は水分量制御手段入側での造粒原料の水分量を検出し、その検出値に基づき水分量制御手段が造粒原料の水分量を制御する。つまり、フィードフォワード制御が実行される。
【0015】
請求項2に係る造粒物の製造システムは、前記水分量制御手段と前記溶融造粒機との間の搬送経路に前記水分量検出手段が配設されていることを特徴とする。
【0016】
この構成にあっては、水分量検出手段は水分量制御手段出側での造粒原料の水分量を検出し、その検出値に基づき水分量制御手段が造粒原料の水分量を制御する。つまり、フィードバック制御が実行される。
【0017】
請求項3に係る造粒物の製造システムは、前記湿式選別装置と前記水分量制御手段との間に第1水分量検出手段が、上記水分量制御手段と前記溶融造粒機との間に第2水分量検出手段がそれぞれ配設されており、かつ、前記演算制御装置は、水分量制御手段における駆動制御量と水分制御量の関係を示す検量線を有し、第1水分量検出手段で得られた水分量検出値と予め設定された目標水分量との差に基づき水分制御量を求め、その水分制御量と上記検量線に基づき水分量制御手段の駆動制御量を求めて水分量制御手段を駆動制御し、その後、上記第2水分量検出手段による水分量検出値に基づき実績水分制御量を求め、それと求めた駆動制御量との関係に基づき前記検量線を補正することを特徴とする。
【0018】
この構成にあっては、第1水分量検出手段の水分量検出値から所定の演算を行って求めた駆動制御量で水分量制御手段を駆動制御し、その駆動結果を第2水分量検出手段による水分量検出値から把握して実績水分制御量を求め、それと前記駆動制御量との関係に基づき検量線が補正される。よって、水分量制御手段の処理能力が経時的に変化しても、造粒原料の水分量が所望の一定値に一致するようになる。
【0019】
請求項4に係る造粒物の製造システムは、請求項1乃至3のいずれかに記載の製造システムにおいて、前記水分量制御手段と前記溶融造粒機との間の搬送経路に、水分量制御手段を経た造粒原料を貯留する貯留ホッパーと、貯留ホッパーに設けられた水分計と、貯留ホッパーから排出された造粒原料を加熱する加熱手段を有しその加熱手段により造粒原料を加熱しつつ溶融造粒機へ供給する供給手段とが設けられ、かつ、上記水分計からの検出値に基づき加熱手段の熱制御量を求めてその熱制御量で加熱手段を制御する第2演算制御装置を備えることを特徴とする。
【0020】
この構成にあっては、水分量制御手段での水分量制御に加えて、供給手段での加熱手段による水分量制御が行われるので、高精度の水分量制御が可能になり、造粒物の形状変動が更に安定化されるとともに溶融造粒機の安定稼働率の低下が更に抑制される。
【0021】
【発明の実施の形態】
以下に、本発明の実施形態を具体的に説明する。
(第1実施形態)
図1は、第1実施形態に係る造粒物の製造システムを示すブロック図である。
【0022】
この製造システムは、含塩素廃棄合成樹脂を分離する前の廃棄合成樹脂類が供給される湿式選別装置1と、湿式選別装置1により含塩素合成樹脂を分離して回収された廃棄合成樹脂類(以下、造粒原料と言う。)が供給され、その造粒原料の水分量を制御する脱水装置2と、脱水された造粒原料が供給される溶融造粒機3とを備える。上記脱水装置2は、例えば回転槽により水を遠心分離して脱水するものが使用されていると共に上記回転槽を回転駆動させるモータ6を有する。つまり、脱水装置2は造粒原料の水分量をバッチ的に制御する。
【0023】
脱水装置2と溶融造粒機3の間の搬送経路には中性子水分計4が設けられ、この中性子水分計4は、高速中性子が造粒原料中の水素原子と衝突して発生する熱中性子の数を電気信号として検出する。この検出信号は演算制御装置7に与えられる。
【0024】
演算制御装置7は、図2に示すように中性子水分計4の電気信号(熱中性子数)を含水量に換算する検量線K1および後述する演算処理により求まった制御脱水率に基づきモータ回転制御量を求める検量線K3(図3参照)の各々に関する関係式を記憶すると共に、上記演算処理を行わせるデータ(後述する目標含水率等)およびプログラムを記憶するROMを備える。また、演算制御装置7は、それ以外に、RAM等の記憶手段や演算を実行するCPUなどを備える。
【0025】
溶融造粒機3は、加熱手段を備えた射出成形機により押し出された棒状樹脂を、射出成形機の先に配設したカッタにより所定寸法に切断して一定寸法の造粒物に造粒するものである。
【0026】
次に、このように構成された本実施形態に係る造粒物の製造システムによる処理内容につき説明する。
【0027】
湿式選別装置1により回収された造粒原料は脱水装置2により脱水され、その脱水された造粒原料に含まれる含水率は、中性子水分計4により電気信号として検出され、演算制御装置7に与えられる。
【0028】
演算制御装置7は、図2に示すようにその電気信号(熱中性子数)と検量線K1に関する関係式とに基づき含水率を求め、求めた含水率値から所定の目標含水率(目標Moi)を減算して制御脱水率(ΔMoi)を求める。この制御脱水率(ΔMoi)は、脱水処理後の造粒原料における含水率が目標含水率(目標Moi)に一致するようにするための制御値である。続いて、図3に示すように制御脱水率(ΔMoi)と検量線K3に関する関係式とに基づき、モータ回転制御量を推定し、モータ6の回転制御を行う。
【0029】
したがって、この第1実施形態による場合には、フィードバック制御が行われて溶融造粒機3に供給される造粒原料の水分量(含水率)を目標水分値(目標含水率)の±20%以内に、好ましくは目標水分値に一致させるようにすることが可能になり、これにより溶融造粒機3にて得られた造粒物の形状変動を安定化させ得、しかも溶融造粒機3の安定稼働率の低下を抑制することができる。
(第2実施形態)
図4は、第2実施形態に係る造粒物の製造システムを示すブロック図である。
【0030】
この造粒物の製造システムは、第1実施形態とは異なり、湿式選別装置1と脱水装置2の間の搬送経路に中性子水分計5が設けられ、演算制御装置7には図5に示す熱中性子数を含水率に換算する検量線K2に関する関係式が記憶されている。その他については第1実施形態と同様な構成となっている。
【0031】
