JP4110956B2 - Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device - Google Patents

Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device Download PDF

Info

Publication number
JP4110956B2
JP4110956B2 JP2002354132A JP2002354132A JP4110956B2 JP 4110956 B2 JP4110956 B2 JP 4110956B2 JP 2002354132 A JP2002354132 A JP 2002354132A JP 2002354132 A JP2002354132 A JP 2002354132A JP 4110956 B2 JP4110956 B2 JP 4110956B2
Authority
JP
Japan
Prior art keywords
white
solid
imaging device
state imaging
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002354132A
Other languages
Japanese (ja)
Other versions
JP2004187163A (en
Inventor
哲也 諏訪
浩介 木下
明伸 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2002354132A priority Critical patent/JP4110956B2/en
Publication of JP2004187163A publication Critical patent/JP2004187163A/en
Application granted granted Critical
Publication of JP4110956B2 publication Critical patent/JP4110956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は画素欠陥補正機能を備えた固体撮像装置及び固体撮像装置の画素欠陥補正方法に係り、特に固体撮像素子の画素欠陥を信号処理で補正する機能を有する画素欠陥補正機能を備えた固体撮像装置及び固体撮像装置の画素欠陥補正方法に関する。
【0002】
【従来の技術】
近年、画像撮像用のデバイスとして、CCD(電荷転送素子)等の固体撮像素子を用いたビデオカメラ(固体撮像装置)が商品化されている。このビデオカメラに利用される固体撮像素子において、良好な画質の映像信号を得るためには、固体撮像素子上のすべての画素に関して欠陥や不良が無いことが重要となる。
【0003】
これは、固体撮像素子上の画素に欠陥や不良があった場合、被写体の種類や明るさによらず、その画素が常に白点になる、いわゆる白キズと呼ばれる現象が発生し、映像の品質を大きく低下させる原因となるためである。
【0004】
そこで、従来より画素欠陥補正機能をもつ固体撮像装置が各種提案されている(例えば、特許文献1、特許文献2参照)。特許文献1記載の従来の固体撮像装置では、固体撮像素子で得られた画像信号をディジタル化した後、画素欠陥による画像の異常信号(白キズ)を補正するものであり、輪郭補正回路を用いて、輪郭補正信号の絶対値のレベルが所定値以上かどうかを判定することで、欠陥画素かどうかを自動的に判定するようにしている。
【0005】
また、特許文献2記載の従来の固体撮像装置では、白キズの検出時にアイリスを閉じ、撮像信号を処理するアナログ信号処理部の自動利得制御回路(AGC回路)の利得を上昇させて、スレッショルドレベル以上の信号が存在する画素を欠陥として判定すると共に、固体撮像素子若しくはその周辺の温度を検出する温度検出手段を設けて、その検出温度に応じて、固体撮像素子の欠陥画素を検出するための上記のスレッショルドレベルを可変する構成が開示されている。
【0006】
【特許文献1】
特開平3−236689号公報(第2−3頁)
【特許文献2】
特開平6−350926号公報(第3頁、図2、図15)
【0007】
【発明が解決しようとする課題】
しかるに、特許文献1記載の従来の固体撮像装置では、白キズ検出時に固体撮像素子とAGC回路などのばらつきなどに対応した処理がなされていないので、温度、回路定数の変動により検出漏れの可能性があり、画素欠陥補正性能に問題がある。
【0008】
また、特許文献2記載の従来の固体撮像装置では、白キズの検出時にアイリスを閉じ、AGC回路の利得を上昇させて、検出レベル以上の信号が存在する画素を欠陥と判定するが、この検出レベル(スレッショルドレベル)は撮像装置の内部温度、回路系の利得に応じ可変とするものである。しかし、固体撮像装置の内部温度、回路系の利得に応じて検出レベルを可変とするために用いるテーブルは固定であるため、白キズの検出精度はこのテーブル精度に依存して低下する。また、温度検出回路が必要となるという問題もある。
【0009】
本発明は以上の点に鑑みなされたもので、白キズ検出時の固体撮像素子の特性、温度、回路定数のばらつきによる検出漏れを低減し得る画素欠陥補正機能を備えた固体撮像装置及び固体撮像装置の画素欠陥補正方法を提供することを目的とする。
【0010】
また、本発明の他の目的は、画素欠陥の検出時間を短縮し得る画素欠陥補正機能を備えた固体撮像装置及び固体撮像装置の画素欠陥補正方法を提供することにある。
【0011】
更に、また、本発明の他の目的は、温度検出回路が不要で、しかも検出された画素欠陥位置座標を書き込むメモリの容量を小さくし得る安価な構成の画素欠陥補正機能を備えた固体撮像装置及び固体撮像装置の画素欠陥補正方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するため、第1の発明は、入射光量に応じたレベルの撮像信号を出力する固体撮像素子と、撮像信号のマスターブラックレベルを外部制御信号に基づき可変する機能を少なくとも有するアナログ処理手段と、アナログ処理手段の出力撮像信号に対して補間処理する補間処理手段と、補間処理手段の出力信号から白キズを検出する検出手段と、白キズ検出時は、補間処理手段をオフとし、かつ、固体撮像素子に入射する光を遮断した状態で、外部制御信号をアナログ処理手段に供給してマスターブラックレベルを段階的に変化させ、検出手段により検出されるノイズレベルを含む検出数が設定値以下となった時の白キズの座標を算出する演算手段と、演算手段により算出された白キズの座標をメモリに記憶する記憶手段と、メモリに記憶された白キズの座標を読み出し、その座標位置の画素を欠陥画素として周辺の画素を用いて補間処理手段により補間処理させる制御手段とを有し、上記演算手段を、設定値として固体撮像素子の白キズ不良数として許容できる上限の数を設定し、検出手段により検出されるノイズレベルを含む検出数が設定値以下となった時点で、マスターブラックレベルを段階的に変化させる白キズ検出動作を終了する構成としたものである。
【0013】
この発明では、白キズのある欠陥画素を補間処理により補正する撮像装置において、白キズの検出時に補間処理手段をオフとし、かつ、固体撮像素子に入射する光を遮断した状態で、マスターブラックレベルを段階的に変化させ、検出手段により検出されるノイズレベルを含む白キズの検出数が設定値以下となった時の白キズの座標を算出するようにしたため、固体撮像素子の特性、温度、回路定数のばらつきの影響を最小限にできる。
【0015】
この発明では、検出されるノイズレベルを含む検出数が白キズ不良数として許容できる上限の数以下になった時点で、マスターブラックレベルを段階的に変化させる白キズ検出動作を終了することができる。
【0016】
また、上記の目的を達成するため、第2の発明は、第1の発明の記憶手段を、白キズの座標を、予め設定した上限の数以内で、かつ、所定の優先順位でメモリに記憶することを特徴とする。この発明では、メモリに記憶される白キズの座標数を制限することができる。
更に、上記の目的を達成するため、第3の発明は、入射光量に応じたレベルの撮像信号を出力する固体撮像素子と、撮像信号のマスターブラックレベルを外部制御信号に基づき可変する機能を少なくとも有するアナログ処理手段と、アナログ処理手段の出力撮像信号に対して補間処理する補間処理手段と、補間処理手段の出力信号から白キズを検出する検出手段と、を備える固体撮像装置における画素欠陥補正方法であって、
白キズ検出時は、補間処理手段をオフとし、かつ、固体撮像素子に入射する光を遮断した状態で、外部制御信号をアナログ処理手段によりマスターブラックレベルを段階的に変化させ、検出手段により検出されるノイズレベルを含む白キズの検出数が設定値以下となった時の白キズの座標を算出する演算ステップと、演算ステップにより算出された白キズの座標をメモリに記憶するステップと、メモリに記憶された白キズの座標を読み出し、その座標位置の画素を欠陥画素として周辺の画素を用いて補間処理手段により補間処理させる制御ステップとを含み、演算ステップは、設定値として固体撮像素子の白キズ不良数として許容できる上限の数を設定し、検出手段により検出されるノイズレベルを含む白キズの検出数が設定値以下となった時点で、マスターブラックレベルを段階的に変化させる白キズ検出動作を終了することを特徴とする。
【0017】
【発明の実施の形態】
図1は本発明になる画素欠陥補正機能を備えた固体撮像装置の一実施の形態のブロック図を示す。なお、この実施の形態では、G(緑)、B(青)及びR(赤)の3板の固体撮像素子の撮像装置(ビデオカメラ)の例を示しているが、B又はRに替えてGを使用した3板式の撮像装置にも適用できる。
【0018】
図1において、各々CCD(電荷転送素子)による緑色用固体撮像素子1G、青色用固体撮像素子1B及び赤色用固体撮像素子1Rは、被写体からの入射光が照射され、その入射光を対応する光波長成分の光量に応じた電気信号にそれぞれ変換して緑色信号(G信号)、青色信号(B信号)及び赤色信号(R信号)として、AGC(自動利得制御)などを含むアナログ処理部2G、2B及び2Rに供給して所定のアナログ信号処理を行わせる。
【0019】
アナログ処理部2G、2B及び2Rから取り出されたG信号、B信号及びR信号は、ADC(A/D変換器)3G、3B及び3Rに別々に供給されてディジタル信号に変換された後、補間処理部4G、4B及び4Rによりそれぞれ所定の補間処理が施され、更にDSP(ディジタル信号処理部)7G、7B及び7Rによりディジタル信号処理されると共に、白キズ検出処理部8G、8B及び8Rにより白キズが検出される。DSP7G、7B及び7Rから出力されたディジタル信号は、DAC(D/A変換器)9G、9B及び9Rによりそれぞれアナログ信号に変換されて、G信号、B信号およびR信号として出力される。
【0020】
また、中央処理装置(CPU)5は、白キズ検出部8G、8B及び8Rからの白キズ検出信号が入力され、それに基づき所定の補正アルゴリズムに従って制御信号を生成してアナログ処理部2G、2B及び2Rや、補間処理部4G、4B及び4Rに供給したり、メモリ6との間で白キズ座標値を送受信する。
【0021】
次に、白キズ検出処理とその補正処理のアルゴリズムについて図2のフローチャート、図3の欠陥画素座標の図、及び図4のマスターブラックレベルを段階的に変化させた時の白キズ検出説明図を併せ参照して説明する。
【0022】
まず、電源投入後に検出モードにするか否かを選択し(図2のステップS1)、検出モードの場合にはCPU5はアイリスクローズ、AGCゲインアップを行い(図2のステップS2、S3)、補間処理部4G、4B及び4Rの動作をオフにする(図2のステップS4)。従って、白キズ検出時は、緑色用固体撮像素子1G、青色用固体撮像素子1B及び赤色用固体撮像素子1Rには、それぞれ入射光は遮断されて入射しない。
【0023】
続いて、CPU5はマスターブラックレベルを段階的に変化させる回数n、検出個数の最大値mの値を初期化すると共にマスターブラックレベルを所定の値に増加させる(図2のステップS5、S6、S7)。ここで、マスターブラックレベルは、黒レベルの基準のことであり、例えば、アナログ信号処理部2G、2B、2R内のDCセットアップ部のDCセットアップ値が、CPU5からの制御信号に従って変更されることにより、可変される。
【0024】
続いて、CPU5は白キズ検出部8G、8B及び8Rから検出レベル以上の白キズ検出信号を入力として受け、1フレームあたりの検出レベル以上の白キズの数がm個未満、またはnの値が0になるまでマスターブラックレベルを段階的に減少させる動作を繰り返す(図2のステップS8〜S11)。
【0025】
図4は上記のマスターブラックレベルを段階的に減少させた動作時の様子を示す。マスターブラックレベル減少動作後の検出はディジタル回路で構成されているものであるが、構成や動作の理解を容易にするために、図4に示されているようなアナログ信号による波形図を説明に使用する。
【0026】
図4はマスターブラックレベルを段階的に変化させる回数nを「5」に初期設定した場合の各段階での信号を示し、(a)から(e)(n=5からn=1)の順にはマスターブラックレベル減少動作を行う。図4(a)から(c)のn≧3では、白キズ以外のノイズレベルも検出しているが、同図(d)、(e)のn<3では、白キズのみを検出している。この時の検出個数の最大値mの値は、固体撮像素子の白キズ不良数として許容できる上限の数に設定する。これにより、初期値n=5の場合でも、上記動作をn回行うことなく検出時間を短縮できる。
【0027】
つまり、図4の例では、図4(d)に示すn=2の場合に白キズ検出数が許容できる上限の数m以下となるので、この段階で白キズ検出動作を終了し(図2のステップS10)、n=1の段階での白キズ検出動作を行わないので、検出時間が短縮される。上記の検出動作条件が満たされたら検出動作を終了し、CPU5は検出された座標をメモリ6に書き込む(図2のステップS12)。
【0028】
図4の例では(d)のn=2の時の検出座標をメモリ6に書き込むことになるが、このメモリ6に書き込む座標の数には上限を設けてメモリ容量を小さく構成する。この上限の数内で座標データは以下の条件で優先順位をもってメモリ6に書き込まれる。
【0029】
(A)G、R、Bの順。および(B)検出レベルの高い順。
(A)、(B)の組み合わせや順番は任意であるが、白キズが画面上で目立ちやすい順番に優先するという観点からこの優先条件は設定されている。例えば、(A)のG信号、R信号、B信号の順に優先する理由は、同じ出力レベルであれば、人間の視覚特性上、この色信号順に感度が高いためである。
【0030】
以上で検出モードの動作を終了して、検出モードオフ時と共通の動作に入る。すなわち、CPU5はメモリ6の検出座標値を読み出し、補間処理部4G、4B及び4Rにその入力信号と同期したタイミングで補間をするフラグを送信する(図2のステップS13)。これに基づき、補間処理部4Gは例えば、図3に示すように補間する欠陥画素座標を(x,y)とすると、その欠陥画素座標の画素G(x,y)の上下に隣接する2つの画素G(x,y−1)及びG(x,y+1)と、左右に隣接する2つの画素G(x−1,y)及びG(x+1,y)の計4画素の平均値で補間する。すなわち、補間処理部4Gは下記の欠陥画素補間式
G(x,y)={G(x−1,y)+G(x+1,y)+G(x,y−1)+G(x,y+1)}/4
の演算を行って得た値を、欠陥画素座標の画素G(x,y)の値とする。他の補間処理部4B及び4Rも同様の欠陥画素補間式に基づいて補間処理を行う(図2のステップS14)。最後にDSP7G、7B及び7Rで通常の信号処理がなされる(図2のステップS15)。
【0031】
このように、本実施の形態によれば、白キズ不良数として許容できる最大値mの値以内のノイズを白キズ検出する可能性はあるが、本物の白キズを検出漏れすることはまずないため、固体撮像素子1G、1B、1Rの特性、温度、回路定数のばらつきによる検出漏れを減少させることができる。
【0032】
なお、撮像素子のバラツキ、回路定数のバラツキ、使用環境温度の変化などにより、マスターブラックレベルがかなり低いレベル(図4の横軸のラインよりも下回ってしまうほどの低いレベル)になる使用状況も考えられる。このような状況において、検出レベルを段階的に変化させる方法では、検出できない白キズが発生してしまう。しかし、本発明のようなマスターブラックレベルを変化させる構成では、このような状況下でも目的とする検出が行える。
【0033】
なお、本発明は上記の実施の形態に限定されるものではなく、例えば欠陥画素の補間を欠陥画素の周囲の8画素から平均補間するようにしてもよく、それ以上の各画素に基づき欠陥画素からの距離に応じた重み付けを行って補間することもできる。また、マスターブラックレベル、検出レベルの値及びmの値については、R信号、G信号及びB信号のそれぞれについて異なる独立制御、異なる値でもよい。
【0034】
【発明の効果】
以上説明したように、本発明によれば、白キズのある欠陥画素を補間処理により補正する撮像装置において、白キズの検出時にマスターブラックレベルを段階的に変化させて、その都度検出されるノイズレベルを含む白キズの検出数が設定値以下となった時の白キズの座標を算出することにより、固体撮像素子の特性、温度、回路定数のばらつきの影響を最小限にするようにしたため、本物の白キズを検出漏れする可能性を大幅に低減でき、また、従来に比べてテーブル精度に依存せず高精度で白キズ検出ができる。
【0035】
また、本発明によれば、検出されるノイズレベルを含む検出数が白キズ不良数として許容できる上限の数以下になった時点で、マスターブラックレベルを段階的に変化させる白キズ検出動作を終了するようにしたため、画素欠陥の検出時間を短縮できる。
【0036】
更に、本発明によれば、メモリに記憶される白キズの座標数を制限するようにしたため、検出された画素欠陥位置座標を書き込むメモリの容量を小さくでき、また、温度検出回路が不要であるため、撮像装置を安価な構成にできる。
【0037】
更にまた、本発明によれば、撮像素子のバラツキ、回路定数のバラツキ、使用環境温度の変化などにより、マスターブラックレベルがかなり低いレベルになる使用状況においても、マスターブラックレベルを変化させているため、目的とする白キズ検出が行える。
【図面の簡単な説明】
【図1】本発明の一実施の形態のブロック図である。
【図2】図1の白キズ検出処理とその補正処理のアルゴリズムを示すフローチャート、
【図3】欠陥画素座標と欠陥画素補間式の説明図である。
【図4】本発明によりマスターブラックレベルを段階的に変化させた時の白キズ検出説明図である。
【符号の説明】
1G 緑色用固体撮像素子
1B 青色用固体撮像素子
1R 赤色用固体撮像素子
2G、2B、2R アナログ処理部
3G、3B、3R ADC(A/D変換器)
4G、4B、4R 補間処理部
5 中央処理装置(CPU)
6 メモリ
7G、7B、7R ディジタル処理プロセッサ(DSP)
8G、8B、8R 白キズ検出処理部
9G、9B、9R DAC(D/A変換器)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device having a pixel defect correction function and a pixel defect correction method for the solid-state imaging device, and more particularly to a solid-state imaging having a pixel defect correction function having a function of correcting pixel defects of a solid-state imaging device by signal processing. The present invention relates to a device and a pixel defect correction method for a solid-state imaging device .
[0002]
[Prior art]
In recent years, video cameras (solid-state imaging devices) using a solid-state imaging element such as a CCD (charge transfer element) have been commercialized as devices for imaging an image. In a solid-state imaging device used for this video camera, in order to obtain a video signal with good image quality, it is important that all pixels on the solid-state imaging device have no defects or defects.
[0003]
This is because when a pixel on a solid-state image sensor has a defect or a defect, a so-called white defect occurs, that is, the pixel always becomes a white spot regardless of the type and brightness of the subject. This is because it may cause a significant decrease in.
[0004]
Thus, various solid-state imaging devices having a pixel defect correction function have been proposed (see, for example, Patent Document 1 and Patent Document 2). In the conventional solid-state imaging device described in Patent Document 1, an image signal obtained by a solid-state imaging device is digitized, and then an abnormal image signal (white defect) due to a pixel defect is corrected, and an outline correction circuit is used. Thus, it is automatically determined whether the pixel is a defective pixel by determining whether the level of the absolute value of the contour correction signal is equal to or higher than a predetermined value.
[0005]
Further, in the conventional solid-state imaging device described in Patent Document 2, the iris is closed when white scratches are detected, and the gain of the automatic gain control circuit (AGC circuit) of the analog signal processing unit that processes the imaging signal is increased to increase the threshold level. A pixel having the above signal is determined as a defect, and a temperature detection unit for detecting the temperature of the solid-state imaging device or its surroundings is provided, and a defective pixel of the solid-state imaging device is detected according to the detected temperature. A configuration for changing the threshold level is disclosed.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-236689 (page 2-3)
[Patent Document 2]
JP-A-6-350926 (Page 3, FIG. 2, FIG. 15)
[0007]
[Problems to be solved by the invention]
However, in the conventional solid-state imaging device described in Patent Document 1, processing corresponding to variations between the solid-state imaging device and the AGC circuit is not performed at the time of detecting a white flaw, and therefore there is a possibility of detection omission due to variations in temperature and circuit constants. There is a problem in pixel defect correction performance.
[0008]
Further, in the conventional solid-state imaging device described in Patent Document 2, the iris is closed when white scratches are detected, the gain of the AGC circuit is increased, and a pixel having a signal of a detection level or higher is determined as a defect. The level (threshold level) is variable according to the internal temperature of the imaging apparatus and the gain of the circuit system. However, since the table used to make the detection level variable according to the internal temperature of the solid-state imaging device and the gain of the circuit system is fixed, the detection accuracy of white flaws decreases depending on the table accuracy. There is also a problem that a temperature detection circuit is required.
[0009]
The present invention has been made in view of the above points, and a solid- state imaging device and a solid- state imaging device having a pixel defect correction function capable of reducing detection omission due to variations in characteristics, temperature, and circuit constants of a solid-state imaging device when white scratches are detected An object of the present invention is to provide a pixel defect correction method for an apparatus .
[0010]
Another object of the present invention is to provide a solid-state imaging device having a pixel defect correction function capable of shortening the detection time of pixel defects and a pixel defect correction method for the solid-state imaging device .
[0011]
Furthermore, another object of the present invention is to provide a solid-state imaging device having a pixel defect correction function having an inexpensive configuration that does not require a temperature detection circuit and can reduce the capacity of a memory for writing detected pixel defect position coordinates. Another object of the present invention is to provide a pixel defect correction method for a solid-state imaging device .
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the first invention is an analog having at least a solid-state imaging device that outputs an imaging signal at a level corresponding to the amount of incident light, and a function that varies a master black level of the imaging signal based on an external control signal. Processing means, interpolation processing means for interpolating the output image signal of the analog processing means, detection means for detecting white flaws from the output signal of the interpolation processing means, and when white flaws are detected, the interpolation processing means is turned off. In addition, the number of detections including the noise level detected by the detecting means is changed by supplying an external control signal to the analog processing means in a state where the light incident on the solid-state imaging device is blocked, and changing the master black level stepwise. Computing means for calculating the coordinates of the white scratch when the set value is not more than the set value; storage means for storing the coordinates of the white scratch calculated by the computing means in the memory; Reads the coordinates of the white defects stored in Li, have a control means for interpolation by the interpolation processing means using the surrounding pixels to the pixels of the coordinates as a defective pixel, the arithmetic means, solid as a set value Set the maximum number of white defects that can be accepted as the number of white defects in the image sensor, and change the master black level step by step when the number of detections including the noise level detected by the detection means falls below the set value. The detection operation is terminated .
[0013]
According to the present invention, in an image pickup apparatus that corrects defective pixels having white flaws by interpolation processing, the master black level is set in a state where the interpolation processing means is turned off at the time of white flaw detection and light incident on the solid-state image pickup device is blocked. And the coordinates of the white scratch when the number of detected white scratches including the noise level detected by the detection means is equal to or less than the set value are calculated. The influence of variations in circuit constants can be minimized.
[0015]
In the present invention, when the number of detections including the detected noise level is equal to or less than the upper limit of the allowable number of white flaws, the white flaw detection operation for changing the master black level stepwise can be completed. .
[0016]
In order to achieve the above object, the second invention stores the memory means of the first invention in the memory with white scratch coordinates within a predetermined upper limit and in a predetermined priority order. It is characterized by doing. In the present invention, the number of coordinates of white scratches stored in the memory can be limited.
Furthermore, in order to achieve the above object, the third invention, a solid-state imaging device which outputs the level imaging signal according to the amount of incident light, the function of varying based master black level of the image signal to an external control signal Pixel defect correction in a solid-state imaging device comprising at least analog processing means, interpolation processing means for performing interpolation processing on the output image pickup signal of the analog processing means, and detection means for detecting white flaws from the output signal of the interpolation processing means A method,
When detecting white flaws, with the interpolation processing means turned off and the light incident on the solid-state image sensor blocked, the external control signal is detected by the detection means by changing the master black level stepwise by the analog processing means. A calculation step of calculating the coordinates of white scratches when the number of detected white scratches including a noise level is equal to or less than a set value, a step of storing in the memory the coordinates of white scratches calculated by the calculation step, and a memory And a control step of interpolating the surrounding pixel with the pixel at the coordinate position as a defective pixel by interpolation processing means using the pixel at the coordinate position as a defective pixel. set the number of upper limit acceptable as white flaws number of defective, detecting the number of white spots, including the noise level detected by the detecting means becomes equal to or smaller than the set value In point, characterized by terminating the white defect detecting operation is changed stepwise the master black level.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of an embodiment of a solid-state imaging device having a pixel defect correction function according to the present invention. In this embodiment, an example of an imaging device (video camera) of a three-plate solid-state imaging device of G (green), B (blue), and R (red) is shown. The present invention can also be applied to a three-plate type imaging apparatus using G.
[0018]
In FIG. 1, a green solid-state image pickup device 1G, a blue solid-state image pickup device 1B, and a red solid-state image pickup device 1R each using a CCD (charge transfer device) are irradiated with incident light from a subject, and the incident light corresponds to the corresponding light. An analog processing unit 2G including AGC (automatic gain control) and the like as a green signal (G signal), a blue signal (B signal), and a red signal (R signal) by converting into an electrical signal corresponding to the light amount of the wavelength component, 2B and 2R are supplied to perform predetermined analog signal processing.
[0019]
The G, B, and R signals extracted from the analog processing units 2G, 2B, and 2R are separately supplied to ADCs (A / D converters) 3G, 3B, and 3R, converted into digital signals, and then interpolated. Predetermined interpolation processing is performed by the processing units 4G, 4B, and 4R, and further, digital signal processing is performed by DSPs (digital signal processing units) 7G, 7B, and 7R, and white defect detection processing units 8G, 8B, and 8R perform white signal processing. Scratches are detected. Digital signals output from the DSPs 7G, 7B, and 7R are converted into analog signals by DACs (D / A converters) 9G, 9B, and 9R, respectively, and output as G signals, B signals, and R signals.
[0020]
The central processing unit (CPU) 5 receives white defect detection signals from the white defect detection units 8G, 8B, and 8R, generates a control signal according to a predetermined correction algorithm based on the white defect detection signals, and generates analog processing units 2G, 2B, and 2R, interpolation processing units 4G, 4B, and 4R are supplied, and white scratch coordinate values are transmitted to and received from the memory 6.
[0021]
Next, the white scratch detection processing and its correction processing algorithm are shown in the flowchart of FIG. 2, the diagram of the defective pixel coordinates of FIG. 3, and the white scratch detection explanatory diagram when the master black level of FIG. The description will be made with reference to them.
[0022]
First, it is selected whether or not to enter the detection mode after power-on (step S1 in FIG. 2). In the detection mode, the CPU 5 performs iris close and AGC gain increase (steps S2 and S3 in FIG. 2) and interpolation. The operations of the processing units 4G, 4B, and 4R are turned off (step S4 in FIG. 2). Therefore, when white flaws are detected, incident light is blocked and does not enter the solid-state image sensor 1G for green, the solid-state image sensor 1B for blue, and the solid-state image sensor 1R for red.
[0023]
Subsequently, the CPU 5 initializes the number n of times of changing the master black level step by step and the maximum value m of the detected number and increases the master black level to a predetermined value (steps S5, S6 , S7 in FIG. 2). ). Here, the master black level is a reference of the black level. For example, when the DC setup value of the DC setup unit in the analog signal processing units 2G, 2B, 2R is changed according to the control signal from the CPU 5. Variable.
[0024]
Subsequently, the CPU 5 receives white scratch detection signals of the detection level or higher from the white scratch detection units 8G, 8B and 8R as inputs, and the number of white scratches of the detection level or higher per frame is less than m, or the value of n is The operation of decreasing the master black level in steps until it becomes 0 is repeated (steps S8 to S11 in FIG. 2).
[0025]
FIG. 4 shows a state during operation in which the master black level is gradually reduced. The detection after the master black level reduction operation is configured by a digital circuit, but in order to facilitate understanding of the configuration and operation, the waveform diagram based on the analog signal as shown in FIG. 4 will be described. use.
[0026]
FIG. 4 shows signals at each stage when the number n of times of changing the master black level is initially set to “5”, in the order of (a) to (e) (n = 5 to n = 1). Performs the master black level reduction operation. When n ≧ 3 in FIGS. 4A to 4C, noise levels other than white scratches are detected. However, when n <3 in FIGS. 4D and 4E, only white scratches are detected. Yes. The maximum value m of the number of detections at this time is set to an upper limit number that can be accepted as the number of white flaws of the solid-state imaging device. Thereby, even when the initial value n = 5, the detection time can be shortened without performing the above operation n times.
[0027]
That is, in the example of FIG. 4, when n = 2 shown in FIG. 4D, the number of white scratches detected is less than the upper limit number m, so the white scratch detection operation is terminated at this stage (FIG. 2). In step S10), since the white scratch detection operation at the stage of n = 1 is not performed, the detection time is shortened. When the above detection operation conditions are satisfied, the detection operation is terminated, and the CPU 5 writes the detected coordinates in the memory 6 (step S12 in FIG. 2).
[0028]
In the example of FIG. 4, the detected coordinates when n = 2 in (d) are written in the memory 6, but the upper limit is set for the number of coordinates written in the memory 6 to reduce the memory capacity. Within this upper limit, the coordinate data is written in the memory 6 with priority under the following conditions.
[0029]
(A) G, R, B order. And (B) in descending order of detection level.
The combination and order of (A) and (B) are arbitrary, but this priority condition is set from the viewpoint of giving priority to the order in which white scratches are conspicuous on the screen. For example, the reason why priority is given to the order of the G signal, the R signal, and the B signal in (A) is that if the output level is the same, the sensitivity is higher in the order of the color signals in terms of human visual characteristics.
[0030]
Thus, the operation in the detection mode is completed, and the operation common to that in the detection mode off state is entered. That is, the CPU 5 reads the detected coordinate value of the memory 6 and transmits a flag for interpolation at timing synchronized with the input signal to the interpolation processing units 4G, 4B, and 4R (step S13 in FIG. 2). Based on this, for example, when the defective pixel coordinates to be interpolated are (x, y) as shown in FIG. 3, the interpolation processing unit 4G has two adjacent pixels G (x, y) adjacent to the upper and lower sides of the defective pixel coordinates. Interpolation is performed with an average value of a total of four pixels, that is, the pixels G (x, y−1) and G (x, y + 1) and the two pixels G (x−1, y) and G (x + 1, y) adjacent to the left and right. . That is, the interpolation processing unit 4G has the following defective pixel interpolation formula G (x, y) = {G (x-1, y) + G (x + 1, y) + G (x, y-1) + G (x, y + 1)}. / 4
The value obtained by performing the above calculation is the value of the pixel G (x, y) in the defective pixel coordinates. The other interpolation processing units 4B and 4R also perform interpolation processing based on the same defective pixel interpolation formula (step S14 in FIG. 2). Finally, normal signal processing is performed by the DSPs 7G, 7B, and 7R (step S15 in FIG. 2).
[0031]
As described above, according to the present embodiment, there is a possibility of detecting white flaws within the value of the maximum value m allowable as the number of white flaw defects, but it is unlikely that real white flaws will be detected. Therefore, detection omission due to variations in the characteristics, temperature, and circuit constants of the solid-state imaging devices 1G, 1B, and 1R can be reduced.
[0032]
It should be noted that due to variations in image pickup devices, variations in circuit constants, changes in usage environment temperature, etc., there is a situation where the master black level is considerably low (a level that is lower than the horizontal axis in FIG. 4). Conceivable. In such a situation, white scratches that cannot be detected are generated by the method of changing the detection level in stages. However, in the configuration in which the master black level is changed as in the present invention, the target detection can be performed even under such a situation.
[0033]
The present invention is not limited to the above-described embodiment. For example, defective pixels may be average-interpolated from eight pixels around the defective pixels, and defective pixels may be based on more pixels. It is also possible to perform interpolation by weighting according to the distance from the. The master black level, the detection level value, and the m value may be different independent controls and different values for the R signal, the G signal, and the B signal, respectively.
[0034]
【The invention's effect】
As described above, according to the present invention, in an imaging device that corrects defective pixels having white flaws by interpolation processing, the noise detected by changing the master black level step by step when white flaws are detected. By calculating the coordinates of white scratches when the number of detected white scratches including the level is less than or equal to the set value, the effect of variations in the characteristics, temperature, and circuit constants of the solid-state image sensor has been minimized. It is possible to greatly reduce the possibility of detecting and detecting genuine white flaws, and to detect white flaws with high accuracy without depending on the table accuracy as compared with the prior art.
[0035]
Further, according to the present invention, when the number of detections including the detected noise level is equal to or less than the upper limit of the allowable number of white scratches, the white scratch detection operation for gradually changing the master black level is terminated. Thus, the pixel defect detection time can be shortened.
[0036]
Furthermore, according to the present invention, since the number of white scratch coordinates stored in the memory is limited, the capacity of the memory for writing the detected pixel defect position coordinates can be reduced, and a temperature detection circuit is not required. Therefore, the imaging apparatus can be configured at a low cost.
[0037]
Furthermore, according to the present invention, the master black level is changed even in a usage situation in which the master black level is considerably low due to variations in imaging elements, variations in circuit constants, changes in usage environment temperature, and the like. The target white scratch can be detected.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a flowchart showing an algorithm for white defect detection processing and correction processing in FIG. 1;
FIG. 3 is an explanatory diagram of defective pixel coordinates and a defective pixel interpolation formula.
FIG. 4 is an explanatory diagram of white flaw detection when the master black level is changed stepwise according to the present invention.
[Explanation of symbols]
1G Green solid-state image sensor 1B Blue solid-state image sensor 1R Red solid-state image sensor 2G, 2B, 2R Analog processing units 3G, 3B, 3R ADC (A / D converter)
4G, 4B, 4R Interpolation processing unit 5 Central processing unit (CPU)
6 Memory 7G, 7B, 7R Digital processing processor (DSP)
8G, 8B, 8R White scratch detection processing unit 9G, 9B, 9R DAC (D / A converter)

Claims (3)

入射光量に応じたレベルの撮像信号を出力する固体撮像素子と、
前記撮像信号のマスターブラックレベルを外部制御信号に基づき可変する機能を少なくとも有するアナログ処理手段と、
前記アナログ処理手段の出力撮像信号に対して補間処理する補間処理手段と、
前記補間処理手段の出力信号から白キズを検出する検出手段と、
白キズ検出時は、前記補間処理手段をオフとし、かつ、前記固体撮像素子に入射する光を遮断した状態で、前記外部制御信号を前記アナログ処理手段に供給して前記マスターブラックレベルを段階的に変化させ、前記検出手段により検出されるノイズレベルを含む検出数が設定値以下となった時の白キズの座標を算出する演算手段と、
前記演算手段により算出された前記白キズの座標をメモリに記憶する記憶手段と、
前記メモリに記憶された白キズの座標を読み出し、その座標位置の画素を欠陥画素として周辺の画素を用いて前記補間処理手段により補間処理させる制御手段と
を有し、
前記演算手段は、前記設定値として前記固体撮像素子の白キズ不良数として許容できる上限の数を設定し、前記検出手段により検出されるノイズレベルを含む検出数が該設定値以下となった時点で、前記マスターブラックレベルを段階的に変化させる白キズ検出動作を終了することを特徴とする画素欠陥補正機能を備えた固体撮像装置。
A solid-state imaging device that outputs an imaging signal at a level corresponding to the amount of incident light;
Analog processing means having at least a function of varying a master black level of the imaging signal based on an external control signal;
Interpolation processing means for performing interpolation processing on the output imaging signal of the analog processing means;
Detecting means for detecting white scratches from the output signal of the interpolation processing means;
When detecting a white flaw, the external processing signal is supplied to the analog processing means in a stepwise manner while the interpolation processing means is turned off and light incident on the solid-state image sensor is blocked. Calculating means for calculating the coordinates of white scratches when the number of detections including the noise level detected by the detection means is equal to or less than a set value;
Storage means for storing the coordinates of the white scratch calculated by the calculation means in a memory;
Reads the coordinates of the white defects stored in the memory, have a control means for interpolation by said interpolating means with a surrounding pixels pixel of the coordinate position as a defective pixel,
The arithmetic means sets an upper limit number allowable as the number of defective white defects of the solid-state imaging device as the set value, and when the detection number including the noise level detected by the detection means becomes equal to or less than the set value A solid-state imaging device having a pixel defect correction function , wherein the white defect detection operation for changing the master black level stepwise is terminated .
前記記憶手段は、前記白キズの座標を、予め設定した上限の数以内で、かつ、所定の優先順位で前記メモリに記憶することを特徴とする請求項記載の画素欠陥補正機能を備えた固体撮像装置。Said storage means, the coordinates of the white defects, within the number of upper limit set in advance, and, with the pixel defect compensation function according to claim 1, characterized in that stored in the memory in a predetermined priority Solid-state imaging device. 入射光量に応じたレベルの撮像信号を出力する固体撮像素子と、
記撮像信号のマスターブラックレベルを外部制御信号に基づき可変する機能を少なくとも有するアナログ処理手段と、
前記アナログ処理手段の出力撮像信号に対して補間処理する補間処理手段と、
前記補間処理手段の出力信号から白キズを検出する検出手段と、
を備える固体撮像装置における画素欠陥補正方法であって、
白キズ検出時は、前記補間処理手段をオフとし、かつ、前記固体撮像素子に入射する光を遮断した状態で、前記外部制御信号を前記アナログ処理手段により前記マスターブラックレベルを段階的に変化させ、前記検出手段により検出されるノイズレベルを含む白キズの検出数が設定値以下となった時の白キズの座標を算出する演算ステップと、
前記演算ステップにより算出された前記白キズの座標をメモリに記憶するステップと、
前記メモリに記憶された白キズの座標を読み出し、その座標位置の画素を欠陥画素として周辺の画素を用いて前記補間処理手段により補間処理させる制御ステップと
を含み、
前記演算ステップは、前記設定値として前記固体撮像素子の白キズ不良数として許容できる上限の数を設定し、前記検出手段により検出されるノイズレベルを含む白キズの検出数が該設定値以下となった時点で、前記マスターブラックレベルを段階的に変化させる白キズ検出動作を終了することを特徴とする固体撮像装置の画素欠陥補正方法。
A solid-state imaging device that outputs an imaging signal at a level corresponding to the amount of incident light ;
Analog processing means having at least a variable functions based master black level before Symbol image signal to an external control signal,
Interpolation processing means for performing interpolation processing on the output imaging signal of the analog processing means ;
Detecting means for detecting white scratches from the output signal of the interpolation processing means ;
A pixel defect correction method in a solid-state imaging device comprising:
When white scratches are detected, the external processing signal is changed stepwise by the analog processing means while the interpolation processing means is turned off and the light incident on the solid-state image sensor is blocked. Calculating the coordinates of the white scratch when the number of detected white scratches including the noise level detected by the detection means is equal to or less than a set value;
Storing the coordinates of the white scratch calculated in the calculation step in a memory;
A control step of reading the coordinates of white scratches stored in the memory, and interpolating by the interpolation processing means using peripheral pixels with the pixel at the coordinate position as a defective pixel, and
The calculation step sets an upper limit number allowable as the number of white scratch defects of the solid-state imaging device as the set value, and the detected number of white scratches including a noise level detected by the detection unit is equal to or less than the set value. At this point, the white defect detection operation for changing the master black level stepwise is terminated.
JP2002354132A 2002-12-05 2002-12-05 Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device Expired - Fee Related JP4110956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354132A JP4110956B2 (en) 2002-12-05 2002-12-05 Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354132A JP4110956B2 (en) 2002-12-05 2002-12-05 Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2004187163A JP2004187163A (en) 2004-07-02
JP4110956B2 true JP4110956B2 (en) 2008-07-02

Family

ID=32755240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354132A Expired - Fee Related JP4110956B2 (en) 2002-12-05 2002-12-05 Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4110956B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025148A (en) 2004-07-07 2006-01-26 Sony Corp Signal processing device and method thereof
WO2017203662A1 (en) * 2016-05-26 2017-11-30 オリンパス株式会社 Digital holographic imaging apparatus and imaging method

Also Published As

Publication number Publication date
JP2004187163A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4054184B2 (en) Defective pixel correction device
US6965395B1 (en) Methods and systems for detecting defective imaging pixels and pixel values
JP4497759B2 (en) Image processing apparatus and processing method thereof
USRE44717E1 (en) Edge detecting method
JP5112238B2 (en) Imaging apparatus, setting value changing method, and program
JP5060535B2 (en) Image processing device
US20090174797A1 (en) Method and apparatus for spatial processing of a digital image
JP2009520403A (en) Method and apparatus for image noise reduction
KR100986203B1 (en) Imaging apparatus and defective pixel correction method used therefor
US20080273102A1 (en) Detection device for defective pixel in photographic device
JP4059686B2 (en) White spot fault complement circuit and image sensor using the white spot fault complement circuit
JP4679174B2 (en) Image processing apparatus and digital camera equipped with the image processing apparatus
JP5262953B2 (en) Image processing apparatus, image processing method, and program
JP2005101829A (en) Signal processing apparatus
JP2004320128A (en) Defective pixel correction device
US7667748B2 (en) Method and apparatus of defective pixel correction for a solid-state imaging device
JP3884952B2 (en) Imaging device
JP2010068329A (en) Imaging apparatus
JP4110956B2 (en) Solid-state imaging device having pixel defect correction function and pixel defect correction method for solid-state imaging device
US10623674B2 (en) Image processing device, image processing method and computer readable recording medium
JP2011114473A (en) Pixel defect correction device
JP2001307079A (en) Image processor, image processing method and recording medium
JP2002271806A (en) Pixel defect signal correction circuit for ccd image pickup element
JP2000217039A (en) Point defect detection method and point defect pixel value correction method
JP2003158744A (en) Pixel defect detection/correction device and image pick- up device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R151 Written notification of patent or utility model registration

Ref document number: 4110956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees