JP4111931B2 - Electrically conductive complex oxide crystal compound and production method thereof. - Google Patents

Electrically conductive complex oxide crystal compound and production method thereof. Download PDF

Info

Publication number
JP4111931B2
JP4111931B2 JP2004136942A JP2004136942A JP4111931B2 JP 4111931 B2 JP4111931 B2 JP 4111931B2 JP 2004136942 A JP2004136942 A JP 2004136942A JP 2004136942 A JP2004136942 A JP 2004136942A JP 4111931 B2 JP4111931 B2 JP 4111931B2
Authority
JP
Japan
Prior art keywords
compound
electrically conductive
transparent glass
crystal compound
oxide crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004136942A
Other languages
Japanese (ja)
Other versions
JP2005314196A (en
Inventor
秀雄 細野
正浩 平野
克郎 林
聖雄 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004136942A priority Critical patent/JP4111931B2/en
Publication of JP2005314196A publication Critical patent/JP2005314196A/en
Application granted granted Critical
Publication of JP4111931B2 publication Critical patent/JP4111931B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、式12Ca1−XSrO・7Al(x=0〜1)で示される組成物
又は該組成物に特定の陽イオン元素を添加した組成を有する透明ガラス(以下、適宜「C
a−Sr−Al−O系透明ガラス」と記す。)を結晶化させた、該ガラスと概略等しい組
成を有し、電気伝導性を示す複合酸化物結晶化合物及びその製造方法に関する。
The present invention has the formula 12Ca 1-X Sr X O · 7Al 2 O 3 (x = 0~1) composition represented by or a transparent glass having a composition obtained by adding a specific cationic elements in the composition (hereinafter, "C"
a-Sr—Al—O-based transparent glass ”. The present invention relates to a compound oxide crystal compound having a composition approximately equal to that of the glass and crystallizing electrical conductivity and a method for producing the same.

1970年にH.B.Bartlらは、アルミナ・カルシヤ化合物である12CaO・
7Al(以下、適宜「C12A7」と記す)結晶が2分子を含む単位胞にある66
個の酸素のうち2個を、結晶中に存在するケージ内の空間に「フリー酸素」として包接し
ているという、特異な特徴を持つことを示していた(非特許文献1)。以後、このフリー
の酸素が種々の陰イオンに置換できることが明らかにされた。
In 1970, H.C. B. Bartl et al., 12CaO ·, an alumina-calcium compound.
7Al 2 O 3 (hereinafter referred to as “C12A7” where appropriate) is in a unit cell containing two molecules 66
It has been shown that there is a peculiar feature that two of the oxygen atoms are included as “free oxygen” in the space in the cage existing in the crystal (Non-patent Document 1). Thereafter, it was clarified that this free oxygen can be replaced by various anions.

本発明者らの一人である細野は、CaCOと、Al又はAl(OH)とを原料
とし、空気中で1200℃の温度で固相反応によって合成した12CaO・7Al
結晶の電子スピン共鳴を測定することによって、該結晶中に1×1019個/cm程度
のO -が包接されていることを発見し、フリー酸素の一部がO -の形でケージ内に存在
するというモデルを提案した(非特許文献2)。
Hosono, one of the present inventors, made 12CaO · 7Al 2 O 3 synthesized by a solid-phase reaction at a temperature of 1200 ° C. in the air using CaCO 3 and Al 2 O 3 or Al (OH) 3 as raw materials.
By measuring the electron spin resonance of the crystal, it was discovered that O 2 − of about 1 × 10 19 atoms / cm 3 was included in the crystal, and a part of free oxygen was in the form of O 2 . Proposed a model in the cage (Non-patent Document 2).

本発明者らの一人である細野らは、このフリー酸素をO2 -、O-、OH-などの各種陰イ
オンに置換することができることを新たに見出し、その化合物又はその同型化合物自体、
その製造法、及び該化合物の用途に関する発明について特許出願した(特許文献1〜4)。
Hosono et al., One of the present inventors, newly found that this free oxygen can be substituted with various anions such as O 2 , O , and OH , and the compound or its isomorphic compound itself,
A patent application was filed for an invention relating to the production method and use of the compound (Patent Documents 1 to 4).

さらに、細野らは、マイエナイト型化合物であるC12A7粉末又はその同型化合物に
-を包接させた後、これに紫外光を照射することによって、ケージ中に電子を包接させ
ることによって、該化合物に導電性を付与できることを見出し、その化合物自体、その製
造法、及び該化合物の用途に関する発明について特許出願した(特許文献5)。
Furthermore, Hosono et al., H the C12A7 powder or isomorphic compound is mayenite type compound - After inclusion and by irradiating ultraviolet light thereto, by inclusion of the electrons in the cages, the compounds Was found to be able to impart electrical conductivity, and a patent application was filed for an invention relating to the compound itself, a production method thereof, and an application of the compound (Patent Document 5).

結晶中にH-を包接させ、紫外線を照射する作製法は、紫外光照射された結晶の部分の
みに電子が生成し、該電子がケージに包接され、該電子がケージ中を移動することによっ
て電気伝導が生じる。しかし、紫外線非照射領域である粉末又は結晶内部までは、電子を
包接させることができなかった。
In the manufacturing method in which H is included in the crystal and irradiated with ultraviolet rays, electrons are generated only in the portion of the crystal irradiated with ultraviolet light, the electrons are included in the cage, and the electrons move in the cage. This causes electrical conduction. However, the electrons could not be included up to the inside of the powder or crystal in the ultraviolet non-irradiated region.

また、細野らは、C12A7単結晶の作製法を開発し(特許文献6参照)、該結晶をア
ルカリ金属蒸気にさらすことで、ケージ中に電子を包接させ、該結晶に導電性を付与でき
ることを見出し、その化合物自体、その製造法、及び該化合物の用途に関する発明につい
て特許出願した(特許文献7)。
Hosono et al. Developed a method for producing a C12A7 single crystal (see Patent Document 6), and by exposing the crystal to an alkali metal vapor, electrons can be included in the cage to impart conductivity to the crystal. And applied for a patent on the compound itself, its production method, and an invention relating to the use of the compound (Patent Document 7).

この製造方法では固体状態であるC12A7結晶からのフリー酸素の引き抜き反応を利
用しており、そのために該反応においては、固体内部での酸素の拡散が律速過程となり、
十分な量の電子を包接せしめるために、長時間を要する。
In this production method, a free oxygen abstraction reaction from the C12A7 crystal that is in a solid state is used, and in this reaction, diffusion of oxygen inside the solid becomes a rate-limiting process,
It takes a long time to include a sufficient amount of electrons.

一方、本発明者らは、高温におけるC12A7の融液状態においては、フリー酸素の引
き抜き反応における固体内部での酸素の拡散律速過程が存在せず、固体状態と比較して、
迅速なフリー酸素引き抜き反応が進行するとの知見を持っていた。
On the other hand, in the melt state of C12A7 at a high temperature, the present inventors do not have a diffusion-determining process of oxygen inside the solid in the drawing-out reaction of free oxygen, and compared with the solid state,
He had the knowledge that a rapid free oxygen extraction reaction would proceed.

しかしながら、通常、無酸素雰囲気下では、C12A7組成の融液からは分解物である
3CaO・Al(以下C3Aと記載する)相とCaO・Al(以下CA相と
記載する)が生成し、C12A7結晶は生成しないことが知られていた(非特許文献3)。
However, usually, under an oxygen-free atmosphere, a 3CaO.Al 2 O 3 (hereinafter referred to as C3A) phase and a CaO · Al 2 O 3 (hereinafter referred to as CA phase), which are decomposition products, from the melt of C12A7 composition. It was known that C12A7 crystals were not generated (Non-patent Document 3).

これに対し、本発明者の一人である細野らは、粉末と比較して緻密な構造である静水圧
プレス体を用いることによって、該開始原料の表面積を減少せしめることによって、表面
で起こる反応である昇華過程での酸素引き抜き反応を緩やかにし、分解物の生成を抑制で
きるとの知見のもと、C12A7粉末の静水圧プレス体を還元雰囲気で溶融し、さらに該
雰囲気中で冷却、固化することで、ケージ内の酸素を電子で置換したC12A7化合物の
作製法を発明し、特許出願している(特許文献8)。また、本発明者らは、C12A7又はその
同型化合物薄膜に、不活性ガスイオンを打ち込み、ノックオン効果によって、フリー酸素
を電子で置換できる事を見出し、特許出願している(特許文献8)。
In contrast, Hosono et al., One of the inventors of the present invention, is a reaction that occurs on the surface by reducing the surface area of the starting material by using a hydrostatic press that has a dense structure compared to powder. Melting the hydrostatic press of C12A7 powder in a reducing atmosphere under the knowledge that the oxygen extraction reaction in a certain sublimation process can be moderated and the formation of decomposition products can be suppressed, and further cooled and solidified in the atmosphere Thus, a method for producing a C12A7 compound in which oxygen in the cage is replaced with electrons has been invented and a patent application has been filed (Patent Document 8). In addition, the present inventors have found that C12A7 or its isomorphic compound thin film can be implanted with inert gas ions, and that free oxygen can be replaced with electrons by the knock-on effect, and a patent application has been filed (Patent Document 8).

さらに、本発明者らは、導電体C12A7化合物又はその同型化合物を溶融液状態から
作製する条件を明確にし、その製法に関して特許出願している(特許文献9)。C12A
7及びその同型化合物のケージ中のフリー酸素を全て、電子で置換した化合物は、電子が
アニオンの役割を果しており、エレクトライド化合物と呼ばれている。
Furthermore, the present inventors clarified the conditions for producing the conductor C12A7 compound or its isomorphic compound from the melt state, and have filed a patent application regarding the production method (Patent Document 9). C12A
A compound in which all free oxygen in the cage of 7 and its isomorphic compound is substituted with electrons is called an electride compound because the electrons play the role of anions.

エレクトライド(Electride)化合物は、J.L.Dyeがはじめて提案した
概念で、クラウンエーテルを陽イオンとし、電子を陰イオンとした化合物などではじめて
実現した(非特許文献4)。エレクトライドは、陰イオンとして含まれる電子のホッピン
グによって電気伝導性を示すことが知られている。その後いくつかの有機化合物エレクト
ライドが見出されたが、これらの化合物は、いずれも、100K程度以下の低温でのみ安
定であり、空気や水と反応する不安定な化合物である。C12A7エレクトライドは、室
温で安定なはじめてのエレクトライド化合物で、コールド電子エミッタ−、還元剤などと
しての応用が可能である事を見出し、これに関する発明について特許出願した(特許文献
8)。
Electride compounds are described in J. Org. L. The concept first proposed by Dye was first realized with a compound in which crown ether was used as a cation and electrons as an anion (Non-Patent Document 4). It is known that electride exhibits electrical conductivity by hopping of electrons contained as anions. Subsequently, several organic compound electrides were found, but these compounds are all stable compounds only at a low temperature of about 100K or less and are unstable compounds that react with air and water. C12A7 electride is the first electride compound that is stable at room temperature and has been found to be applicable as a cold electron emitter, a reducing agent, etc., and a patent application has been filed for an invention related thereto (Patent Document 8).

また、本発明者らの一人である細野らはCaCOとAl(OH)を原料とし、SiO
を添加した原料を、アルミナ坩堝で、1200℃から1450℃の温度で、溶融し、C
a−Al−O系ガラスを作製し、紫外線による感光性がある事を見出した(非特許文献5
)。さらに、本発明者らの一人である細野らは、シリコンを含まないCa−Al−Oガラ
スをカーボン坩堝内に1550℃で4時間保持した後、800℃に急冷し、透明ガラスを
作製し、フォトクロミック特性を示す事を見出した(非特許文献6)。また、該ガラスに
Tb3+を添加し、残光材料として機能することを見出し特許出願している。(特許文献
10)
Moreover, Hosono et al., One of the present inventors, uses CaCO 3 and Al (OH) 3 as raw materials, and SiO 2
2 was melted in an alumina crucible at a temperature of 1200 ° C. to 1450 ° C., and C
An a-Al-O-based glass was prepared and found to have photosensitivity by ultraviolet rays (Non-Patent Document 5).
). Furthermore, Hosono et al., One of the present inventors, held Ca—Al—O glass containing no silicon in a carbon crucible at 1550 ° C. for 4 hours, and then rapidly cooled to 800 ° C. to produce a transparent glass. It has been found that it exhibits photochromic properties (Non-Patent Document 6). Further, a patent application has been filed for finding that Tb 3+ is added to the glass to function as an afterglow material. (Patent Document 10)

特開2002−3218号公報Japanese Patent Laid-Open No. 2002-3218 特開2002−316867号公報JP 2002-316867 A 特開2003-128415号公報JP 2003-128415 A 特開2003-238149号公報JP 2003-238149 A WO03/089373WO03 / 089373 特開2003-40697号公報JP 2003-40697 A 特開2004−26608号公報JP 2004-26608 A 特願2003−183605号(PCT/JP04/001507)Japanese Patent Application No. 2003-183605 (PCT / JP04 / 001507) 特願2004−37203号Japanese Patent Application No. 2004-37203 特開2000−63245号広報Japanese Laid-Open Patent Publication No. 2000-63245 H.B.Bartl and T.Scheller, Neuses Jarhrb. Mineral, Monatsh. 1970, 547H.B.Bartl and T.Scheller, Neuses Jarhrb. Mineral, Monatsh. 1970, 547 H.Hosono and Y.Abe,Inorg.Chem.,26,1193,(1987)H. Hosono and Y. Abe, Inorg. Chem., 26, 1193, (1987) P.P.Williams, Acta Crystallogr., Sec. B, 29, 1550 (1973)P.P.Williams, Acta Crystallogr., Sec. B, 29, 1550 (1973) F.J.Tehan,B.L.Barrett,J.L.Dye,J.Am.Chem.Soc.,96,7203-7208 (1974)F.J.Tehan, B.L.Barrett, J.L.Dye, J.Am.Chem.Soc., 96,7203-7208 (1974) H.Hosono,K.Yamazaki,and Y.Abe,J.Am.Ceram.Soc.70,867(1987)H. Hosono, K. Yamazaki, and Y. Abe, J. Am. Ceram. Soc. 70, 867 (1987) H.Hosono,N.Asada,and Y.Abe,J.Appl.Phys.67,2840(1990)H. Hosono, N. Asada, and Y. Abe, J. Appl. Phys. 67, 2840 (1990)

従来は、アルミナ・カルシヤ化合物に代表されるCaO及び/又はSrOと、Al
の固溶系において室温で高い電気伝導性を有する化合物を得ることは困難であった。し
かし、最近になって、上に述べた様に、(1)水素陰イオンを包接した12CaO・7A
又はその同型化合物にHイオンを包接させ、紫外線を照射する方法、(1)該
化合物の単結晶試料をアルカリ金属蒸気中で熱処理する方法、(3)該化合物の薄膜試料
に不活性ガスイオンを打ち込む方法、(4)該化合物の溶融液を、還元雰囲気中で冷却、
固化する方法で、永久的な電気伝導性を有するC12A7又はその同型化合物を作製でき
る事が示された。
Conventionally, CaO and / or SrO typified by an alumina-calcium compound and Al 2 O
In the solid solution system 3 , it was difficult to obtain a compound having high electrical conductivity at room temperature. However, recently, as mentioned above, (1) 12CaO · 7A that includes hydrogen anions
l 2 O 3 or H to the isomorphic compounds - ions was inclusion, a method of irradiating ultraviolet rays, (1) a method of the single-crystal sample of the compound is heat-treated with an alkali metal vapor and (3) the thin film sample of the compound (4) cooling the melt of the compound in a reducing atmosphere;
It was shown that C12A7 or its isomorphic compound having permanent electrical conductivity can be produced by the solidification method.

しかし、(1)の方法では、紫外線を使って、パターン化された電気伝導領域を書き込
める大きな利点がある反面、紫外線照射が必要であり、包接水素アニオンが固体中から放
出される温度以上に、試料を晒すと、電気伝導性が失われるという欠点がある。また、(
2)の方法は、フリー酸素を電子で完全に置換したエレクトライドを作製できる特徴があ
る反面、単結晶が必要で、作製に長時間かかる欠点がある。また、(3)の方法は、薄膜
に電気伝導パターンを書きこめる長所があるが、薄膜試料にのみ適用が可能で、高価なイ
オン打ち込み装置が必要という欠点がある。(4)の方法は、量産が可能であるとの長所
があるが、溶融液状態の雰囲気、温度の制御及び冷却過程の温度制御が難しく、高い収率
で、電気伝導性化合物を作製するのが難しいという欠点がある。
However, the method (1) has a great advantage in that it is possible to write a patterned electric conduction region using ultraviolet rays, but ultraviolet irradiation is necessary, and the temperature exceeds the temperature at which the inclusion hydrogen anion is released from the solid. When the sample is exposed, there is a drawback that the electrical conductivity is lost. Also,(
The method 2) is characterized in that an electride in which free oxygen is completely substituted with electrons can be produced, but on the other hand, it requires a single crystal and has a drawback that it takes a long time to produce. Further, the method (3) has an advantage that an electric conduction pattern can be written on a thin film, but it can be applied only to a thin film sample, and there is a disadvantage that an expensive ion implantation apparatus is required. The method (4) has the advantage that it can be mass-produced, but it is difficult to control the atmosphere in the melt state, the temperature and the temperature control in the cooling process, and produces an electrically conductive compound in a high yield. Has the disadvantage of being difficult.

本発明者らは、C12A7又はその同型化合物、さらに該化合物に不純物を添加した化
合物組成を有する電気伝導性化合物を溶融液状態から作製する方法の研究を重ねた結果、
カーボン坩堝中の溶融液状態から透明ガラスを作製し、該ガラスを酸素を含まない雰囲気
中で結晶化させるプロセスによって、1S/cm超の高い電気伝導性を有する化合物を高
効率で作製できることを発見した。
As a result of repeated research on a method for producing an electrically conductive compound having a compound composition obtained by adding impurities to C12A7 or an isomorphous compound thereof, and further adding an impurity to the compound,
Discovered that high-efficiency compounds with high electrical conductivity exceeding 1 S / cm can be produced by a process of producing transparent glass from a molten state in a carbon crucible and crystallizing the glass in an oxygen-free atmosphere. did.

得られた導電性化合物は、該化合物の光吸収スペクトル、ラマン・スペクトル、X線回
折スペクトルなどの解析から、C12A7又はその同型化合物の結晶であることがわかっ
た。また、電気伝導率及び光吸収スペクトルから、該結晶中のケージには、1020cm
-3超の高濃度の電子が含まれている事がわかった。
From the analysis of the light absorption spectrum, Raman spectrum, X-ray diffraction spectrum and the like of the compound, it was found that the obtained conductive compound was a crystal of C12A7 or an isomorphous compound thereof. In addition, from the electrical conductivity and light absorption spectrum, the cage in the crystal has 10 20 cm.
It was found that a high concentration of electrons exceeding -3 was included.

さらに、該プロセスを用いて、固相反応では作製する事が難しい12CaSr1−x
・7Al(x=1〜0)化合物を高収率で合成する事ができた。また、固相反応で
は、添加する事が難しいMg,Ba,希土類金属、遷移金属、Si、Geイオンを容易に
添加する事ができた。
Furthermore, 12Ca x Sr 1-x, which is difficult to produce by solid phase reaction using the process.
· 7Al 2 O 3 (x = 1~0) compounds could be synthesized in high yield. In addition, Mg, Ba, rare earth metals, transition metals, Si, and Ge ions, which are difficult to add in the solid phase reaction, could be easily added.

すなわち、本発明は、下記のものからなる。
(1)12Ca1−XSrO・7Al(x=0〜1)で示される組成を有する化
合物又は12Ca1−XSrO・7Al(x=0〜1)で示される化合物に相当
する平均組成となるように混合した2種以上の化合物混合体を溶融凝固してなる複合金属
酸化物透明ガラスを結晶化させた電気伝導性複合酸化物結晶化合物。
(2)複合金属酸化物透明ガラスが、Mg,Baのうち、少なくとも1種類の元素を含有
するものであることを特徴とする上記(1)の電気伝導性複合酸化物結晶化合物。
(3)複合金属酸化物透明ガラスが、希土類金属元素、遷移金属元素のうち、少なくとも
1種類の元素を含有するものであることを特徴とする上記(1)の電気伝導性複合酸化物
結晶化合物。
(4)複合金属酸化物透明ガラスが、Si、Geのうち、少なくとも1種類の元素を含有
するものであることを特徴とする上記(1)の電気伝導性複合酸化物結晶化合物。
That is, this invention consists of the following.
(1) in 12Ca 1-X Sr X O · 7Al 2 O 3 compound having a composition represented by (x = 0 to 1) or 12Ca 1-X Sr X O · 7Al 2 O 3 (x = 0~1) An electrically conductive composite oxide crystal compound obtained by crystallizing a composite metal oxide transparent glass obtained by melting and solidifying a mixture of two or more compounds mixed so as to have an average composition corresponding to the compound shown.
(2) The electrically conductive composite oxide crystalline compound according to (1) above, wherein the composite metal oxide transparent glass contains at least one element of Mg and Ba.
(3) The electrically conductive composite oxide crystal compound according to (1) above, wherein the composite metal oxide transparent glass contains at least one element selected from a rare earth metal element and a transition metal element. .
(4) The electrically conductive composite oxide crystal compound according to (1) above, wherein the composite metal oxide transparent glass contains at least one element of Si and Ge.

(5)12Ca1−XSrO・7Al(x=0〜1)で示される組成を有する化
合物又は12Ca1−XSrO・7Al(x=0〜1)で示される化合物に相当
する平均組成となるように混合した2種以上の化合物混合体の微粉末そのまま、該微粉末
の静水圧プレス成型体、又は該微粉末の焼結体、のいずれかを原料として、カーボン部材
から構成される容器中で、1470℃超、1650℃未満の温度に、保持して溶融した後
、冷却してガラス相状態を形成して複合金属酸化物透明ガラスを製造し、該複合金属酸化
物透明ガラスを1.5Pa未満の真空度雰囲気中又は、乾燥した不活性ガス雰囲気中で、
950℃から1470℃の温度範囲に保持して結晶化させることを特徴とする、電気伝導
性複合酸化物結晶化合物の製造方法。
(5) 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) or 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) The raw material is either a fine powder of two or more compound mixtures mixed so as to have an average composition corresponding to the compound shown, as it is, a hydrostatic press-molded body of the fine powder, or a sintered body of the fine powder. As described above, in a container composed of a carbon member, after maintaining and melting at a temperature of more than 1470 ° C. and less than 1650 ° C., cooling to form a glass phase state to produce a composite metal oxide transparent glass, The composite metal oxidation
In a vacuum atmosphere of less than 1.5 Pa or in a dry inert gas atmosphere,
Electric conduction characterized in that it is crystallized while being kept in a temperature range of 950 ° C to 1470 ° C.
For producing a crystalline composite oxide crystal compound .

(6)前記原料に、Mg,Ba,希土類金属、遷移金属、Si、又はGeの陽イオン元素
のうち、少なくとも1種類の元素を添加することを特徴とする上記(5)の電気伝導性複
合酸化物結晶化合物の製造方法。
(6) to the raw material, Mg, Ba, rare earth metals, transition metals, Si, or Ge among the cationic elements of electrically conductive double above (5), characterized in that the addition of at least one element
A method for producing a compound oxide crystal compound .

(Ca、Sr)−Al−O系透明ガラスの出発物質とされるものは、式12Ca1−X
O・7Al(x=0〜1)で示される組成を有する化合物である。すなわち、
x=0の純粋なC12A7化合物の他、x=1の純粋なS12A7化合物、又はCaとS
rの混合比を自由に変化させた混晶などC12A7化合物と同等の結晶構造をもつ化合物
(本明細書では、これらを「同型化合物」と略称する)である。
The starting material for the (Ca, Sr) -Al-O-based transparent glass is represented by the formula 12Ca 1- XS
a compound having a composition represented by r X O · 7Al 2 O 3 (x = 0~1). That is,
Besides pure C12A7 compound with x = 0, pure S12A7 compound with x = 1, or Ca and S
A compound having a crystal structure equivalent to that of the C12A7 compound, such as a mixed crystal in which the mixing ratio of r is freely changed (these are abbreviated as “isomorphic compounds” in the present specification).

また、出発物質は、12Ca1−XSrO・7Al(x=0〜1)で示される
化合物に相当する平均組成となるように混合した2種以上の化合物混合体でもよい。すな
わち、カルシウム(Ca)量と、アルミニウム(Al)とストロンシウム(Sr)の合計
量を原子当量比で12:14に含む化合物混合体でも良い。混合体の代表的なものは、炭
酸カルシウム及び/又は炭酸ストロンチウムと、酸化アルミニウムである。
The starting material may be a mixture of two or more compounds mixed so as to have an average composition corresponding to a compound represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1). That is, a compound mixture containing the amount of calcium (Ca) and the total amount of aluminum (Al) and strontium (Sr) at an atomic equivalent ratio of 12:14 may be used. Typical examples of the mixture are calcium carbonate and / or strontium carbonate and aluminum oxide.

さらに、出発物質の形態は、上記化合物又は化合物混合体の粉末そのまま、粉末の静水
圧プレス成型体、多結晶焼結体のいずれでもよい。これらの出発物質に最初から包接され
ているOH−イオンの量は、フリー酸素の引き抜き及び電子との置換効果に大きな影響を
及ぼさない。
Furthermore, the form of the starting material may be either the powder of the above compound or compound mixture as it is, a hydrostatic press-molded body of powder, or a polycrystalline sintered body. The amount of OH- ions that are initially included in these starting materials does not significantly affect the free oxygen extraction and substitution effect with electrons.

(Ca、Sr)−Al−O系透明ガラス中のCa2+イオン及びSr2+イオンは、1
0原子%程度まで、プラス2価の金属イオンで置換する事ができる。金属イオンとしては
、Mg2+,Ba2+,2価の希土類金属イオン、又は遷移金属イオンがある。また、A
3+イオンは、3価の希土類金属イオン、遷移金属イオン、Si4+イオン、又はGe
4+イオンで、部分的に置換することができる。Mg,Ba,希土類金属、遷移金属、G
e、Siを添加する場合には、出発物質の上記化合物又は化合物混合体にMg,Ba,希
土類金属、遷移金属、Ge、Siの酸化物又は単体を、添加すれば良い。
The Ca 2+ ions and Sr 2+ ions in the (Ca, Sr) -Al—O-based transparent glass are 1
Up to about 0 atomic% can be substituted with a plus divalent metal ion. Examples of metal ions include Mg 2+ , Ba 2+ , divalent rare earth metal ions, and transition metal ions. A
l 3+ ions are trivalent rare earth metal ions, transition metal ions, Si 4+ ions, or Ge
It can be partially substituted with 4+ ions. Mg, Ba, rare earth metal, transition metal, G
When e or Si is added, an oxide or simple substance of Mg, Ba, rare earth metal, transition metal, Ge or Si may be added to the above compound or compound mixture of the starting material.

Mg及び/又はBaは、Ca又はSrを置換し、置換の結果、最終的に得られる導電性
化合物の格子定数、すなわち格子の大きさが変化し、電子移動度の変化を通じ、電気抵抗
が変化する。Ge及び/又はSiの添加は、ガラス状態を作りやすくする効果が期待され
、ガラス組成の範囲を広げる事ができる。また、Ge及び/又はSiは、Alイオンを置
換し、原子一個当り、一個の電子を放出し、該電子は、ケージに捕獲される。空のケージ
の数は、12Ca1−XSrO・7Al(x=0〜1)当り、4個であるので、
Ge、Siの添加量は、12Ca1−XSrO・7Al(x=0〜1)中の14
個のAlイオンに対して4個以下でなければならない。すなわち、14個のAlイオンの
内、4個のAlイオンをGe及び/又はで置換した化合物は、全てのケージ中に電子が含
まれるエレクトライドとなる。
Mg and / or Ba replace Ca or Sr, and as a result of the substitution, the lattice constant of the conductive compound finally obtained, that is, the size of the lattice changes, and the electric resistance changes through the change in electron mobility. To do. Addition of Ge and / or Si is expected to have an effect of easily forming a glass state, and the range of the glass composition can be expanded. Ge and / or Si also replaces Al ions and emits one electron per atom, which is trapped in the cage. Since the number of empty cages is 4 per 12Ca 1-X Sr X O · 7Al 2 O 3 (x = 0 to 1),
The addition amount of Ge and Si was 14 in 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1).
It must be 4 or less for each Al ion. That is, a compound in which four Al ions out of 14 Al ions are replaced by Ge and / or becomes an electride in which electrons are contained in all cages.

また、希土類金属イオン及び遷移金属イオンは磁気モーメントを有しており、これら磁
性イオンを含んだ導電性結晶化合物では、該磁気モーメントと包接電子との相互作用を通
じて、外部磁場によって、電気伝導を制御できる。希土類金属としては、Ce,Pr,N
d,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Ybの群から選ばれる少なくと
も1種の元素が挙げられる。磁気モーメントを大きくするためには、添加量は多いことが
望ましいが、金属イオンに対する置換量が10原子%以上では、単一結晶相が得られない
ため、添加量は10原子%未満でなければならない。遷移金属としては、Ti,V,Cr
,Mn,Fe,Co,Ni,Cuの群から選ばれる少なくとも1種の元素が挙げられる。
磁気モーメントを大きくするためには、添加量は多い方が望ましいが、金属イオンに対す
る置換量が10原子%以上では、単一結晶相が得られないため、添加量は10原子%未満
でなければならない。
In addition, rare earth metal ions and transition metal ions have a magnetic moment, and in a conductive crystal compound containing these magnetic ions, electric conduction is caused by an external magnetic field through the interaction between the magnetic moment and inclusion electrons. Can be controlled. As rare earth metals, Ce, Pr, N
Examples thereof include at least one element selected from the group consisting of d, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. In order to increase the magnetic moment, it is desirable that the addition amount is large. However, if the substitution amount for metal ions is 10 atomic% or more, a single crystal phase cannot be obtained. Therefore, the addition amount must be less than 10 atomic%. Don't be. Transition metals include Ti, V, and Cr
, Mn, Fe, Co, Ni, Cu, at least one element selected from the group.
In order to increase the magnetic moment, it is desirable that the addition amount is large. However, if the substitution amount for metal ions is 10 atomic% or more, a single crystal phase cannot be obtained. Don't be.

(Ca、Sr)−Al−O系透明ガラスは、上記によって得られた化合物、化合物混合
体、それらにMg、Ba、希土類金属、遷移金属、Ge、Siのうち少なくとも1種のイ
オンを添加した化合物又は化合物混合体を原料として、カーボン部材から構成される容器
中で溶融し、組成が均一になるまで保持した後、ガラス相状態の形成温度、すなわち約8
00℃以下まで、500℃/分超の速度で急冷することによって得ることができる。カー
ボン部材から構成される容器としては、いずれの形状でも使用できるが、蓋をしたカーボ
ン坩堝が簡便である。蓋をしないと空気の入れ替わりが激しく、酸素が大量に供給される
と、最終生成物の電子の濃度が大きくできなくなることがある。また、蓋をしたアルミナ
製容器を用い、出発原料に炭素原料を添加し、不活性ガス雰囲気で溶融しても良い。
The (Ca, Sr) -Al-O-based transparent glass was obtained by adding at least one ion of Mg, Ba, rare earth metal, transition metal, Ge, and Si to the compound and compound mixture obtained as described above. A compound or compound mixture as a raw material is melted in a container composed of a carbon member and held until the composition becomes uniform, and then a glass phase state forming temperature, that is, about 8
It can be obtained by quenching to 00 ° C. or lower at a rate exceeding 500 ° C./min. As a container composed of a carbon member, any shape can be used, but a carbon crucible with a lid is simple. If the lid is not used, the exchange of air is intense, and if a large amount of oxygen is supplied, the concentration of electrons in the final product may not be increased. Alternatively, an alumina container with a lid may be used, and a carbon raw material may be added to the starting raw material and melted in an inert gas atmosphere.

こうして生成した(Ca、Sr)−Al−O系透明ガラス中には、O2−の一部を置換
してC 2−及び水素がマイナスイオン(H-イオン)として溶け込んでいる。炭素イオン
は、カーボン坩堝の一部が溶け込んだものであり、水素イオンは、カーボン部材中に不純
物として含まれている水素イオン又は雰囲気に微量に含まれている水素ガスが溶け込んだ
ものである。
In the (Ca, Sr) —Al—O-based transparent glass thus produced, a part of O 2− is substituted and C 2 2− and hydrogen are dissolved as negative ions (H− ions). The carbon ions are those in which a part of the carbon crucible is dissolved, and the hydrogen ions are those in which hydrogen ions contained as impurities in the carbon member or hydrogen gas contained in a trace amount in the atmosphere are dissolved.

2−は、炭素間に三重結合を持つアセチレン(HCCH)から、二つの水素原子が取れ
たイオンで、含有量は、結晶化した化合物中のフリー酸素量未満、すなわち、2/64原
子当量未満である。また、ハイドライドイオン(H-イオン)の含有量も、C 2−の含有
量と同程度である。
C 2 2− is an ion in which two hydrogen atoms are removed from acetylene (HCCH) having a triple bond between carbons, and the content is less than the amount of free oxygen in the crystallized compound, that is, 2/64 atoms. Less than equivalent. Further, the content of hydride ions (H-ions) is about the same as the content of C 2 2− .

溶融する温度は、1470℃超、1650℃未満が良い。1470℃以下では、化合物
は溶融しないし、また、1650℃以上では、溶融液の一部成分が蒸発し、ガラス組成が
異なってしまう。溶融液の保持時間は、1分超、2時間未満が好ましい。1分未満では、
均一組成のガラスを得る事ができないし、また、C 2−及びハイドライドイオン(H-イ
オン)が充分にとけ込まない。溶融液を2時間以上高温に保持すると、カーボン坩堝が破
損し、溶融液を保持できない。急冷速度は、500℃/分超でないとガラス相状態が得ら
れず、結晶化してしまう。好ましくは、急冷速度は、800℃/分超である。また、一度
ガラス相状態が形成されると約800℃未満では、結晶化が起こらないので、約800℃
まで急冷すれば良い。
The melting temperature is preferably more than 1470 ° C. and less than 1650 ° C. At 1470 ° C. or lower, the compound does not melt, and at 1650 ° C. or higher, some components of the melt evaporate, resulting in different glass compositions. The retention time of the melt is preferably more than 1 minute and less than 2 hours. In less than a minute,
A glass having a uniform composition cannot be obtained, and C 2 2− and hydride ions (H− ions) are not sufficiently absorbed. If the molten liquid is held at a high temperature for 2 hours or more, the carbon crucible is broken and the molten liquid cannot be held. If the rapid cooling rate is not more than 500 ° C./min, a glass phase state cannot be obtained and crystallization occurs. Preferably, the quench rate is greater than 800 ° C / min. Further, once the glass phase state is formed, crystallization does not occur at less than about 800 ° C.
Just cool down.

得られた(Ca、Sr)−Al−O系透明ガラスは、X線回折によってアモルファス相
であることが分かる。また、ガラス相状態では、電気伝導性を示さない絶縁体であること
が確認できる。さらに、カーボン坩堝中で作製したガラスには、C 2−が溶け込んでい
ることがラマン・スペクトルから確認される。
The obtained (Ca, Sr) -Al-O-based transparent glass is found to be an amorphous phase by X-ray diffraction. Moreover, it can confirm that it is an insulator which does not show electrical conductivity in a glass phase state. Further, it is confirmed from the Raman spectrum that C 2 2− is dissolved in the glass produced in the carbon crucible.

また、得られた透明ガラスの結晶化温度を示差熱分析法によって調べた結果、図3に示
すように、該(Ca、Sr)−Al−O系透明ガラスの結晶化は950℃から始まること
が分かった。結晶化温度付近で、ガスが放出され、その主成分の質量は2、18、及び2
8であり、H2ガス、水蒸気及びCOガスが放出されていることが示された。したがって、
上記によって得られた(Ca、Sr)−Al−O系透明ガラスを真空中で、950℃以上
に加熱して結晶化させることができる。(Ca、Sr)−Al−O系透明ガラスは147
0℃超で溶融するので、加熱温度の上限は1470℃である。加熱時間は1分超1時間未
満が好ましい。加熱時間が1分以下では、透明ガラスの温度が均一化しない。また、1時
間以上加熱するとカーボン部材が破損してしまう。
Moreover, as a result of investigating the crystallization temperature of the obtained transparent glass by the differential thermal analysis method, as shown in FIG. 3, crystallization of the (Ca, Sr) -Al—O-based transparent glass starts from 950 ° C. I understood. Near the crystallization temperature, a gas is released and its main component mass is 2, 18, and 2
It was shown that H2 gas, water vapor and CO gas were released. Therefore,
The (Ca, Sr) —Al—O transparent glass obtained as described above can be crystallized by heating to 950 ° C. or higher in vacuum. (Ca, Sr) -Al-O-based transparent glass is 147
Since it melts above 0 ° C, the upper limit of the heating temperature is 1470 ° C. The heating time is preferably more than 1 minute and less than 1 hour. When the heating time is 1 minute or less, the temperature of the transparent glass is not uniform. Moreover, if it heats for 1 hour or more, a carbon member will be damaged.

この結晶化処理の際の真空雰囲気を得る方法は、いずれの方法でも良いが、透明ガラス
を、真空排気した、石英のような熱的耐久性、化学的耐久性のある容器に封入する方法が
簡便である。また、生産性を高めるためには、真空炉を用いる方法が適している。雰囲気
中の酸素分圧が、1Pa未満である事が必要で、このために雰囲気の真空度は、1.5P
a未満であれば良い。
Any method may be used to obtain a vacuum atmosphere during the crystallization treatment, but there is a method in which transparent glass is sealed in a thermally evacuated, chemically durable container such as quartz that has been evacuated. Convenient. In order to increase productivity, a method using a vacuum furnace is suitable. The oxygen partial pressure in the atmosphere needs to be less than 1 Pa. For this reason, the degree of vacuum in the atmosphere is 1.5 P.
It may be less than a.

上記熱処理によって、ガラスが結晶化したことは、X線回折によって確認される。また
、結晶化合物の構造がC12A7化合物又はその同型化合物であることも、X線回折パタ
ーンから確認できる。結晶化ガラス中に電子が包接されている事は、室温において1S/
cm超の電気伝導度を示すこと、及び光吸収スペクトルにおいて、2.8eVにピークを
持つ吸収バンドが存在することから確認できる。この光吸収バンドによって、結晶は濃緑
色になる。
It is confirmed by X-ray diffraction that the glass is crystallized by the heat treatment. It can also be confirmed from the X-ray diffraction pattern that the structure of the crystalline compound is a C12A7 compound or an isomorphous compound thereof. The inclusion of electrons in crystallized glass means that 1S /
This can be confirmed from the fact that it exhibits an electrical conductivity of more than cm and the presence of an absorption band having a peak at 2.8 eV in the light absorption spectrum. This light absorption band makes the crystal dark green.

結晶化過程において、ガラス中に含まれるO2−及びC 2−を核として、ケージ構造
が形成され、C12A7化合物又はその同型化合物が結晶化する。結晶が形成されると直
ぐに、ケージ中のO2−とH及びC 2−が反応して、HO及びCOと電子が形成さ
れる。HO及びCOは、結晶から外部に放出され、電子のみがケージに残され、その結
果、電導性C12A7又はその同型化合物が形成される。結晶化温度付近で、HO及び
COガスが放出されることは、放出ガスの質量分析スペクトルから確認される。酸素を含
む雰囲気中で結晶化すると、酸素が結晶中に取り込まれ、電子と反応してO2−となるた
めに、電気伝導性化合物は得られない。
In the crystallization process, a cage structure is formed with O 2− and C 2 2− contained in the glass as nuclei, and the C12A7 compound or its isomorphous compound is crystallized. As soon as the crystal is formed, O 2− in the cage reacts with H and C 2 2− to form electrons with H 2 O and CO. H 2 O and CO are released to the outside from the crystal, leaving only electrons in the cage, resulting in the formation of conductive C12A7 or its isomorphic compound. The release of H 2 O and CO gas near the crystallization temperature is confirmed from the mass analysis spectrum of the released gas. When crystallization is performed in an atmosphere containing oxygen, oxygen is taken into the crystal and reacts with electrons to become O 2− , so that an electrically conductive compound cannot be obtained.

以下、実施例によって、本発明の内容を具体的に説明する。
C12A7化合物とSr12A7化合物の混晶化合物の微粉末を、300kg/cm
の一軸加圧で成型し、さらに2000kg/cmの静水圧プレスによって、追加成型し
た成型体を(Ca、Sr)−Al−O系透明ガラスの出発原料とした。成型体を蓋付きカ
ーボン坩堝に入れ、大気中で、1600℃/1時間の昇温速度で1600℃まで昇温させ
た後、一時間保持し、800℃/1分の降温速度で800℃まで急冷し、さらに、室温ま
で冷却した。
Hereinafter, the contents of the present invention will be specifically described by way of examples.
Fine powder of mixed crystal compound of C12A7 compound and Sr12A7 compound is 300 kg / cm 2.
Then, the molded body additionally molded by a hydrostatic pressure press of 2000 kg / cm 2 was used as a starting material for the (Ca, Sr) -Al—O-based transparent glass. The molded body is put in a carbon crucible with a lid, heated to 1600 ° C. at a heating rate of 1600 ° C./1 hour in the atmosphere, held for 1 hour, and then lowered to 800 ° C. at a cooling rate of 800 ° C./1 minute. Quenched and further cooled to room temperature.

得られた化合物は、図1(A)に示す様に、可視光領域で透明であり、図2(A)のよ
うな典型的なアモルファスのX線回折パターンを示し、C12A7の結晶構造をもたない
(Ca、Sr)−Al−O系透明ガラスである事が確認された。また、ラマン・スペクト
ルからもC12A7の結晶のスペクトルを示さず、ガラス相であることが確認された。ま
た、ラマン・スペクトルには、1870cm−1付近にラマン・バンドが見られ、C
が含まれている事が示された。これらの(Ca、Sr)−Al−O系透明ガラスは電気
伝導性がない絶縁体であった。
As shown in FIG. 1A, the obtained compound is transparent in the visible light region, shows a typical amorphous X-ray diffraction pattern as shown in FIG. 2A, and has a crystal structure of C12A7. (Ca, Sr) -Al-O based transparent glass was confirmed. Further, the spectrum of C12A7 crystal was not shown from the Raman spectrum, and it was confirmed to be a glass phase. In the Raman spectrum, a Raman band is observed in the vicinity of 1870 cm −1 , and C 2 2
- it was shown to have been included. These (Ca, Sr) -Al-O-based transparent glasses were insulators having no electrical conductivity.

次に、上記によって得られた(Ca、Sr)−Al−O系透明ガラスを、熱的耐久性や
化学的耐久性のある石英管の中に入れ、1Paの真空度で封入し、200℃/1時間の昇
温速度で1000℃まで昇温させた後、30分間保持し、200℃/1時間の降温速度で
室温まで冷却した。その結果、図1の(B)に示すように、濃緑色の化合物が得られた。
Next, the (Ca, Sr) —Al—O-based transparent glass obtained as described above is put into a quartz tube having thermal durability and chemical durability, and sealed at a vacuum degree of 1 Pa, and 200 ° C. The temperature was raised to 1000 ° C. at a temperature rising rate of / 1 hour, held for 30 minutes, and cooled to room temperature at a temperature lowering rate of 200 ° C./1 hour. As a result, as shown in FIG. 1B, a dark green compound was obtained.

その化合物のX線回折の結果から、得られた化合物はアルミナ・カルシヤ化合物の同型
化合物のC12A7とSr12A7の混晶結晶である事が示された。光拡散反射及び電気
伝導度から、ケージに包接されている電子の数は1×1020個/cm以上であること
が分かった。図4に、該C12A7/Sr12A7混晶化合物の電気伝導度の温度依存性
を示す。室温で約2S/cmの電気伝導度を示し、温度の減少によって低下する半導体の
特性を示した。
From the result of X-ray diffraction of the compound, it was shown that the obtained compound was a mixed crystal of C12A7 and Sr12A7, which are the same type of alumina / calcium compound. From the light diffuse reflection and electrical conductivity, it was found that the number of electrons included in the cage was 1 × 10 20 / cm 3 or more. FIG. 4 shows the temperature dependence of the electrical conductivity of the C12A7 / Sr12A7 mixed crystal compound. It exhibited an electrical conductivity of about 2 S / cm at room temperature, and showed the characteristics of a semiconductor that decreased with decreasing temperature.

同様の実験を5回繰り返したが、いずれの場合も、室温で約2S/cmの電気伝導度を
示す濃緑色のC12A7/Sr12A7混晶化合物が得られた。
The same experiment was repeated 5 times. In each case, a dark green C12A7 / Sr12A7 mixed crystal compound having an electric conductivity of about 2 S / cm at room temperature was obtained.

比較例1
実施例1で用いたカーボン坩堝に代えてアルミナ坩堝を使用した以外は実施例1と同じ条
件でC12A7とSr12A7の混晶結晶を製造した。該結晶は、白色で、電気絶縁体で
あった。
Comparative Example 1
A mixed crystal of C12A7 and Sr12A7 was produced under the same conditions as in Example 1 except that an alumina crucible was used instead of the carbon crucible used in Example 1. The crystal was white and was an electrical insulator.

比較例2
実施例1のように、(Ca、Sr)−Al−O系透明ガラスを、熱的耐久性や化学的耐久
性のある石英管の中に入れ、1Paの真空度で封入する代わりに、大気中で結晶化熱処理
した以外は実施例1と同じ条件でC12A7とSr12A7の混晶結晶を製造した。その
結果、白色の化合物が得られた。得られた化合物は、電気絶縁体であった。
Comparative Example 2
Instead of enclosing (Ca, Sr) -Al-O-based transparent glass in a quartz tube having thermal durability and chemical durability as in Example 1 and enclosing it at a vacuum of 1 Pa, air A mixed crystal of C12A7 and Sr12A7 was produced under the same conditions as in Example 1 except that the crystallization heat treatment was performed in the above. As a result, a white compound was obtained. The resulting compound was an electrical insulator.

本発明の電気伝導性複合酸化物結晶化合物は、薄膜にした場合、1μm以下の膜厚では
、透明であり、透明電極として用いる事ができる。また、該化合物は、電子が局在してお
り、格子と緩く結合しているために、外部から電場を加えると容易に引き出すことができ
、コールド電子エミッタ−として用いる事ができる。また、酸素を容易に取りこむので、
還元剤として利用する事ができる。
When the electrically conductive complex oxide crystal compound of the present invention is made into a thin film, it is transparent at a film thickness of 1 μm or less and can be used as a transparent electrode. In addition, since the compound has localized electrons and is loosely coupled to the lattice, it can be easily extracted by applying an electric field from the outside and can be used as a cold electron emitter. Also, because it takes in oxygen easily,
It can be used as a reducing agent.

(A)C12A7系透明ガラスと(B)該透明ガラスを結晶化した試料の図面代用光学写真である。It is a drawing substitute optical photograph of the sample which crystallized (A) C12A7 system transparent glass and (B) this transparent glass. (A)C12A7系透明ガラスと(B)該透明ガラスを結晶化した試料のX線回折パターンである。It is an X-ray diffraction pattern of (A) C12A7 series transparent glass and (B) the sample which crystallized this transparent glass. C12A7系透明ガラスの示差熱分析法から求めた結晶化温度を示すグラフである。It is a graph which shows the crystallization temperature calculated | required from the differential thermal analysis method of C12A7 type | system | group transparent glass. 絶縁体のC12A7系透明ガラスを結晶化した結晶化ガラスの電気伝導の温度変化を示すグラフである。It is a graph which shows the temperature change of the electrical conduction of the crystallized glass which crystallized C12A7 type | system | group transparent glass of the insulator.

Claims (6)

12Ca1−XSrO・7Al(x=0〜1)で示される組成を有する化合物又
は12Ca1−XSrO・7Al(x=0〜1)で示される化合物に相当する平
均組成となるように混合した2種以上の化合物混合体を溶融凝固してなる複合金属酸化物
透明ガラスを結晶化させた電気伝導性複合酸化物結晶化合物。
12Ca 1-X Sr X O · 7Al 2 O 3 compound having a composition represented by (x = 0 to 1) or 12Ca compound represented by 1-X Sr X O · 7Al 2 O 3 (x = 0~1) An electrically conductive composite oxide crystal compound obtained by crystallizing a composite metal oxide transparent glass obtained by melting and solidifying a mixture of two or more compounds mixed so as to have an average composition corresponding to.
複合金属酸化物透明ガラスが、Mg,Baのうち、少なくとも1種類の元素を含有するも
のであることを特徴とする請求項1記載の電気伝導性複合酸化物結晶化合物。
2. The electrically conductive complex oxide crystal compound according to claim 1, wherein the complex metal oxide transparent glass contains at least one element of Mg and Ba.
複合金属酸化物透明ガラスが、希土類金属元素、遷移金属元素のうち、少なくとも1種類
の元素を含有するものであることを特徴とする請求項1記載の電気伝導性複合酸化物結晶
化合物。
2. The electrically conductive composite oxide crystal compound according to claim 1, wherein the composite metal oxide transparent glass contains at least one element selected from a rare earth metal element and a transition metal element.
複合金属酸化物透明ガラスが、Si、Geのうち、少なくとも1種類の元素を含有するも
のであることを特徴とする請求項1記載の電気伝導性複合酸化物結晶化合物。
2. The electrically conductive complex oxide crystal compound according to claim 1, wherein the complex metal oxide transparent glass contains at least one element of Si and Ge.
12Ca1−XSrO・7Al(x=0〜1)で示される組成を有する化合物又
は12Ca1−XSrO・7Al(x=0〜1)で示される化合物に相当する平
均組成となるように混合した2種以上の化合物混合体の微粉末そのまま、該微粉末の静水
圧プレス成型体、又は該微粉末の焼結体、のいずれかを原料として、カーボン部材から構
成される容器中で、1470℃超、1650℃未満の温度に、保持して溶融した後、冷却
してガラス相状態を形成して複合金属酸化物透明ガラスを製造し、該複合金属酸化物透明
ガラスを1.5Pa未満の真空度雰囲気中又は、乾燥した不活性ガス雰囲気中で、950
℃から1470℃の温度範囲に保持して結晶化させることを特徴とする、電気伝導性複合
酸化物結晶化合物の製造方法。
12Ca 1-X Sr X O · 7Al 2 O 3 compound having a composition represented by (x = 0 to 1) or 12Ca compound represented by 1-X Sr X O · 7Al 2 O 3 (x = 0~1) Using as a raw material either a fine powder of a mixture of two or more compounds mixed so as to have an average composition corresponding to the above, a hydrostatic press-molded body of the fine powder, or a sintered body of the fine powder. A composite metal oxide transparent glass is manufactured by holding and melting at a temperature of more than 1470 ° C. and less than 1650 ° C. in a container composed of members to form a glass phase state by cooling the composite metal Oxide transparent
In a vacuum atmosphere of less than 1.5 Pa or in a dry inert gas atmosphere, the glass is 950
° C. and held at a temperature range of 1470 ° C. from and wherein Rukoto crystallized, electrically conductive composite
A method for producing an oxide crystal compound .
前記原料に、Mg,Ba,希土類金属、遷移金属、Si、又はGeの陽イオン元素のうち
、少なくとも1種類の元素を添加することを特徴とする請求項5記載の電気伝導性複合酸
化物結晶化合物の製造方法。
6. The electrically conductive complex acid according to claim 5, wherein at least one element of Mg, Ba, rare earth metal, transition metal, Si, or Ge cation element is added to the raw material.
A method for producing a chemical compound .
JP2004136942A 2004-04-30 2004-04-30 Electrically conductive complex oxide crystal compound and production method thereof. Active JP4111931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136942A JP4111931B2 (en) 2004-04-30 2004-04-30 Electrically conductive complex oxide crystal compound and production method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136942A JP4111931B2 (en) 2004-04-30 2004-04-30 Electrically conductive complex oxide crystal compound and production method thereof.

Publications (2)

Publication Number Publication Date
JP2005314196A JP2005314196A (en) 2005-11-10
JP4111931B2 true JP4111931B2 (en) 2008-07-02

Family

ID=35441999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136942A Active JP4111931B2 (en) 2004-04-30 2004-04-30 Electrically conductive complex oxide crystal compound and production method thereof.

Country Status (1)

Country Link
JP (1) JP4111931B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061427B2 (en) * 2005-05-27 2012-10-31 旭硝子株式会社 Process for producing conductive mayenite type compound
EP1961702A4 (en) 2005-11-24 2012-01-18 Japan Science & Tech Agency METALLIC ELECTROCONDUCTIVE 12Cao·7Al2O3 COMPOUND AND PROCESS FOR PRODUCING THE SAME
JP2008013396A (en) * 2006-07-05 2008-01-24 Kansai Paint Co Ltd Complex metal oxide and method for manufacturing electroconductive complex metal oxide
JP4781196B2 (en) * 2006-08-07 2011-09-28 パナソニック株式会社 Plasma display panel
JP2008266105A (en) * 2007-04-25 2008-11-06 Asahi Kasei Corp Method of manufacturing electrically conductive composite compound
JP5058880B2 (en) * 2007-06-19 2012-10-24 日本碍子株式会社 Conductive ceramic materials
KR100922756B1 (en) 2008-02-13 2009-10-21 삼성모바일디스플레이주식회사 An electrode, a method for preparing the same and a electrical device comprising the same
JP5347345B2 (en) * 2008-06-16 2013-11-20 旭硝子株式会社 Process for producing conductive mayenite type compound
JP5820817B2 (en) 2010-12-07 2015-11-24 国立大学法人東京工業大学 Ammonia synthesis catalyst and ammonia synthesis method
CN104411860B (en) * 2012-06-20 2017-07-28 国立研究开发法人科学技术振兴机构 The manufacture method of the film of C12A7 electron compounds and the film of C12A7 electron compounds
WO2015133240A1 (en) 2014-03-07 2015-09-11 国立研究開発法人科学技術振興機構 Mayenite-type compound containing imide anion, and method for producing same

Also Published As

Publication number Publication date
JP2005314196A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4245608B2 (en) Electrically conductive 12CaO · 7Al2O3 compound and method for producing the same
TWI283234B (en) Method for preparing electroconductive Mayenite type compound
JP4497484B2 (en) Process for producing conductive mayenite type compound
JP4495757B2 (en) Process for producing conductive mayenite type compound
JP4833221B2 (en) Method for producing metallic electrically conductive 12CaO.7Al2O3 compound
JP5245455B2 (en) Mayenite type compound
JP5061427B2 (en) Process for producing conductive mayenite type compound
JP4111931B2 (en) Electrically conductive complex oxide crystal compound and production method thereof.
TW201034996A (en) Method for manufacturing mayenite-containing oxides and method for manufacturing conductive mayenite-containing oxides
Andreev et al. Chemistry and technology of samarium monosulfide
JP2008013396A (en) Complex metal oxide and method for manufacturing electroconductive complex metal oxide
RU2616648C1 (en) Method for production of glass-ceramic material with rare earth elements niobates nanoscale crystals
Ji et al. Phase relations in the system BaO-Nd2O3-B2O3 (B2O3⩾ 50 mol%) and crystal growth of NdBaB9O16
Brekhovskikh et al. Synthesis and glass formation in the BaO-B 2 O 3-BaCl 2 system
Bermeshev et al. Crystallization and Decomposition of Compounds with the Aurivillius Crystal Structure in the Bi2GeO5–Bi2SiO5 Pseudobinary Metastable System
Ding et al. Research on the phase decomposition of LuxY1− xAlO3: Ce crystals at high temperatures
JP2018188326A (en) Compound, phosphor using the same, and method for producing the compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Ref document number: 4111931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250