JP4110488B2 - Method and apparatus for removing magnetic powder from molded body - Google Patents

Method and apparatus for removing magnetic powder from molded body Download PDF

Info

Publication number
JP4110488B2
JP4110488B2 JP07516098A JP7516098A JP4110488B2 JP 4110488 B2 JP4110488 B2 JP 4110488B2 JP 07516098 A JP07516098 A JP 07516098A JP 7516098 A JP7516098 A JP 7516098A JP 4110488 B2 JP4110488 B2 JP 4110488B2
Authority
JP
Japan
Prior art keywords
powder
magnetic field
molded body
magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07516098A
Other languages
Japanese (ja)
Other versions
JPH11273978A (en
Inventor
正明 棚橋
誠 太田
正史 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP07516098A priority Critical patent/JP4110488B2/en
Publication of JPH11273978A publication Critical patent/JPH11273978A/en
Application granted granted Critical
Publication of JP4110488B2 publication Critical patent/JP4110488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁粉を磁場中で成形した成形体に残存する磁粉の除去方法及び装置に係わり、特にバリや表面に固着した磁粉を除去するのに好適な磁粉除去方法及び装置に関するものである。
【0002】
【従来の技術】
希土類磁石や高保磁力の磁石を製造するには、磁性材料の粉末を金型に供給し、磁場中にて異方性を付与しつつ圧縮成形する。その後、金型内で脱磁を行った後取出されるが、完全な脱磁は困難なため成形体は残留磁気を有している。このため成形体には、下型面に存するこぼれ磁粉や、上型に残留磁気吸着していた磁粉が引きつけられ付着してしまう。この付着磁粉を完全に除去しないで後工程に流すと、次のような問題が発生し、生産効率の低下、不良の発生原因となる。
(1)焼成時に付着磁粉が焼き付き、研削加工を実施しなければ除去できなくなってしまい多くの加工時間が必要となる。
(2)焼き付いた付着磁粉のため、外形寸法が所定値に収まらなくなり研削加工機のワーク供給装置内で詰まり故障が発生する。
(3)焼き付いた付着磁粉を加工で除去することができず不良品となる。
この付着磁粉の除去方法として、特開平8−330135に成形体磁粉除去装置が開示されている。これは図9に示すように、先ず成形体32を搬送するコンベア31の下に設置した脱磁コイル34により成形体を脱磁して付着磁粉を除去し、その後成形体に向け気体噴出器33より気体を噴出することにより残存した磁粉を吹き飛ばし自動的に除去しようとするものである。
【0003】
【発明が解決しようとする課題】
しかしながら、付着磁粉の形態は、前述したような成形体の残留磁気により引きつけられ付着しているものだけではなく、成形時に金型合わせ面に生じるバリや、取出し時のハンド或いは突きだし板等による成形体との機械的接触により成形体に圧着された固着磁粉などがある。これらは磁粉内に配合されているバインダを介して磁粉同士が強く結合しており、公知例で示されている脱磁コイルや気体の噴出作用では完全に除去することはできず、人手による除去作業が残されていた。
従って本発明は、成形体に残存しているバリや固着磁粉を含む磁粉を、人手を介すことなく自動的に除去することができる方法及び装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明の成形体の磁粉除去方法は、成形機のキャビティに充填された磁粉を磁場中で成形後脱磁し、この脱磁後の成形体を成形機から取出してパルス状振動減衰磁界をかけた後、交番磁界をかけることにより当該成形体表面の磁粉を除去することを特徴としている。なお、パルス状振動減衰磁界の最大の磁界の強さが、交番磁界の磁界の強さの10〜40倍であると好適である。また、本発明の成形体の磁粉除去装置は、成形機のキャビティに充填された磁粉を磁場中で成形後脱磁し、この脱磁後の成形体を成形機から取出してパルス状振動減衰磁界をかけた後、交番磁界をかけることにより当該成形体表面の磁粉を除去するものであり、パルス状振動減衰磁界を発生する第1の除粉コイルと、交番磁界を発生する第2の除粉コイルと、第1の除粉コイルと第2の除粉コイルに成形機から取出した成形体を保持移載する移載装置を備えたことを特徴としている。
【0005】
【発明の実施の形態】
(実施の形態1)
図1に、本発明の磁粉除去装置の第1の実施の形態を示す。
まず、成形機の概要及び成形動作について簡単に述べる。粉体成形機9は、上型10と下型11と、下型11内を貫通する押上げ型13と、下型11面上を摺動する給粉機14を有している。キャビティ12内は押上げ型13が所定量下降したときに下型11に生ずる空間である。成形体8は、キャビティ12に磁粉を充填した後、上型10を下降させ、磁場中で圧縮して成形される。成形終了後の成形体8は、脱磁後押上げ型13により押し上げられ、次サイクルの給粉のため前進する給粉機14の前部に設置した突きだし板15により下型11の端部に押し出されることにより取出される。成形体8を押し出した後、押し上げ型13は下降し、キャビティ12に再び磁性粉が充填され、次サイクルが始まる。
【0006】
次に、磁粉除去装置について説明する。
粉体成形機9の成形体8押し出し方向の延長線に、図1における左右方向に動作可能な可動ユニット1Aを持った移載機1を設ける。前記可動ユニット1Aの動作経路の下方に第1の除粉コイル3を設置する。第1の除粉コイル3は非磁性体の筒外周に電線を巻いた空芯形状のコイルであり、電流を印加するための電源(図示せず)に電源ケーブル(図示せず)を介して接続される。前記第1の除粉コイル3の下部には除去粉受け箱5を設ける。
前記移載機1の可動ユニット1Aの動作経路内の下方で、かつ第1の除粉コイル3の右方に第2の除粉コイル4を設置する。第2の除粉コイル4は鉄心外周に電線を巻いた有鉄心コイルであり、交流電源(図示せず)に電源ケーブル(図示せず)介して接続される。第2の除粉コイル4の上には除去粉受け皿6を設ける。第2の除粉コイル4の右方には除粉した成形体8を置くための成形体整列板7を設ける。可動ユニット1Aには、成形体8を保持するハンド2を上下方向に移動自在に設ける。
【0007】
第1の除粉コイル3は、コンデンサーに蓄積したエネルギーが放電されることにより放電電流が共振現象を起こし、最初に高磁界を発生した後暫時減衰していくようなパルス磁界を発生する。図4にその時に発生する磁界の波形を示す。第2の除粉コイル4は、50Hz・60Hz等またはインバータで周波数変換した交流電流が流されるもので、一定の大きさの交番磁界を発生する。図5にその時に発生する磁界の波形を示す。第1の除粉コイル3の磁界の強さの最大値(b)は、第2の除粉コイル4の磁界の強さ(a)に比べ10〜40倍の強さとなるようにするとよい。
【0008】
以下、動作について説明する。
移載装置1は、ハンド2で下型11端部に取出された成形体8を保持し、可動ユニット1Aで成形体8を右方に移動し、第1の除粉コイル3上ほぼ中央に移載する。その後、第1の除粉コイル3にコンデンサから放電し、図4に示すような磁界を発生させる。この当初のパルス状高磁界の振動による振動磁力により、成形体8には大きな吸引力が急激に向きを変えながら作用し、バリ及び表面に固着した磁粉は破砕又は剥離される。この時成形体8より分離落下した磁粉は、除去粉受け箱5に捕捉される。なお、このパルス磁界は放電電流の減衰とともに減衰し零となるため、成形体及び成形体に残った磁粉にはほとんど磁気は残らない。なお、図2に示すように成形体8は、第1の除粉コイル3の中央部の磁束密度の高い部分に配置することがエネルギー効率の面から望ましい。また、中央から外れると磁界印加時に磁力線の粗密に応じて成形体8を中央に動かそうとする力が発生し、移載装置1・ハンド2に偏荷重が作用するので望ましくない。複数個の成形体8に対して同時に磁界を印加する場合の配置の例を図3に示す。第1の除粉コイル3の中央に対象に、または中央に直列に配置するなどの方法があるが、第1の除粉コイル3の空芯径内に成形体8が収まることが望ましい。
【0009】
次に可動ユニット1Aを再起動し、成形体8を第2の除粉コイル4の中央上を通過させ、成形体整列板7へ移載する。成形体8が第2の除粉コイル4上を通過している間、第2の除粉コイル4へ通電し、交流電流による交番磁界を発生させる。この交番磁界による両方向の磁気吸引力で、成形体8表面に残っていた磁粉は表面で跳躍し、下面及び側面の磁粉はそのまま落下し、上面の磁粉は成形体の移動に伴って上面から脱落して、第2の除粉コイル4の上に設置した除去粉受け皿6に捕捉される。前述したように第2の除粉コイル4への通電は、第2の除粉コイル4上に成形体8が存在する間だけでよく、センサー(図示せず)等により成形体8の有無を判定し、その間だけ行なうようにすると、省エネルギーとなる。
【0010】
(実施の形態2)
図6に本発明の第2の形態を示す。
2台の除粉コイルを使用することは実施の形態1と同様であるが、第2の除分コイル上の成形体8の移動にコンベア20を用いる点が異なる。第1の除粉コイル3の右方に隣接してコンベア20を設け、コンベア20のベルト21の下に除粉コイル4を設置している。ベルト21は非磁性体の網目状のものとする。
ハンド2に把持され第1の除粉コイル3でパルス状高磁界を印加された成形体8は、その後コンベア20上に置かれる。ベルト21の回転に伴い成形体8は進行方向20Aに移動し、第2の除粉コイル4の上を通過する間交番磁界を印加される。第2の除粉コイル4の発生する磁気吸引力により除去された残存磁粉は、第2の除粉コイル4とベルト21との間に設置した除去粉受け皿6に捕捉される。
【0011】
(実施の形態3)
図7に本発明の第3の形態を示す。
基本構成は前記第1又は第2の形態に基づいており、第2の除粉コイル4の右方に、さらに気体噴出器22を設置したものである。第2の除粉コイル4の上を通過させた成形体8の表面に、気体噴出器22より高圧の気体を噴出することができる。これにより、前記2つの除粉コイルによっても磁粉が残存するような恐れがある場合でも、対応することがができる。図9は、気体噴出器22取り付け部の1B断面の部分詳細図を示す。本図では気体噴出器22を成形体8に対して左右面に設置した例を示しているが、上下方向に設置しても同様な効果を得られる。
【0012】
【発明の効果】
本発明は下記の効果を有する。
1)バリや、固着して成形体に強固に結合した磁粉でも、強力な減衰型パルス磁力で剥離破砕した後、交番磁力により除去するので、人手を介さず自動で磁粉を除去することができる。
2)除去した磁粉は除粉コイル側で捕捉されるため飛散が無く、周囲の環境を悪化させることがない。
【図面の簡単な説明】
【図1】本発明の磁粉除去装置の一実施形態を示す図
【図2】第1の除粉コイルと成形体の望ましい位置関係を示す図
【図3】第1の除粉コイル複数成形体の望ましい位置関係を示す図
【図4】第1の除粉コイルの磁界波形
【図5】第2の除粉コイルの磁界波形
【図6】本発明の磁粉除去装置の別の一実施形態を示す図
【図7】本発明の磁粉除去装置のさらに別の一実施形態を示す図
【図8】図7における気体噴射器と成形体の関係を示す図
【図9】従来例の成形体磁粉除去装置の構成図
【符号の説明】
1 移載機
2 ハンド
3 第1の除粉コイル
4 第2の除粉コイル
5、6 除去粉受け箱
8 成形体
9 粉体成形機
12 キャビティ
13 押し上げ型
20 コンベア
21 ベルト
22 気体噴出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for removing magnetic powder remaining on a molded body obtained by molding magnetic powder in a magnetic field, and more particularly to a magnetic powder removing method and apparatus suitable for removing magnetic powder adhered to burrs and surfaces.
[0002]
[Prior art]
In order to manufacture a rare earth magnet or a magnet with high coercive force , powder of a magnetic material is supplied to a mold, and compression molding is performed while imparting anisotropy in a magnetic field. Thereafter, the magnet is taken out after being demagnetized in the mold, but since the complete demagnetization is difficult, the compact has residual magnetism. For this reason, the spilled magnetic powder existing on the lower mold surface and the magnetic powder adsorbed on the upper mold are attracted to and adhered to the molded body. If this adhered magnetic powder is not completely removed and then passed to the subsequent process, the following problems occur, resulting in a decrease in production efficiency and the occurrence of defects.
(1) The adhering magnetic powder is baked in at the time of firing and cannot be removed unless grinding is performed, and a lot of processing time is required.
(2) Due to the adhered magnetic powder, the outer dimensions do not fit within a predetermined value, and a clogging failure occurs in the workpiece supply device of the grinding machine.
(3) The adhered magnetic powder cannot be removed by processing, resulting in a defective product.
As a method for removing the adhered magnetic powder, Japanese Patent Laid-Open No. 8-330135 discloses a molded body magnetic powder removing device. As shown in FIG. 9, first, the molded body is demagnetized by the demagnetizing coil 34 installed under the conveyor 31 that conveys the molded body 32 to remove the adhered magnetic powder, and then the gas ejector 33 is directed toward the molded body. By blowing out more gas, the remaining magnetic powder is blown away and automatically removed.
[0003]
[Problems to be solved by the invention]
However, the form of the adhering magnetic powder is not only the one attracted and adhered by the residual magnetism of the molded body as described above, but also formed by burrs generated on the die mating surface at the time of molding, by hand or at the time of ejecting plate, etc. For example, there are fixed magnetic powders that are pressure-bonded to the molded body by mechanical contact with the body. These are strongly bonded to each other through a binder blended in the magnetic powder, and cannot be completely removed by the demagnetizing coil or the gas jetting action shown in the known examples, and are manually removed. Work was left.
Accordingly, an object of the present invention is to provide a method and apparatus capable of automatically removing magnetic particles including burrs and fixed magnetic particles remaining in a molded body without manual intervention.
[0004]
[Means for Solving the Problems]
According to the method for removing magnetic particles from a molded body according to the present invention, the magnetic powder filled in the cavity of the molding machine is molded in a magnetic field and then demagnetized. after, it is characterized by removing the magnetic particles of the molded body surface by Rukoto over an alternating magnetic field. In addition, it is preferable that the maximum magnetic field strength of the pulse vibration damping magnetic field is 10 to 40 times the magnetic field strength of the alternating magnetic field. Further, the magnetic particle removing apparatus for a molded body according to the present invention demagnetizes the magnetic powder filled in the cavity of the molding machine in a magnetic field, and then removes the molded body after demagnetization from the molding machine to obtain a pulsed vibration damping magnetic field. And then applying an alternating magnetic field to remove the magnetic powder on the surface of the molded body, a first powder removing coil that generates a pulsed vibration damping magnetic field, and a second powder removing that generates an alternating magnetic field The present invention is characterized in that a transfer device for holding and transferring the molded body taken out from the molding machine to the coil, the first powder removal coil, and the second powder removal coil is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 1 shows a first embodiment of a magnetic particle removing apparatus of the present invention.
First, the outline of the molding machine and the molding operation will be briefly described. The powder molding machine 9 includes an upper mold 10 and a lower mold 11, a push-up mold 13 that penetrates the lower mold 11, and a powder feeder 14 that slides on the surface of the lower mold 11. The cavity 12 is a space generated in the lower mold 11 when the push-up mold 13 is lowered by a predetermined amount. The molded body 8 is molded by filling the cavity 12 with magnetic powder and then lowering the upper mold 10 and compressing it in a magnetic field. The molded body 8 after molding is pushed up by the push-up mold 13 after demagnetization, and is placed on the end of the lower mold 11 by the protruding plate 15 installed at the front part of the powder feeder 14 that moves forward for powder feeding in the next cycle. Taken out by being pushed out. After the molded body 8 is extruded, the push-up die 13 is lowered, the magnetic powder is again filled in the cavity 12, and the next cycle starts.
[0006]
Next, the magnetic particle removing device will be described.
A transfer machine 1 having a movable unit 1A operable in the left-right direction in FIG. A first powder removal coil 3 is installed below the operation path of the movable unit 1A. The first powder removal coil 3 is an air-core coil in which an electric wire is wound around the outer circumference of a non-magnetic cylinder, and is connected to a power source (not shown) for applying a current via a power cable (not shown). Connected. A removal powder receiving box 5 is provided below the first powder removal coil 3.
A second powder removal coil 4 is installed below the operation path of the movable unit 1 </ b> A of the transfer machine 1 and to the right of the first powder removal coil 3. The second powder removal coil 4 is a cored coil in which an electric wire is wound around the outer periphery of the iron core, and is connected to an AC power source (not shown) via a power cable (not shown). A removal powder tray 6 is provided on the second powder removal coil 4. On the right side of the second powder removal coil 4, a molded product alignment plate 7 for placing the powdered molded product 8 is provided. The movable unit 1A is provided with a hand 2 that holds the molded body 8 so as to be movable in the vertical direction.
[0007]
The first powder removal coil 3 generates a pulsed magnetic field in which the discharge current causes a resonance phenomenon when the energy accumulated in the capacitor is discharged, and first attenuates for a while after generating a high magnetic field. FIG. 4 shows the waveform of the magnetic field generated at that time. The second powder removal coil 4 is supplied with an alternating current having a frequency converted by an inverter such as 50 Hz or 60 Hz, and generates an alternating magnetic field having a certain magnitude. FIG. 5 shows the waveform of the magnetic field generated at that time. The maximum value (b) of the magnetic field strength of the first powder removal coil 3 may be 10 to 40 times stronger than the magnetic field strength (a) of the second powder removal coil 4.
[0008]
The operation will be described below.
The transfer device 1 holds the molded body 8 taken out at the end of the lower mold 11 with the hand 2, moves the molded body 8 to the right with the movable unit 1 </ b> A, and is almost centered on the first powder removal coil 3. Transfer. After that, the first powder removal coil 3 is discharged from the capacitor to generate a magnetic field as shown in FIG. Due to the oscillating magnetic force due to the vibration of the initial pulse-like high magnetic field, a large attractive force acts on the molded body 8 while suddenly changing the direction, and the magnetic particles fixed to the burrs and the surface are crushed or peeled off. At this time, the magnetic powder separated and dropped from the molded body 8 is captured by the removed powder receiving box 5. Since this pulse magnetic field attenuates and becomes zero with the decay of the discharge current, almost no magnetism remains in the compact and the magnetic powder remaining on the compact. In addition, as shown in FIG. 2, it is desirable from the surface of energy efficiency that the molded object 8 is arrange | positioned in the part with high magnetic flux density of the center part of the 1st powder removal coil 3. As shown in FIG. Further, if it deviates from the center, a force is generated to move the molded body 8 to the center according to the density of the magnetic field lines when a magnetic field is applied, and an unbalanced load acts on the transfer device 1 and the hand 2, which is not desirable. FIG. 3 shows an example of the arrangement when a magnetic field is simultaneously applied to a plurality of molded bodies 8. Although there exists a method of arrange | positioning to the object in the center of the 1st powder removal coil 3, or arrange | positioning in series in the center, it is desirable for the molded object 8 to be settled in the air core diameter of the 1st powder removal coil 3.
[0009]
Next, the movable unit 1 </ b> A is restarted, and the compact 8 is passed over the center of the second powder removal coil 4 and transferred to the compact alignment plate 7. While the molded body 8 is passing over the second powder removal coil 4, the second powder removal coil 4 is energized to generate an alternating magnetic field due to an alternating current. The magnetic powder left on the surface of the molded body 8 jumps on the surface by the magnetic attractive force in both directions by this alternating magnetic field, the magnetic powder on the lower surface and the side surface falls as it is, and the magnetic powder on the upper surface falls off the upper surface as the molded body moves. Then, it is captured by the removal powder receiving tray 6 installed on the second powder removal coil 4. As described above, the energization of the second powder removal coil 4 is only required while the molded body 8 is present on the second powder removal coil 4, and the presence or absence of the molded body 8 is detected by a sensor (not shown) or the like. If it is determined and performed only during that time, energy is saved.
[0010]
(Embodiment 2)
FIG. 6 shows a second embodiment of the present invention.
The use of two powder removal coils is the same as in the first embodiment, except that the conveyor 20 is used to move the molded body 8 on the second separation coil. A conveyor 20 is provided adjacent to the right side of the first powder removal coil 3, and the powder removal coil 4 is installed under the belt 21 of the conveyor 20. The belt 21 is a non-magnetic mesh.
The molded body 8 gripped by the hand 2 and applied with a pulsed high magnetic field by the first powder removal coil 3 is then placed on the conveyor 20. As the belt 21 rotates, the molded body 8 moves in the traveling direction 20A, and an alternating magnetic field is applied while passing over the second powder removal coil 4. The residual magnetic powder removed by the magnetic attraction generated by the second powder removal coil 4 is captured by the powder removal tray 6 installed between the second powder removal coil 4 and the belt 21.
[0011]
(Embodiment 3)
FIG. 7 shows a third embodiment of the present invention.
The basic configuration is based on the first or second embodiment, and a gas ejector 22 is further installed on the right side of the second powder removal coil 4. High-pressure gas can be ejected from the gas ejector 22 onto the surface of the molded body 8 that has passed over the second powder removal coil 4. Thereby, even when there is a possibility that the magnetic powder may remain even with the two powder removing coils, it is possible to cope with it. FIG. 9 shows a partial detail view of the 1B cross section of the attachment portion of the gas ejector 22. Although the figure shows an example in which the gas ejector 22 is installed on the left and right surfaces with respect to the molded body 8, the same effect can be obtained even if installed in the vertical direction.
[0012]
【The invention's effect】
The present invention has the following effects.
1) Even magnetic particles that are firmly bonded to a molded body by burrs are peeled and crushed by a strong damped pulse magnetic force and then removed by alternating magnetic force, so that magnetic particles can be automatically removed without human intervention. .
2) Since the removed magnetic powder is captured on the side of the powder removal coil, there is no scattering and the surrounding environment is not deteriorated.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of a magnetic powder removing apparatus according to the present invention. FIG. 2 is a view showing a desirable positional relationship between a first powder removal coil and a molded body. Fig. 4 is a diagram showing a desirable positional relationship of Fig. 4. Fig. 4 is a magnetic field waveform of a first powder removal coil. Fig. 5 is a magnetic field waveform of a second powder removal coil. Fig. 6 is another embodiment of the magnetic particle removal apparatus of the present invention. FIG. 7 is a view showing still another embodiment of the magnetic particle removing apparatus of the present invention. FIG. 8 is a view showing the relationship between the gas injector and the molded body in FIG. 7. FIG. Schematic diagram of removal device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transfer machine 2 Hand 3 1st powder removal coil 4 2nd powder removal coils 5 and 6 Removal powder receiving box 8 Molded body 9 Powder molding machine 12 Cavity 13 Push-up die 20 Conveyor 21 Belt 22 Gas ejector

Claims (3)

成形機のキャビティに充填された磁粉を磁場中で成形後脱磁し、この脱磁後の成形体を成形機から取出してパルス状振動減衰磁界をかけた後、交番磁界をかけることにより当該成形体表面の磁粉を除去することを特徴とする成形体の磁粉除去方法。 It was filled in a cavity of a molding machine magnetic powder to demagnetize after molding in a magnetic field, after being subjected to a pulse-like vibration damping magnetic field taken out molded body of the de-magnetizing from the molding machine, the by Rukoto over an alternating magnetic field A method for removing magnetic powder from a molded body, comprising removing magnetic powder from the surface of the molded body. パルス状振動減衰磁界の最大の磁界の強さが、交番磁界の磁界の強さの10〜40倍である請求項1に記載の成形体の磁粉除去方法。  2. The method for removing magnetic particles from a compact according to claim 1, wherein the maximum magnetic field strength of the pulsed vibration attenuation magnetic field is 10 to 40 times the magnetic field strength of the alternating magnetic field. 成形機のキャビティに充填された磁粉を磁場中で成形後脱磁し、この脱磁後の成形体を成形機から取出してパルス状振動減衰磁界をかけた後、交番磁界をかけることにより当該成形体表面の磁粉を除去する、成形体の磁粉除去装置であって、パルス状振動減衰磁界を発生する第1の除粉コイルと、交番磁界を発生する第2の除粉コイルと、第1の除粉コイルと第2の除粉コイルに成形機から取出した成形体を保持移載する移載装置を備えたことを特徴とする成形体の磁粉除去装置。 The magnetic powder filled in the cavity of the molding machine is demagnetized after being molded in a magnetic field, the molded body after this demagnetization is taken out of the molding machine and applied with a pulsed vibration damping magnetic field, and then applied with an alternating magnetic field. A magnetic particle removing device for a molded body that removes magnetic particles on the surface of a body, wherein the first powder removing coil that generates a pulsed vibration damping magnetic field, the second powder removing coil that generates an alternating magnetic field, A magnetic powder removing apparatus for a molded body, comprising a transfer device for holding and transferring the molded body taken out from the molding machine to the powder removing coil and the second powder removing coil.
JP07516098A 1998-03-24 1998-03-24 Method and apparatus for removing magnetic powder from molded body Expired - Lifetime JP4110488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07516098A JP4110488B2 (en) 1998-03-24 1998-03-24 Method and apparatus for removing magnetic powder from molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07516098A JP4110488B2 (en) 1998-03-24 1998-03-24 Method and apparatus for removing magnetic powder from molded body

Publications (2)

Publication Number Publication Date
JPH11273978A JPH11273978A (en) 1999-10-08
JP4110488B2 true JP4110488B2 (en) 2008-07-02

Family

ID=13568187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07516098A Expired - Lifetime JP4110488B2 (en) 1998-03-24 1998-03-24 Method and apparatus for removing magnetic powder from molded body

Country Status (1)

Country Link
JP (1) JP4110488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172521B1 (en) * 2000-06-29 2001-06-04 住友特殊金属株式会社 Rare earth magnet manufacturing method and powder pressing device
CN110828102B (en) * 2019-11-13 2021-09-14 王辰阳 Automobile part demagnetizing device

Also Published As

Publication number Publication date
JPH11273978A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP3172521B1 (en) Rare earth magnet manufacturing method and powder pressing device
US7678306B2 (en) Vibration apparatus and methods of vibration
JP6780707B2 (en) Rare earth magnet manufacturing method
JP4110488B2 (en) Method and apparatus for removing magnetic powder from molded body
KR20040015032A (en) Permanent magnet manufacturing method and press apparatus
CN103111618B (en) Device of neodymium iron boron automatic suppressing orientation forming and method
JP2010272746A (en) Apparatus for manufacturing sintered magnet
EP0393815B1 (en) Method for packing permanent magnet powder
JP2000176688A (en) Method for utilizing metallic waste product as casting material, apparatus therefor and casting material obtained with the apparatus
JPWO2009013786A1 (en) Ring type magnet manufacturing method, magnetic field forming apparatus, and ring type magnet manufacturing apparatus
US4166649A (en) Device for removing workpieces from a container
JP6733507B2 (en) Rare earth magnet manufacturing method
JP2000357611A (en) Method and device for demagnetizing thin product
JP5921426B2 (en) Rotating drum for neodymium magnet separation, neodymium magnet recovery device
WO1992009396A1 (en) Core treating apparatus and method
JP2016162827A (en) Magnetic powder removal method and magnetic powder removal device
CN208607988U (en) A kind of processing and magnet charger automatically
JP2019197778A (en) Manufacturing method for rare earth magnet
CN221086605U (en) Suction device for removing floating powder on surface of workpiece
CN217626072U (en) Diode magnetism automatic sequencing feeder
US20040052674A1 (en) Ultrasonic powdered metal compaction
CN217955670U (en) Coiling machine with thread trimming mechanism
JP2709678B2 (en) Permanent electromagnetic chuck control device
WO2019188303A1 (en) Method for manufacturing industrial article comprising sintered compact
JP2822169B2 (en) Ring magnet forming apparatus and method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

EXPY Cancellation because of completion of term