この構成の造粒物の製造システムによる場合には、中性子水分計5は湿式選別装置1により回収された造粒原料に含まれる含水率を電気信号として検出し、演算制御装置7へ出力する。演算制御装置7は、その電気信号と検量線K2に関する関係式とに基づき含水率を求め、求めた含水率値から所定の目標含水率(目標Moi)を減算して制御脱水率(ΔMoi)を求める。この制御脱水率(ΔMoi)は、脱水処理後の造粒原料における含水率が目標含水率(目標Moi)に一致するようにするための制御値である。続いて、図3に示すように制御脱水率(ΔMoi)と検量線K3に関する関係式とに基づき、モータ回転制御量を推定し、モータ6の回転制御を行う。
【0032】
したがって、第2実施形態による場合には、フィードフォワード制御が行われて溶融造粒機3に供給される造粒原料の水分量(含水率)を目標水分値(目標含水率)の±20%以内に、好ましくは目標水分値に一致させることが可能になり、これにより溶融造粒機3にて得られた造粒物の形状変動を安定化させ得、しかも溶融造粒機3の安定稼働率の低下を抑制することができる。
【0033】
なお、この第2実施形態ではフィードフォワード制御のみを行うようにしているが、本発明はこれに限らず、図6に示すように中性子水分計5によるフィードフォワード(F.F)制御と、脱水装置2と溶融造粒機3との間に配した中性子水分計4によるフィードバック(F.B)制御とを組み合わせるようにしてもよい。
(第3実施形態)
図6を用いて、第3実施形態に係る造粒物の製造システムを説明する。
【0034】
本実施形態は、演算制御装置7に記憶された検量線K3に関する関係式を補正する場合である。
【0035】
この造粒物の製造システムは、湿式選別装置1と脱水装置2の間に中性子水分計5が配設され、脱水装置2と溶融造粒機3の間に中性子水分計4がそれぞれ配設されている。中性子水分計4と5の検出値(電気信号)は、演算制御装置7に与えられる。
【0036】
演算制御装置7は、図2に示す中性子水分計5の検出値に基づき造粒原料の含水率を測定する検量線K1と、図5に示す中性子水分計4の検出値に基づき造粒原料の含水率を測定する検量線K2と、図3に示す制御脱水率(ΔMoi)をモータ回転制御量に換算する検量線K3との各々に関する関係式を記憶している。
【0037】
次に、演算制御装置7の演算制御内容を説明する。
【0038】
まず、脱水前の造粒原料の含水率を測定する中性子水分計5の検出値と検量線K2に関する関係式とにより、図5に示すように脱水前の造粒原料の含水率(A)を測定し、続いて、その測定含水率(A)から所定の目標含水率(目標Moi)を減算して制御脱水率(ΔMoi)を算出する第1工程を行う。
【0039】
次に、制御脱水率(ΔMoi)と図3に示す検量線K3とに基づきモータ回転制御量を推定し、その推定制御量で、或いは後述する第4工程での加減制御量があれば前記推定制御量からその加減制御量を加減した制御量で、モータを回転制御する第2工程を行う。なお、モータを実際に駆動制御した回転制御量は演算制御装置7に記憶しておく。
【0040】
次に、脱水後の造粒原料の含水率を測定する中性子水分計4の検出値と検量線K1に関する関係式とにより、図2に示すように脱水後の造粒原料の含水率(B)を測定し、続いて、先に測定した脱水前の造粒原料の含水率(A)から測定含水率(B)を減算して実績含水率差(C)を算出する第3工程を行う。上記実績含水率差(C)は制御脱水率(ΔMoi)に対するずれ量と等価である。この算出値は、前記モータを実際に駆動制御した回転制御量と関係付けて演算制御装置7に記憶しておく。
【0041】
次に、目標含水率(目標Moi)に対する脱水後の造粒原料の含水率(B)の比が、0.8以下または1.2以上の場合は、図3に示す検量線K3に関する関係式を使用して、含水率(B)−目標含水率(目標Moi)の誤差を求め、その誤差が一定範囲外であればその誤差に相当する脱水率差に対するモータ回転制御量を前記加減制御量として求める第4工程を行う。
【0042】
以上の第1工程〜第4工程を繰り返し行う。したがって、上記第4工程で求められる加減制御量は、第3工程において算出した前記ずれ量としての実績含水率差(C)を補正量として次回において第2工程で推定されるモータ回転制御量を増減して修正する働きを有する。
【0043】
然る後、前記誤差が一定範囲外になる回数が所定数に達すると、図7に示すように、演算制御装置7に記憶されている直前の複数回分における実際のモータ回転制御量と実績含水率差(C)の関係(■で示す)に基づき、破線にて示す補正前の検量線K3を、実線で示す補正後の検量線K3′に補正する第5工程を行う。この補正は、例えば定期的に行うようにすることができる。
【0044】
したがって、この第3実施形態による場合には、例えば脱水装置2の脱水能率が経時的に変化した場合などにおいても、造粒原料の水分値(含水率)を目標水分値(目標含水率)の±20%以内に、好ましくは目標水分値に一致させるようにすることができる。
(第4実施形態)
第4実施形態は、溶融造粒機3に供給する造粒原料の水分量を、更に高精度で調整する場合である。
【0045】
図8は、第4実施形態に係る造粒物の製造システムを示す概略図である。この造粒物の製造システムは、湿式選別装置1にて選別された造粒原料を脱水する脱水装置2の後段に、脱水された造粒原料を貯留する貯留ホッパー10と、貯留ホッパー10に設けられた中性子水分計11と、貯留ホッパー10から排出された造粒原料を加熱するヒーター12を有し、そのヒーター12により造粒原料を加熱しつつ溶融造粒機3へ単位時間当たり一定量で供給する定量供給装置13とを備える。なお、脱水装置2は、第1実施形態または第2実施形態で説明したフィードバック制御またはフィードフォワード制御が行われている。
【0046】
溶融造粒機3は、これに供給される造粒原料の供給指令を行う供給指令部3aを備え、この供給指令部3aは定量供給装置13へ造粒原料の供給を指令すると共にその指令信号を演算制御装置14に出力する。また、この演算制御装置14には、貯留ホッパー10内の造粒原料の水分量を検出する中性子水分計11からの検出信号が与えられる。
【0047】
演算制御装置14のメモリには、下記(1)式が記憶されている。
【0048】
Qheater=Wfeed×ΔM×100×Qwater/ηheater …(1)
但し、Qheaterはヒーター12の出力設定値[kcal/s]、Wfeedは定量供給装置13での造粒原料供給量[kg/s]、ΔMは造粒原料の目標含水率と中性子水分計11の検出値に基づく造粒原料含水率との差[%]、Qwaterは貯留ホッパー10の出口の造粒原料温度から計算される蒸発所要熱[kcal/kg]、ηheaterはヒーター12による造粒原料粒子への着熱利用効率[−]である。
【0049】
この演算制御装置14は、中性子水分計11からの検出信号と、供給指令部3aからの指令信号と、上記(1)式とに基づき、ヒーター12の出力制御を行う。
【0050】
この第4実施形態による場合には、脱水装置2での脱水量の制御に加えて、脱水装置2にて脱水処理された造粒原料を溶融造粒機3へ供給する定量供給装置13においてヒーター12による脱水制御が行われるので、高精度の脱水量の制御が可能となり、これにより溶融造粒機3にて得られた造粒物の形状変動を更に安定化させ得、しかも溶融造粒機3の安定稼働率の低下を更に抑制することができる。
【0051】
図9は、本実施形態により得られた造粒原料を使用して溶融造粒機3により造粒された造粒物の相対粒子径を示す図である。なお、相対粒子径は、前日における1日分の平均粒子径に対する翌日における所定時間毎の平均粒子径の比であり、また、実線は第4実施形態による場合で、破線は脱水装置2でも定量供給装置13でも全く水分制御を実施しなかった従来例の場合である。
【0052】
この図9より理解されるように、従来例の場合には、相対粒子径が1.0を基準に±0.3のばらつきがあり、つまり溶融造粒機にて得られた造粒物の形状変動が大きく、しかも溶融造粒機における安定稼働率が大きく低下するものとなっていた。これに対して、第4実施形態による場合は、相対粒子径が1.0を基準に±0.1以下の範囲内とばらつきが小さく、つまり溶融造粒機3にて得られた造粒物の形状変動を極めて少なくすることができ、しかも溶融造粒機3における安定稼働率の低下を更に抑制することが可能になる。
【0053】
なお、上述した第1〜第4実施形態では造粒原料の水分制御に脱水装置を使用しているが、本発明はこれに限らず、加熱装置等を使用することも可能である。この場合には、脱水装置に備わるモータの回転制御ではなく、加熱装置による発熱量制御が本発明の対象となることは勿論である。
【0054】
また、上述した第1〜第4実施形態では造粒原料の水分量の検出に中性子水分計を使用しているが、これに限らず他の形式の水分計を使用することもできる。
【0055】
また、上述した説明では明言していないが、本発明が適用され得る造粒原料としては、熱硬化性樹脂を除く一般廃棄物系および産業廃棄物系の樹脂廃材を対象にすることができる。
【0056】
【発明の効果】
以上詳述したように、本発明による場合には、湿式選別工程と溶融造粒工程との間に水分量制御工程を有し、その水分量制御工程で、湿式選別工程により回収した造粒原料の水分量を一定範囲内に制御するので、溶融造粒工程に供給される造粒原料の水分量を均一化でき、これにより造粒物の形状変動を安定化させ得るとともに溶融造粒工程で用いられる溶融造粒機の安定稼働率の低下を抑制することができる。
【図面の簡単な説明】
【図1】第1実施形態に係る造粒物の製造システムを示すブロック図である。
【図2】本発明に係る造粒物の製造システムで使用する検量線を示す図である。
【図3】本発明に係る造粒物の製造システムで使用する他の検量線を示す図である。
【図4】第2実施形態に係る造粒物の製造システムを示すブロック図である。
【図5】本発明に係る造粒物の製造システムで使用する更に他の検量線を示す図である。
【図6】第3実施形態に係る造粒物の製造システムを示すブロック図である。
【図7】本発明に係る造粒物の製造システムで検量線を補正する際の状態を説明するための図である。
【図8】第4実施形態に係る造粒物の製造システムを示すブロック図である。
【図9】第4実施形態により得られた造粒原料を使用して溶融造粒機により造粒された造粒物の相対粒子径を示す図である。
【符号の説明】
1 湿式選別装置
2 脱水装置(水分量制御手段)
3 溶融造粒機
4、5、11 中性子水分計
6 モータ
7、14 演算制御装置
12 ヒーター
13 定量供給装置
K1、K2、K3 検量線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a system for producing a granulated product in which various plastic materials (waste synthetic resins) are sorted by a wet sorting process and then dehydrated and processed into fuel for a vertical metallurgical furnace or the like. It is about.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of resources, recycling of the above-mentioned waste synthetic resins has been studied. As an example, the waste synthetic resins are granulated to a size within a certain range, and the granulated product is It has been proposed to be used as an auxiliary fuel for vertical metallurgical furnaces such as blast furnaces.
[0003]
By the way, since various synthetic resins are discarded together with the waste synthetic resins, there is a possibility that a chlorine-containing synthetic resin (vinyl chloride, vinylidene chloride, etc.) that adversely affects the furnace is contained.
[0004]
Therefore, as described above, when waste synthetic resins are used as fuel for vertical metallurgical furnaces, it is necessary to separate and remove chlorine-containing synthetic resins, and in that case, wet using the specific gravity of each synthetic resin Sorting is generally performed. Further, the waste synthetic resins after separating and removing the chlorine-containing synthetic resin are generally granulated to a size within a certain range by a melt granulator. The melt granulator has a configuration in which a cutter is disposed at the tip of an injection molding machine, and a rod-shaped resin obtained by the injection molding machine is cut into a predetermined dimension by the cutter.
[0005]
[Problems to be solved by the invention]
However, when granulating by the above-described melt granulator, there are the following two problems.
[0006]
That is, the first problem is that when waste synthetic resins are wet-sorted, the moisture content of the resin particles after sorting is greatly affected by the shape and form of the resin. The shape of the steel fluctuates, and the stability when blown into a vertical metallurgical furnace or the like is deteriorated.
[0007]
The second problem is that when the moisture content of the resin particles fluctuates greatly, the stable operation rate of the melt granulator (the operation continuation time ratio in a stable state in which heat balance is achieved) decreases.
[0008]
The present invention has been made to solve such problems of the prior art, and aims to equalize the amount of water contained in the wet-selected granulated raw material, thereby stabilizing the shape variation of the granulated product. Furthermore, an object of the present invention is to provide a granulated product production method and a production system capable of suppressing a decrease in the stable operation rate of the melt granulator.
[0011]
[Means for Solving the Problems]
The granulated product production system according to the present invention transports a granulated raw material composed of waste synthetic resins recovered by separating and removing chlorine-containing synthetic resin by a wet sorting device to a melt granulator to produce the granulated product. In a manufacturing system, a moisture amount detecting means for detecting the moisture content of the granulated raw material and a moisture content control means for controlling the moisture content of the granulated raw material in a transport path between the wet sorting device and the melt granulator And a calculation control means for driving and controlling the moisture content control means based on the detected moisture content obtained by the moisture content detection means.
[0012]
In the case of this granulated product manufacturing system, the moisture content detection means detects the moisture content of the granulated raw material supplied from the wet sorting device, and the arithmetic and control unit obtains the operating load based on the detected moisture content. Since the moisture amount control means is driven and controlled by the operation load, the moisture amount of the granulation raw material supplied to the melt granulator is made uniform. Thereby, the shape fluctuation | variation of a granulated material can be stabilized and the fall of the stable operation rate of a melt granulator is suppressed.
[0013]
The granulated product production system according to claim 1 is characterized in that the moisture amount detection means is arranged in a transport path between the wet sorting device and the moisture amount control means.
[0014]
In this configuration, the moisture amount detection means detects the moisture content of the granulation raw material on the inlet side of the moisture content control means, and the moisture content control means controls the moisture content of the granulation raw material based on the detected value. That is, feedforward control is executed.
[0015]
The granulated product production system according to claim 2 is characterized in that the moisture amount detecting means is arranged in a transport path between the moisture amount control means and the melt granulator.
[0016]
In this configuration, the moisture content detection means detects the moisture content of the granulated raw material on the outlet side of the moisture content control means, and the moisture content control means controls the moisture content of the granulated raw material based on the detected value. That is, feedback control is executed.
[0017]
The granulated product production system according to claim 3 is characterized in that the first moisture content detection means is between the moisture content control means and the melt granulator between the wet sorting device and the moisture content control means. Second moisture amount detection means is provided, and the arithmetic and control unit has a calibration curve indicating the relationship between the drive control amount and the moisture control amount in the moisture amount control means, and the first moisture amount detection means A moisture control amount is obtained based on the difference between the moisture content detection value obtained in step 1 and a preset target moisture amount, and a moisture control amount is obtained based on the moisture control amount and the calibration curve. The control means is drive-controlled, and then the actual moisture control amount is obtained based on the moisture amount detected by the second moisture amount detection means, and the calibration curve is corrected based on the relationship between the actual drive control amount and the obtained drive control amount. And
[0018]
In this configuration, the moisture amount control unit is driven and controlled by the drive control amount obtained by performing a predetermined calculation from the moisture amount detection value of the first moisture amount detection unit, and the drive result is the second moisture amount detection unit. The actual moisture control amount is obtained by grasping from the moisture amount detection value obtained by, and the calibration curve is corrected based on the relationship between it and the drive control amount. Therefore, even if the processing capacity of the water content control means changes with time, the water content of the granulated raw material becomes equal to a desired constant value.
[0019]
The granulated product production system according to claim 4 is the production system according to any one of claims 1 to 3, wherein the moisture content is controlled in a transport path between the moisture content control means and the melt granulator. A storage hopper for storing the granulated raw material passed through the means, a moisture meter provided in the storage hopper, and a heating means for heating the granulated raw material discharged from the storage hopper, and heating the granulated raw material by the heating means And a supply means for supplying to the melt granulator, and a second arithmetic control device for obtaining a heat control amount of the heating means based on a detection value from the moisture meter and controlling the heating means with the heat control amount It is characterized by providing.
[0020]
In this configuration, in addition to the moisture amount control by the moisture amount control means, the moisture amount control by the heating means by the supply means is performed, so that highly accurate moisture amount control is possible, and The shape fluctuation is further stabilized and the decrease in the stable operation rate of the melt granulator is further suppressed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below.
(First embodiment)
FIG. 1 is a block diagram showing a granulated product manufacturing system according to the first embodiment.
[0022]
This manufacturing system includes a wet sorting apparatus 1 to which waste synthetic resins before separation of chlorine-containing waste synthetic resins are supplied, and waste synthetic resins collected by separating the chlorine-containing synthetic resins by the wet sorting apparatus 1 ( Hereinafter, it is referred to as a granulated raw material), and includes a dehydrator 2 that controls the moisture content of the granulated raw material, and a melt granulator 3 that is supplied with the dehydrated granulated raw material. The dehydrator 2 is, for example, a device that centrifuges water in a rotating tank and dehydrates it, and has a motor 6 that rotationally drives the rotating tank. That is, the dehydrator 2 controls the moisture content of the granulation raw material in a batch manner.
[0023]
A neutron moisture meter 4 is provided in the transport path between the dehydrator 2 and the melt granulator 3, and this neutron moisture meter 4 is used for the thermal neutron generated by collision of fast neutrons with hydrogen atoms in the granulation raw material. The number is detected as an electrical signal. This detection signal is given to the arithmetic and control unit 7.
[0024]
As shown in FIG. 2, the arithmetic control unit 7 is configured to adjust the motor rotation control amount based on a calibration curve K1 for converting the electrical signal (the number of thermal neutrons) of the neutron moisture meter 4 into a water content and a control dehydration rate obtained by arithmetic processing described later. And a ROM for storing data (such as a target moisture content described later) and a program for performing the above-described arithmetic processing. In addition, the arithmetic control device 7 includes storage means such as a RAM, a CPU that executes arithmetic operations, and the like.
[0025]
The melt granulator 3 cuts a rod-shaped resin extruded by an injection molding machine equipped with a heating means into a predetermined size by a cutter disposed at the tip of the injection molding machine, and granulates a granulated product of a certain size. Is.
[0026]
Next, the processing content by the granulated product manufacturing system according to the present embodiment configured as described above will be described.
[0027]
The granulated raw material recovered by the wet sorting device 1 is dehydrated by the dehydrating device 2, and the moisture content contained in the dehydrated granulated raw material is detected as an electrical signal by the neutron moisture meter 4 and given to the arithmetic control device 7. It is done.
[0028]
As shown in FIG. 2, the arithmetic and control unit 7 obtains the moisture content based on the electrical signal (the number of thermal neutrons) and the relational expression relating to the calibration curve K1, and a predetermined target moisture content (target Moi) from the obtained moisture content value. Is subtracted to obtain the controlled dehydration rate (ΔMoi). This controlled dehydration rate (ΔMoi) is a control value for making the moisture content in the granulated raw material after the dehydration process coincide with the target moisture content (target Moi). Subsequently, as shown in FIG. 3, the motor rotation control amount is estimated based on the control dehydration rate (ΔMoi) and the relational expression relating to the calibration curve K3, and the rotation control of the motor 6 is performed.
[0029]
Therefore, according to the first embodiment, the feedback control is performed and the moisture content (moisture content) of the granulation raw material supplied to the melt granulator 3 is set to ± 20% of the target moisture value (target moisture content). Within the range, it is possible to preferably match the target moisture value, thereby stabilizing the shape fluctuation of the granulated product obtained by the melt granulator 3, and the melt granulator 3 The reduction of the stable operation rate can be suppressed.
(Second Embodiment)
FIG. 4 is a block diagram showing a granulated product manufacturing system according to the second embodiment.
[0030]
Unlike the first embodiment, this granulated product manufacturing system is provided with a neutron moisture meter 5 in the transport path between the wet sorting device 1 and the dehydrating device 2, and the arithmetic control device 7 has the heat shown in FIG. A relational expression relating to a calibration curve K2 for converting the number of neutrons into a moisture content is stored. About others, it has the same structure as 1st Embodiment.
[0031]
In the case of the granulated product manufacturing system having this configuration, the neutron moisture meter 5 detects the moisture content contained in the granulated raw material recovered by the wet sorting device 1 as an electrical signal and outputs it to the arithmetic and control unit 7. The arithmetic and control unit 7 obtains the moisture content based on the electrical signal and the relational expression relating to the calibration curve K2, and subtracts a predetermined target moisture content (target Moi) from the obtained moisture content value to obtain the control dehydration rate (ΔMoi). Ask. This controlled dehydration rate (ΔMoi) is a control value for making the moisture content in the granulated raw material after the dehydration process coincide with the target moisture content (target Moi). Subsequently, as shown in FIG. 3, the motor rotation control amount is estimated based on the control dehydration rate (ΔMoi) and the relational expression relating to the calibration curve K3, and the rotation control of the motor 6 is performed.
[0032]
Therefore, in the case of the second embodiment, the water content (moisture content) of the granulation raw material supplied to the melt granulator 3 by performing feedforward control is set to ± 20% of the target moisture value (target moisture content). It is possible to match the target moisture value within the range, and thereby it is possible to stabilize the shape variation of the granulated product obtained by the melt granulator 3, and to stabilize the operation of the melt granulator 3. A decrease in rate can be suppressed.
[0033]
In the second embodiment, only feedforward control is performed. However, the present invention is not limited to this, and feedforward (FF) control by the neutron moisture meter 5 and dehydration as shown in FIG. You may make it combine feedback (FB) control by the neutron moisture meter 4 distribute | arranged between the apparatus 2 and the melt granulator 3. FIG.
(Third embodiment)
A granulated product production system according to the third embodiment will be described with reference to FIG.
[0034]
This embodiment is a case where the relational expression related to the calibration curve K3 stored in the arithmetic and control unit 7 is corrected.
[0035]
In this granulated product production system, a neutron moisture meter 5 is disposed between the wet sorting device 1 and the dehydration device 2, and a neutron moisture meter 4 is disposed between the dehydration device 2 and the melt granulator 3. ing. The detection values (electric signals) of the neutron moisture meters 4 and 5 are given to the arithmetic control device 7.
[0036]
The arithmetic and control unit 7 has a calibration curve K1 for measuring the moisture content of the granulated raw material based on the detected value of the neutron moisture meter 5 shown in FIG. 2, and the granulated raw material based on the detected value of the neutron moisture meter 4 shown in FIG. A relational expression for each of the calibration curve K2 for measuring the moisture content and the calibration curve K3 for converting the control dehydration rate (ΔMoi) shown in FIG. 3 into the motor rotation control amount is stored.
[0037]
Next, the contents of calculation control of the calculation control device 7 will be described.
[0038]
First, as shown in FIG. 5, the moisture content (A) of the granulated raw material before dehydration is obtained from the detected value of the neutron moisture meter 5 for measuring the moisture content of the granulated raw material before dehydration and the relational expression regarding the calibration curve K2. Subsequently, a first step of subtracting a predetermined target moisture content (target Moi) from the measured moisture content (A) to calculate a controlled dehydration rate (ΔMoi) is performed.
[0039]
Next, the motor rotation control amount is estimated based on the controlled dehydration rate (ΔMoi) and the calibration curve K3 shown in FIG. 3, and the estimated control amount or the addition / subtraction control amount in the fourth step to be described later is estimated. A second step of controlling the rotation of the motor with a control amount obtained by adding or subtracting the control amount from the control amount is performed. Note that the rotation control amount that actually controls the motor is stored in the arithmetic and control unit 7.
[0040]
Next, based on the detected value of the neutron moisture meter 4 for measuring the moisture content of the granulated raw material after dehydration and the relational expression regarding the calibration curve K1, the water content (B) of the granulated raw material after dehydration as shown in FIG. Subsequently, the third step of subtracting the measured moisture content (B) from the moisture content (A) of the granulated raw material before dehydration previously measured to calculate the actual moisture content difference (C) is performed. The actual water content difference (C) is equivalent to the amount of deviation with respect to the controlled dewatering rate (ΔMoi). This calculated value is stored in the arithmetic and control unit 7 in association with the rotation control amount for actually driving and controlling the motor.
[0041]
Next, when the ratio of the moisture content (B) of the granulated raw material after dehydration to the target moisture content (target Moi) is 0.8 or less or 1.2 or more, the relational expression regarding the calibration curve K3 shown in FIG. Is used to obtain an error of moisture content (B) -target moisture content (target Moi), and if the error is outside a certain range, the motor rotation control amount corresponding to the difference in dehydration rate corresponding to the error is calculated as the control amount. The 4th process calculated | required as is performed.
[0042]
The above first to fourth steps are repeated. Therefore, the adjustment control amount obtained in the fourth step is the motor rotation control amount estimated in the second step next time with the actual water content difference (C) calculated as the deviation amount calculated in the third step as a correction amount. It has the function of correcting by increasing or decreasing.
[0043]
Thereafter, when the number of times that the error falls outside the predetermined range reaches a predetermined number, as shown in FIG. 7, the actual motor rotation control amount and the actual water content for a plurality of immediately preceding times stored in the arithmetic and control unit 7 are obtained. Based on the relationship of the rate difference (C) (indicated by ■), a fifth step is performed to correct the calibration curve K3 before correction indicated by the broken line to the calibration curve K3 ′ after correction indicated by the solid line. This correction can be performed periodically, for example.
[0044]
Therefore, in the case of this third embodiment, for example, even when the dehydration efficiency of the dehydrator 2 changes over time, the moisture value (moisture content) of the granulated raw material is set to the target moisture value (target moisture content). Within ± 20%, it can be preferably matched with the target moisture value.
(Fourth embodiment)
4th Embodiment is a case where the moisture content of the granulation raw material supplied to the melt granulator 3 is adjusted with still higher precision.
[0045]
FIG. 8 is a schematic view showing a granulated product production system according to the fourth embodiment. This granulated product manufacturing system is provided in a storage hopper 10 for storing the dehydrated granulated raw material, and a storage hopper 10 in the subsequent stage of the dehydrating device 2 for dehydrating the granulated raw material selected by the wet sorting apparatus 1. The neutron moisture meter 11 and the heater 12 for heating the granulated raw material discharged from the storage hopper 10 are heated to the melt granulator 3 at a constant amount per unit time while the granulated raw material is heated by the heater 12. And a constant amount supply device 13 for supplying. The dehydrator 2 is subjected to the feedback control or the feedforward control described in the first embodiment or the second embodiment.
[0046]
The melt granulator 3 includes a supply command unit 3a that issues a supply command for the granulated raw material supplied to the melt granulator 3, and this supply command unit 3a instructs the quantitative supply device 13 to supply the granulated raw material, and the command signal thereof. Is output to the arithmetic and control unit 14. The arithmetic control device 14 is given a detection signal from the neutron moisture meter 11 that detects the moisture content of the granulated raw material in the storage hopper 10.
[0047]
The following equation (1) is stored in the memory of the arithmetic and control unit 14.
[0048]
Qheater = Wfeed × ΔM × 100 × Qwater / ηheater (1)
However, Qheater is the output set value [kcal / s] of the heater 12, Wfeed is the granulated raw material supply amount [kg / s] in the quantitative supply device 13, and ΔM is the target moisture content of the granulated raw material and the neutron moisture meter 11 Difference from moisture content of granulated raw material based on detected value [%], Qwater is heat required for evaporation calculated from granulated raw material temperature at outlet of storage hopper 10 [kcal / kg], ηheater is granulated raw material particles by heater 12 The heat utilization efficiency [−].
[0049]
The arithmetic and control unit 14 controls the output of the heater 12 based on the detection signal from the neutron moisture meter 11, the command signal from the supply command unit 3a, and the above equation (1).
[0050]
In the case of the fourth embodiment, in addition to controlling the amount of dehydration in the dehydrator 2, the heater in the quantitative supply device 13 that supplies the granulated raw material dehydrated in the dehydrator 2 to the melt granulator 3. Therefore, the amount of dewatering can be controlled with high accuracy, whereby the shape fluctuation of the granulated product obtained by the melt granulator 3 can be further stabilized, and the melt granulator 3 can be further suppressed.
[0051]
FIG. 9 is a diagram showing the relative particle diameter of the granulated product granulated by the melt granulator 3 using the granulated raw material obtained according to the present embodiment. The relative particle size is the ratio of the average particle size for a predetermined time on the next day to the average particle size for one day on the previous day, the solid line is the case according to the fourth embodiment, and the broken line is also determined by the dehydrator 2. This is the case of the conventional example in which the moisture control is not performed at all in the supply device 13.
[0052]
As can be understood from FIG. 9, in the case of the conventional example, the relative particle size has a variation of ± 0.3 on the basis of 1.0, that is, the granulated product obtained by the melt granulator The shape fluctuation was large, and the stable operation rate in the melt granulator was greatly reduced. On the other hand, in the case of the fourth embodiment, the relative particle diameter is as small as ± 0.1 or less on the basis of 1.0, that is, the granulated product obtained by the melt granulator 3. It is possible to extremely reduce the shape fluctuation of the material, and to further suppress the decrease in the stable operation rate in the melt granulator 3.
[0053]
In addition, in the 1st-4th embodiment mentioned above, although the spin-drying | dehydration apparatus is used for the water | moisture content control of a granulation raw material, this invention is not restricted to this, A heating apparatus etc. can also be used. In this case, it is a matter of course that the amount of heat generated by the heating device is not the rotational control of the motor provided in the dehydrating device, but the subject of the present invention.
[0054]
Moreover, although the neutron moisture meter is used for the detection of the moisture content of a granulation raw material in the 1st-4th embodiment mentioned above, not only this but the moisture meter of another form can also be used.
[0055]
In addition, although not stated in the above description, granulated raw materials to which the present invention can be applied include general waste-based and industrial waste-based resin waste materials excluding thermosetting resins.
[0056]
【The invention's effect】
As described above in detail, in the case of the present invention, there is a moisture content control step between the wet sorting step and the melt granulation step, and the granulated raw material recovered by the wet sorting step in the moisture content control step. Since the moisture content of the granulated material is controlled within a certain range, the moisture content of the granulation raw material supplied to the melt granulation process can be made uniform, thereby stabilizing the shape variation of the granulated product and at the melt granulation process. The fall of the stable operation rate of the melt granulator used can be suppressed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a granulated product production system according to a first embodiment.
FIG. 2 is a diagram showing a calibration curve used in the granulated product production system according to the present invention.
FIG. 3 is a diagram showing another calibration curve used in the granulated product production system according to the present invention.
FIG. 4 is a block diagram showing a granulated product manufacturing system according to a second embodiment.
FIG. 5 is a view showing still another calibration curve used in the granulated product production system according to the present invention.
FIG. 6 is a block diagram showing a granulated product manufacturing system according to a third embodiment.
FIG. 7 is a diagram for explaining a state when a calibration curve is corrected in the granulated product manufacturing system according to the present invention.
FIG. 8 is a block diagram showing a granulated product manufacturing system according to a fourth embodiment.
FIG. 9 is a diagram showing the relative particle diameter of a granulated product granulated by a melt granulator using the granulated raw material obtained according to the fourth embodiment.
[Explanation of symbols]
1 Wet sorter 2 Dehydrator (moisture content control means)
3 Melt granulator 4, 5, 11 Neutron moisture meter 6 Motor 7, 14 Arithmetic control device 12 Heater 13 Constant supply device K1, K2, K3 Calibration curve

Claims (4)

湿式選別装置により含塩素合成樹脂を分離除去して回収された廃棄合成樹脂類からなる造粒原料を溶融造粒機へ搬送して造粒物を製造するシステムにおいて、
前記湿式選別装置と前記溶融造粒機との間の搬送経路に、造粒原料の水分量を検出する水分量検出手段および造粒原料の水分量を制御する水分量制御手段を設け、更に水分量検出手段で得られた検出水分量に基づいて水分量制御手段を駆動制御する演算制御手段を具備するとともに、
前記湿式選別装置と前記水分量制御手段との間の搬送経路に前記水分量検出手段が配設されている造粒物の製造システム。
In a system for producing a granulated material by transporting a granulated raw material made of waste synthetic resin collected by separating and removing chlorine-containing synthetic resin by a wet sorting device to a melt granulator,
A moisture amount detecting means for detecting the moisture content of the granulated raw material and a moisture content control means for controlling the moisture content of the granulated raw material are provided in the transport path between the wet sorting apparatus and the melt granulator, Comprising arithmetic control means for driving and controlling the moisture content control means based on the detected moisture content obtained by the quantity detection means,
Manufacturing system granulate the water content detecting means in the transport path that is disposed between the water amount controlling means and the wet sorter.
湿式選別装置により含塩素合成樹脂を分離除去して回収された廃棄合成樹脂類からなる造粒原料を溶融造粒機へ搬送して造粒物を製造するシステムにおいて、
前記湿式選別装置と前記溶融造粒機との間の搬送経路に、造粒原料の水分量を検出する水分量検出手段および造粒原料の水分量を制御する水分量制御手段を設け、更に水分量検出手段で得られた検出水分量に基づいて水分量制御手段を駆動制御する演算制御手段を具備するとともに、
前記水分量制御手段と前記溶融造粒機との間の搬送経路に前記水分量検出手段が配設されている造粒物の製造システム。
In a system for producing a granulated material by transporting a granulated raw material made of waste synthetic resin collected by separating and removing chlorine-containing synthetic resin by a wet sorting device to a melt granulator,
A moisture amount detecting means for detecting the moisture content of the granulated raw material and a moisture content control means for controlling the moisture content of the granulated raw material are provided in the transport path between the wet sorting apparatus and the melt granulator, Comprising arithmetic control means for driving and controlling the moisture content control means based on the detected moisture content obtained by the quantity detection means,
Manufacturing system granulate the water content detecting means in the transport path that is disposed between the molten granulator and the water amount controlling means.
湿式選別装置により含塩素合成樹脂を分離除去して回収された廃棄合成樹脂類からなる造粒原料を溶融造粒機へ搬送して造粒物を製造するシステムにおいて、
前記湿式選別装置と前記溶融造粒機との間の搬送経路に、造粒原料の水分量を検出する水分量検出手段および造粒原料の水分量を制御する水分量制御手段を設け、更に水分量検出手段で得られた検出水分量に基づいて水分量制御手段を駆動制御する演算制御手段を具備するとともに、
前記湿式選別装置と前記水分量制御手段との間に第1水分量検出手段が、上記水分量制御手段と前記溶融造粒機との間に第2水分量検出手段がそれぞれ配設されており、
かつ、前記演算制御装置は、水分量制御手段における駆動制御量と水分制御量の関係を示す検量線を有し、第1水分量検出手段で得られた水分量検出値と予め設定された目標水分量との差に基づき水分制御量を求め、その水分制御量と上記検量線に基づき水分量制御手段の駆動制御量を求めて水分量制御手段を駆動制御し、その後、上記第2水分量検出手段による水分量検出値に基づき実績水分制御量を求め、それと求めた駆動制御量との関係に基づき前記検量線を補正する造粒物の製造システム。
In a system for producing a granulated material by transporting a granulated raw material made of waste synthetic resin collected by separating and removing chlorine-containing synthetic resin by a wet sorting device to a melt granulator,
A moisture amount detecting means for detecting the moisture content of the granulated raw material and a moisture content control means for controlling the moisture content of the granulated raw material are provided in the transport path between the wet sorting apparatus and the melt granulator, Comprising arithmetic control means for driving and controlling the moisture content control means based on the detected moisture content obtained by the quantity detection means,
A first moisture amount detection means is disposed between the wet sorting device and the moisture amount control means, and a second moisture amount detection means is disposed between the moisture amount control means and the melt granulator. ,
The arithmetic control device has a calibration curve indicating the relationship between the drive control amount and the moisture control amount in the moisture amount control means, and the moisture amount detection value obtained by the first moisture amount detection means and a preset target. A water control amount is obtained based on the difference from the water amount, a drive control amount of the water amount control means is obtained based on the water control amount and the calibration curve, and the water amount control means is driven and controlled, and then the second water amount is obtained. A system for producing a granulated product, wherein an actual moisture control amount is obtained based on a moisture amount detected value by a detection means, and the calibration curve is corrected based on a relationship between the actual moisture control amount and the obtained drive control amount.
請求項乃至のいずれかに記載の製造システムにおいて、
前記水分量制御手段と前記溶融造粒機との間の搬送経路に、水分量制御手段を経た造粒原料を貯留する貯留ホッパーと、貯留ホッパーに設けられた水分計と、貯留ホッパーから排出された造粒原料を加熱する加熱手段を有しその加熱手段により造粒原料を加熱しつつ溶融造粒機へ供給する供給手段とが設けられ、
かつ、上記水分計からの検出値に基づき加熱手段の熱制御量を求めてその熱制御量で加熱手段を制御する第2演算制御装置を備えることを特徴とする造粒物の製造システム。
In the manufacturing system according to any one of claims 1 to 3 ,
A storage hopper that stores the granulated raw material that has passed through the water content control means, a moisture meter provided in the storage hopper, and a storage hopper that are discharged from a transport path between the water content control means and the melt granulator. A heating means for heating the granulated raw material, and a supply means for supplying the granulated raw material to the melt granulator while heating the granulated raw material by the heating means,
And the manufacturing system of the granulated material provided with the 2nd arithmetic control apparatus which calculates | requires the heat control amount of a heating means based on the detected value from the said moisture meter, and controls a heating means with the heat control amount.
JP2000265385A 2000-09-01 2000-09-01 Granule manufacturing system Expired - Fee Related JP4112786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265385A JP4112786B2 (en) 2000-09-01 2000-09-01 Granule manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265385A JP4112786B2 (en) 2000-09-01 2000-09-01 Granule manufacturing system

Publications (2)

Publication Number Publication Date
JP2002066299A JP2002066299A (en) 2002-03-05
JP4112786B2 true JP4112786B2 (en) 2008-07-02

Family

ID=18752658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265385A Expired - Fee Related JP4112786B2 (en) 2000-09-01 2000-09-01 Granule manufacturing system

Country Status (1)

Country Link
JP (1) JP4112786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016924A (en) * 2018-07-23 2020-01-30 シンフォニアテクノロジー株式会社 Control device

Also Published As

Publication number Publication date
JP2002066299A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
EP0026918B1 (en) Granulation process
EP0994146B1 (en) Solid state polymerization of PET flakes
CA3067148A1 (en) Process for drying polymeric granular material and system operating according to said process
JP4112786B2 (en) Granule manufacturing system
CN105314365B (en) The method for monitoring flux mass change on-line
CN105836421A (en) Linkage control method for multi-stage solid conveying equipment
JP2009274799A (en) Powder quantitative delivery device control method
FI85687C (en) PROCEDURE FOR EXHAUST FRAMSTAELLNING AV EN MINERALFIBERBANA.
US20220134601A1 (en) Method and apparatus for processing plastics
JP3552581B2 (en) Control method of solid molding machine
KR20000065241A (en) Control method of combustion of waste incinerator
JP3644293B2 (en) Synthetic resin melt granulation apparatus and method
EP3974139A1 (en) Bottle flakes recycling and pelletizing apparatus and method
CN113243547B (en) Automatic speed regulating method and system for tobacco shred perfuming roller
JPH10182196A (en) Production of rigid granulated blast furnace slag
JPS5775131A (en) Nonlinear resistor granulator
JPH01275490A (en) Production of granulated fertilizer
JP5446923B2 (en) Method for producing sintered ore
JPH09328689A (en) Water content control of raw material coal for coke
JPH0578675A (en) Production of powdered coal
CN206447794U (en) A kind of tribromoethane solution recovery system separated for white residue
JP2000308834A (en) Method for crushing sponge metal of high toughness
JPH09176324A (en) Production of thermoplastic resin pellet by continuous solid-phase polymerization and apparatus therefor
JPS5946475A (en) Controller for drying of material
JPS6136503B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees