JP4108184B2 - Manufacturing method of thin temperature fuse - Google Patents

Manufacturing method of thin temperature fuse Download PDF

Info

Publication number
JP4108184B2
JP4108184B2 JP17967498A JP17967498A JP4108184B2 JP 4108184 B2 JP4108184 B2 JP 4108184B2 JP 17967498 A JP17967498 A JP 17967498A JP 17967498 A JP17967498 A JP 17967498A JP 4108184 B2 JP4108184 B2 JP 4108184B2
Authority
JP
Japan
Prior art keywords
resin
strip
shaped lead
film
lead conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17967498A
Other languages
Japanese (ja)
Other versions
JPH11353995A (en
Inventor
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP17967498A priority Critical patent/JP4108184B2/en
Publication of JPH11353995A publication Critical patent/JPH11353995A/en
Application granted granted Critical
Publication of JP4108184B2 publication Critical patent/JP4108184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は薄型温度ヒュ−ズの製造方法に関し、例えばリチウムイオン二次電池を過充電や過放電から保護するのに用いる温度ヒュ−ズの製造に有用なものである。
【0002】
【従来の技術】
近来、携帯用電気機器の電源としてリチウムイオン二次電池等の大容量電池が使用されている。
かかる大容量電池では充電時や放電時に相当に大きな電流が流れる可能性があり、過充電や本体機器の故障により異常発熱する畏れがある。
【0003】
そこで、この異常発熱を温度ヒュ−ズで感知し、電池を充電用電源から遮断し、または電池と本体機器との間を遮断することが検討されている。
この電池保護用温度ヒュ−ズにおいては薄型であることが要求され、樹脂ベ−スフィルムの片面上に一対の帯状リ−ド導体の先端部を固着し、帯状リ−ド導体の先端間に低融点可溶合金片を接続し、樹脂ベ−スフィルムの片面上に樹脂カバ−フィルムを配し、両樹脂フィルム周辺のフィルム間及び樹脂カバ−フィルムと帯状リ−ド導体との間を接着剤で封止した薄型温度ヒュ−ズが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記接着剤による封止では、接着剤が内側に流延して低融点可溶合金片に付着し、低融点可溶合金片の溶断を阻害して温度ヒュ−ズの作動性が損なわれる畏れがある。
而して、上記接着剤に代えヒ−トシ−ルや超音波融着を使用することが考えられるが、樹脂ベ−スフィルムと樹脂カバ−フィルムとの樹脂同士の融着性に較べ樹脂カバ−フィルムと帯状リ−ド導体との間の樹脂対金属間の融着性が劣り、また帯状リ−ド導体縁端に段差があるので、樹脂カバ−フィルムと帯状リ−ド導体との間の融着を確実に行うには、使用する加熱治具の熱出力を相当に大きくしたり、使用する超音波ホ−ンのホ−ン出力を相当に大きくする必要があり、これでは低融点可溶合金片の熱または振動による損傷が懸念される。
【0005】
本発明の目的は、互いに重畳した樹脂フィルム間の空間に低融点可溶合金片が納められ、この低融点可溶合金片に対する帯状リ−ド導体の少なくとも一本が上記樹脂フィルム間の空間から外部に引き出され、両樹脂フィルム周辺のフィルム間及び各フィルムと帯状リ−ド導体との間が封止されてなる薄型温度ヒュ−ズを製造する場合、熱またはき振動から低融点可溶合金片を安全に保持して両樹脂フィルム周辺のフィルム間及び各フィルムと帯状リ−ド導体との間をヒ−トシ−ルまたは超音波融着で封止し得る薄型温度ヒュ−ズの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明に係る一の薄型温度ヒュ−ズの製造方法は、一対の帯状リード導体の被封止部に樹脂層を被覆し、これら帯状リード導体の先端間に低融点可溶合金片を接続し、而るのち、この低融点可溶合金片及び前記被封止部を含む帯状リード導体端部を樹脂フィルムで挾み、両樹脂フィルム周辺のフィルム間及び樹脂フィルムと帯状リード導体被封止部樹脂層との間を融着することを特徴とする構成である。
【0007】
本発明に係る他の薄型温度ヒュ−ズの製造方法は、一方の帯状リ−ド導体の先端部を樹脂ベ−スフィルムにその裏面側から表面側に表出させて固着し、他方の帯状リ−ド導体の先端部を樹脂ベ−スフィルムの表面側に固着し、両帯状リ−ド導体の先端間に低融点可溶合金片を接続し、樹脂ベ−スフィルムの表面上に樹脂カバ−フィルムを配し、両樹脂フィルム周辺のフィルム間及び樹脂カバ−フィルムと他方の帯状リ−ド導体との間を封止して温度ヒュ−ズを製造する方法において、他方の帯状リ−ド導体の被封止部に予め樹脂層を被覆し、上記両樹脂フィルム周辺のフィルム間及び樹脂カバ−フィルムと他方の帯状リ−ド導体被封止部樹脂層との間をヒ−トシ−ルまたは超音波融着或いはレザ−照射により融着することを特徴とする構成である。
【0008】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)及び図1の(ロ)〔図1の(イ)のロ−ロ断面図〕は、請求項1に係る発明により製造される薄型温度ヒュ−ズの一例を示す図面である。
図1において、1は樹脂フィルムを、2は帯状リ−ド導体を、3は低融点可溶合金片を、4はフラックスをそれぞれ示し、樹脂フィルム1,1間に封止される帯状リ−ド導体2の被封止部20には図2に示すように予め樹脂層aを被覆してあり、図1においてaは、その樹脂層を示している。
上記帯状リ−ド導体2には、例えば銅、アルミニウム、ニッケル等を使用でき、上記樹脂フィルム1や後述の樹脂ベ−スフィルムや樹脂カバ−フィルムには、例えばポリエチレンテレフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチックを使用できる。
帯状リ−ド導体2の被封止部20に被覆する樹脂aには、樹脂フィルムと同等またはそれ以上の融着性を有し、樹脂フィルムと同等またはそれ以上の融着性を有するものであれば適宜のものを使用できるが、樹脂フィルム1と同じ樹脂を使用することが好ましい。
帯状リ−ド導体2の被封止部20に樹脂を被覆するには、図3の(イ)に示すように、リ−ド導体被封止部2’を樹脂フィルムa’,a’で挾みこれをヒ−トプレスや誘導加熱により図3の(ロ)に示すように、熱融着する方法、樹脂液を塗布して焼き付ける方法を使用できる。
【0009】
請求項1に係る発明により薄型温度ヒュ−ズを製造するには、図1において、図2に示す被封止部に樹脂層aを被覆した一対の帯状リ−ド導体1,1の先端片面間に低融点可溶合金片3を溶接等により接続し、この接続した低融点可溶合金片上にフラックスを塗布する。次ぎに、フラックス塗布低融点可溶合金片を樹脂フィルム1,1で挾み、樹脂フィルム周辺の樹脂フィルム同士1,1及び樹脂フィルム1と帯状リ−ド導体被封止部樹脂層aとの間をヒ−トシ−ルまたは超音波融着或いはレ−ザ照射により融着し、これにて請求項1に係る発明による薄型温度ヒュ−ズの製造を終了する。
【0010】
上記ヒ−トシ−ルには、樹脂フィルムの周辺部分に接触される枠形熱板を所定の温度、圧力及び時間で被封止部位に接触させる方法を用いることができる。
上記超音波融着には、樹脂フィルムの周辺部分に接触される枠形ホ−ンを被封止部位に押し付け、この押し付けホ−ンを発振器の作動で所定の超音波出力で振動させる方法を用いることができる。
【0011】
上記において、樹脂フィルム周辺の樹脂フィルム同士1,1の融着及び樹脂フィルム1と帯状リ−ド導体被封止部樹脂層aとの融着は共に樹脂同士の融着であって容易であり、低いエルルギ−で良好に融着できる。この場合、帯状リ−ド導体被封止部20とその封止部に被覆された樹脂層aとは既に確実に封止されているので、樹脂フィルム周辺の樹脂フィルム同士1,1の融着及び樹脂フィルム1と帯状リ−ド導体被封止部樹脂層aとの融着の際の条件を金属と樹脂間の融着を可能とするような高エネルギ−とする必要がない。従って、樹脂フィルム周辺の樹脂フィルム同士の融着及び樹脂フィルムと帯状リ−ド導体被封止部樹脂層との融着をヒ−トシ−ルで行う場合は温度、圧力及び時間を小さく、もしくは短くでき、また超音波融着で行う場合は発振機の超音波出力を低くでき、レ−ザ照射で行う場合は、照射時間を短くでき、低融点可溶合金片の熱または振動による損傷をよく抑制できる。
【0012】
上記樹脂フィルム周辺は融着時に成形されるが、予め成形しておき融着してもよい。
【0013】
図4の(イ)及び図4の(ロ)〔図4の(イ)におけるロ−ロ断面図〕は、請求項2に係る発明により製造される薄型温度ヒュ−ズの一例を示す図面である。
請求項2に係る発明により薄型温度ヒュ−ズを製造するには、図4において一方の帯状リ−ド導体21の先端部を熱プレス等で樹脂ベ−スフィルム11にその裏面側から表面側に表出させて固着し、他方の帯状リ−ド導体2の先端部を樹脂ベ−スフィルム11の表面に熱プレス等で固着すると共にこの帯状リ−ド導体2の被封止部20に樹脂フィルムaを融着し、次いで、両帯状リ−ド導体2,21の先端間に低融点可溶合金片3を溶接等で接合し、更に低融点可溶合金片3上にフラックス4を塗布する。次いで、樹脂ベ−スフィルム11の片面上に樹脂カバ−フィルム12を配し、樹脂カバ−フィルム12周辺の樹脂ベ−スフィルム11と樹脂カバ−フィルム12との間及び樹脂カバ−フィルム12と他方の帯状リ−ド導体2の被封止部樹脂層(フィルム)aとの間をヒ−トシ−ルまたは超音波融着或いはレ−ザ照射により接合し、これにて請求項3に係る発明による薄型温度ヒュ−ズの製造を終了する。
【0014】
請求項2に係る発明による場合も、請求項1に係る発明による場合と同様、帯状リ−ド導体2の被封止部20とその上の樹脂層(フィルム)aとの間を低融点可溶合金片3に全く影響を及ぼすことなく強固に融着でき、また、樹脂カバ−フィルム12周辺の樹脂ベ−スフィルム11と樹脂カバ−フィルム12との間及び樹脂カバ−フィルム12と帯状リ−ド導体被封止部樹脂層(フィルム)aとの間を樹脂同士の融着のために充分に低い熱エネルギ−または超音波出力で融着できるので、低融点可溶合金片3の熱または振動による損傷をよく抑制できる。
【0015】
上記請求項1及び2の発明においては、樹脂カバ−フィルム周辺が融着時に成形されるが、予め成形しておき融着させることもできる。
【0016】
本発明により製造した薄型温度ヒュ−ズは、例えばリチウムイオン二次電池を異常発熱から保護するために使用され、例えばその電池の負極缶に一方の帯状リ−ド導体及び温度ヒュ−ズ本体を密接させると共にその一方の帯状リ−ド導体と負極缶との間を電気的に接続し、他方の帯状リ−ド導体を負極缶から離隔や絶縁フィルムの介在により絶縁して当該電池に直列に挿入し、電池の異常発熱で低融点可溶合金片を溶断させて電池を本体機器から電気的に遮断させることができる。
【0017】
図5はリチウムイオン二次電池を示し、セパレ−タ51を介在させた正極52と負極53とのスパイラル巻回体Eを負極缶54に収容して負極53と負極缶54の底面とを電気的に導通し、負極缶54内の上端に正極集電極55を配設して正極52をこの集電極55に電気的に導通し、負極缶54の上端部541を防爆弁板外56の外周端部及び正極蓋57の外周端部にパッキング58を介してかしめ加工し、防爆弁板56の中央凹部を正極集電極59に電気的に導通してあり、請求項1または2の発明により製造した薄型温度ヒュ−ズでは、図に示すように薄型温度ヒュ−ズをチウムイオン二次電池の防爆弁板56と正極蓋57との間の空間に配し、防爆弁板56の外周端部と正極蓋57の外周端部との間に絶縁スペ−サリングrを介在させ、一方の帯状リ−ド導体2を防爆弁板56の外周端部と絶縁スペ−サリングrとで挾持し、他方の帯状リ−ド導体2を正極蓋57の外周端部と絶縁スペ−サリングrとで挾持して電池内に直列に組み込んで使用することができる。
【0018】
図6の(イ)及び図6の(ロ)〔図6の(イ)におけるロ−ロ断面図〕は請求項2に係る発明で製造した薄型温度ヒュ−ズの別実施例を示す図面である。
図6において、Fはフレ−ムを示し、図7の(イ)に示す環状部201の内周に一方の帯状リ−ド導体21を有する一方の箔状電極fと、図7の(ロ)に示す環状の樹脂スペ−サフィルムsと、図7の(ハ)に示す環状部200の内周に他方の帯状リ−ド導体2を有する箔状電極fとをリ−ド部2,21を180°互い違いにして熱融着等で重畳してある。これらの帯状リ−ド導体2、21のうち、の帯状リ−ド導体2の被封止部20には樹脂層(フィルム)aを融着してあり、この樹脂フィルムaの融着は箔状電極f,fと樹脂スペ−サフィルムsとの融着時に熱プレスにより行うことができる。
【0019】
図6において、Aはフレ−ムFの中央空間に配した温度ヒュ−ズ本体であり、一方の帯状リ−ド導体21の先端部を樹脂ベ−スフィルム11の一面に固着すると共に該フィルム11の一面より他面に局部的に表出させ、他方の帯状リ−ド導体2の先端部を前記樹脂ベ−スフィルム12の他面に固着し、該先端部と前記局部的に表出された一方の帯状リ−ド導体21の先端部との間に低融点可溶合金片3を溶接等で接続し、該低融点可溶合金片3にフラックス4を塗布し、このフラックス塗布低融点可溶合金片上に樹脂カバ−フィルム12を配し、樹脂カバ−フィルム12周辺の樹脂ベ−スフィルム11と樹脂カバ−フィルム12との間及び樹脂カバ−フィルム12と他方の帯状リ−ド導体2の被封止部樹脂層(フィルム)aとの間をヒ−トシ−ルまたは超音波融着或いはレ−ザ照射により接合してある。
【0020】
この薄型温度ヒュ−ズでは、図5においては、防爆弁板56の外周端部と正極蓋57の外周端部との間に挾持されて防爆弁板56とフレ−ムFの箔状電極fとの電気的接触→箔状電極f1のリ−ド導体21→低融点可溶合金片3→箔状電極fのリ−ド導体2→フレ−ムFの箔状電極fと正極蓋57との電気的接触により、電池に温度ヒュ−ズが電気的に直列に接続される。
【0021】
【発明の効果】
本発明に係る薄型温度ヒュ−ズの製造方法によれば、樹脂フィルム間または樹脂ベ−スフィルムに対する帯状リ−ド導体の被封止部に、低融点可溶合金片に影響を及ぼさないように低融点可溶合金片を接続するまえにその被封止部に樹脂層を融着しておき、低融点可溶合金片を接続したのちに行う温度ヒュ−ズ本体の周辺の封止を樹脂同士の融着で行うようにしたから、温度ヒュ−ズ本体の周辺の封止を充分に低い熱出力の熱板やレ−ザ照射または充分に低出力の超音波ホ−ンで良好に行い得、優れた封止性を保証して熱または振動による低融点可溶合金片の損傷をよく抑制し得る。従って、良品質の薄型温度ヒュ−ズを製造できる。
【図面の簡単な説明】
【図1】 請求項1に係る発明により製造される薄型温度ヒュ−ズの一例を示す図面である。
【図2】 本発明において使用する帯状リ−ド導体の封止部樹脂層を示す図面である。
【図3】 本発明において使用する帯状リ−ド導体の封止部樹脂層の被覆方法を示す図面である
【図4】 請求項2に係る発明により製造される薄型温度ヒュ−ズの一例を示す図面である。
【図5】 本発明により製造された薄型温度ヒュ−ズの使用状態の一例を示す図面である。
【図6】 請求項2に係る発明により製造される薄型温度ヒュ−ズの別例を示す図面である。
【図7】 請求項2に係る発明により製造される上記別例の薄型温度ヒュ−ズに使用されるフレ−ムを示す図面である。
【符号の説明】
1 樹脂フィルム
11 樹脂ベ−スフィルム
12 樹脂カバ−フィルム
2 帯状リ−ド導体
20 帯状リ−ド導体2の被封止部
a 帯状リ−ド導体2の被封止樹脂層
3 低融点可溶合金片
4 フラックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a thin temperature fuse, and is useful, for example, in manufacturing a temperature fuse used to protect a lithium ion secondary battery from overcharge and overdischarge.
[0002]
[Prior art]
Recently, large capacity batteries such as lithium ion secondary batteries have been used as power sources for portable electric devices.
In such a large-capacity battery, a considerably large current may flow during charging or discharging, and abnormal heat generation may occur due to overcharging or failure of the main device.
[0003]
Therefore, it has been studied to detect this abnormal heat generation with a temperature fuse and to shut off the battery from the charging power source or between the battery and the main device.
The battery protection temperature fuse is required to be thin, and the tips of a pair of strip-shaped lead conductors are fixed on one side of a resin-based film, and between the tips of the strip-shaped lead conductors. A low melting point soluble alloy piece is connected, a resin cover film is placed on one side of the resin base film, and the film around the resin film and between the resin cover film and the strip-shaped lead conductor are bonded. A thin temperature fuse sealed with an agent is known.
[0004]
[Problems to be solved by the invention]
However, in the sealing with the above-mentioned adhesive, the adhesive is cast inward and adheres to the low melting point soluble alloy piece, which inhibits the melting of the low melting point soluble alloy piece and impairs the operation of the temperature fuse. There is a fear.
Thus, it is conceivable to use heat seal or ultrasonic fusion instead of the adhesive, but the resin cover is more in comparison with the fusion between the resin base film and the resin cover film. -The resin-to-metal fusion between the film and the strip-shaped lead conductor is poor, and there is a step at the edge of the strip-shaped lead conductor, so there is a gap between the resin cover film and the strip-shaped lead conductor. In order to ensure the fusion of heat, it is necessary to significantly increase the heat output of the heating jig used or the horn output of the ultrasonic horn to be used. There is concern about damage to the fusible alloy pieces due to heat or vibration.
[0005]
An object of the present invention is to place a low melting point soluble alloy piece in a space between resin films superimposed on each other, and at least one of the strip-shaped lead conductors for the low melting point soluble alloy piece is from the space between the resin films. When manufacturing a thin temperature fuse that is drawn out and sealed between the films around both resin films and between each film and the strip-shaped lead conductor, a low-melting-point soluble alloy from heat or vibration is produced. A thin temperature fuse manufacturing method capable of securely holding a piece and sealing between a film around both resin films and between each film and a strip-shaped lead conductor by heat sealing or ultrasonic fusion Is to provide.
[0006]
[Means for Solving the Problems]
In one thin temperature fuse manufacturing method according to the present invention, a resin layer is coated on a sealed portion of a pair of strip-shaped lead conductors, and a low melting point soluble alloy piece is connected between the tips of the strip-shaped lead conductors. After that, the belt-shaped lead conductor end including the low-melting-point soluble alloy piece and the sealed portion is sandwiched with a resin film, and the resin film and the strip-shaped lead conductor sealed portion are surrounded by the resin film. It is the structure characterized by fuse | melting between resin layers .
[0007]
According to another method of manufacturing a thin temperature fuse according to the present invention, the tip of one strip-shaped lead conductor is fixed to the resin base film by exposing it from the back side to the front side, and the other strip-shaped fuse is fixed. The leading end portion of the lead conductor is fixed to the surface side of the resin base film, a low melting point soluble alloy piece is connected between the leading ends of both strip-shaped lead conductors, and the resin is placed on the surface of the resin base film. In the method for manufacturing a temperature fuse by arranging a cover film and sealing between the films around both resin films and between the resin cover film and the other strip lead conductor, A resin layer is previously coated on the sealed portion of the conductor, and the sheet between the two resin films and between the resin cover film and the other strip-shaped lead conductor sealed portion resin layer is heated. Or by ultrasonic welding or laser irradiation. That.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 (a) and FIG. 1 (b) [a cross-sectional view of FIG. 1 (b)] are drawings showing an example of a thin temperature fuse manufactured by the invention according to claim 1. is there.
In FIG. 1, 1 indicates a resin film, 2 indicates a strip-shaped lead conductor, 3 indicates a low melting point soluble alloy piece, 4 indicates a flux, and the strip-shaped lead sealed between the resin films 1 and 1. The sealed portion 20 of the conductor 2 is previously coated with a resin layer a as shown in FIG. 2, and a in FIG. 1 indicates the resin layer.
For example, copper, aluminum, nickel or the like can be used for the strip-shaped lead conductor 2, and for example, polyethylene terephthalate, polyamide, or the like can be used for the resin film 1 or a resin base film or a resin cover film described later. Engineering plastics such as polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, and polysulfone can be used.
The resin a covering the sealed portion 20 of the strip-shaped lead conductor 2 has a fusion property equivalent to or higher than that of a resin film, and has a fusion property equivalent to or higher than that of a resin film. Any suitable resin can be used, but it is preferable to use the same resin as the resin film 1.
In order to coat the encapsulated portion 20 of the strip-shaped lead conductor 2 with resin, as shown in FIG. 3A, the lead conductor encapsulated portion 2 ′ is made of resin films a ′ and a ′. As shown in (b) of FIG. 3 by heat pressing or induction heating, a method of heat-sealing or a method of applying and baking a resin liquid can be used.
[0009]
In order to manufacture a thin temperature fuse by the invention according to claim 1, in FIG. 1, one end surface of a pair of strip-shaped lead conductors 1, 1 in which a sealed portion shown in FIG. A low melting point soluble alloy piece 3 is connected between them by welding or the like, and a flux is applied onto the connected low melting point soluble alloy piece. Next, the flux-coated low-melting-point soluble alloy piece is squeezed with the resin films 1 and 1, and the resin films 1 and 1 around the resin film 1 and the resin film 1 and the belt-shaped lead conductor sealed portion resin layer a The space is fused by heat sealing, ultrasonic welding or laser irradiation, and the production of the thin temperature fuse according to the invention of claim 1 is completed.
[0010]
For the heat seal, a method in which a frame-shaped hot plate that is in contact with the peripheral portion of the resin film is brought into contact with the portion to be sealed at a predetermined temperature, pressure, and time can be used.
In the ultrasonic fusion, a frame-shaped horn that is in contact with the peripheral portion of the resin film is pressed against a portion to be sealed, and this pressing horn is vibrated with a predetermined ultrasonic output by operating an oscillator. Can be used.
[0011]
In the above, the fusion of the resin films 1 and 1 around the resin film and the fusion of the resin film 1 and the belt-shaped lead conductor sealed portion resin layer a are both easy fusion of the resins. It can be fused well with low energy. In this case, since the belt-shaped lead conductor sealed portion 20 and the resin layer a coated on the sealed portion are already securely sealed, the resin films 1 and 1 around the resin film are fused together. In addition, it is not necessary to set the conditions at the time of fusion between the resin film 1 and the belt-shaped lead conductor sealed portion resin layer a as high energy as possible to enable fusion between the metal and the resin. Accordingly, when performing heat fusion between the resin films around the resin film and fusion between the resin film and the belt-shaped lead conductor encapsulated portion resin layer with a heat seal, the temperature, pressure and time are reduced, or When using ultrasonic welding, the ultrasonic output of the oscillator can be lowered.When using laser irradiation, the irradiation time can be shortened, and the low melting point soluble alloy piece can be damaged by heat or vibration. Can be well controlled.
[0012]
The periphery of the resin film is formed at the time of fusion, but it may be previously formed and fused.
[0013]
4 (a) and 4 (b) (a cross-sectional view of the roll in FIG. 4 (a)) are drawings showing an example of a thin temperature fuse manufactured by the invention according to claim 2. FIG. is there.
In order to manufacture a thin temperature fuse by the invention according to claim 2, in FIG. 4, the front end portion of one strip-shaped lead conductor 21 is applied to the resin base film 11 from the back side to the front side by hot pressing or the like. The other end of the strip-shaped lead conductor 2 is fixed to the surface of the resin base film 11 by hot pressing or the like, and the sealed portion 20 of the strip-shaped lead conductor 2 is fixed. The resin film a is fused, and then the low melting point soluble alloy piece 3 is joined between the ends of the belt-like lead conductors 2 and 21 by welding or the like, and the flux 4 is further applied on the low melting point soluble alloy piece 3. Apply. Next, a resin cover film 12 is disposed on one side of the resin base film 11, and the resin cover film 12 around the resin cover film 12 and between the resin base film 11 and the resin cover film 12. The sealed portion resin layer (film) a of the other strip-shaped lead conductor 2 is joined by heat sealing, ultrasonic fusion or laser irradiation, and according to claim 3 The production of the thin temperature fuse according to the invention is terminated.
[0014]
Also in the case of the invention according to claim 2 , as in the case of the invention according to claim 1, a low melting point is possible between the sealed portion 20 of the strip-shaped lead conductor 2 and the resin layer (film) a thereon. The molten alloy piece 3 can be firmly fused without having any influence, and the resin cover film 12 and the resin cover film 12 around the resin cover film 12 and between the resin cover film 12 and the belt-shaped ribbon. -Since the conductor-sealed portion resin layer (film) a can be fused with sufficiently low thermal energy or ultrasonic output for fusion between the resins, the heat of the low melting point soluble alloy piece 3 Or damage due to vibration can be well suppressed.
[0015]
In the first and second aspects of the invention, the periphery of the resin cover film is formed at the time of fusing. However, it can be formed and fused in advance.
[0016]
The thin temperature fuse manufactured in accordance with the present invention is used, for example, to protect a lithium ion secondary battery from abnormal heat generation. For example, one strip-shaped lead conductor and a temperature fuse main body are attached to the negative electrode can of the battery. The belt-shaped lead conductor and the negative electrode can are electrically connected to each other, and the other belt-shaped lead conductor is insulated from the negative electrode can by separating or interposing an insulating film in series with the battery. The battery can be electrically disconnected from the main unit by inserting and fusing the low melting point soluble alloy piece due to abnormal heat generation of the battery.
[0017]
FIG. 5 shows a lithium ion secondary battery, in which a spiral wound body E of a positive electrode 52 and a negative electrode 53 interposing a separator 51 is accommodated in a negative electrode can 54, and the negative electrode 53 and the bottom surface of the negative electrode can 54 are electrically connected. The positive electrode collector 55 is disposed at the upper end in the negative electrode can 54 to electrically connect the positive electrode 52 to the collector electrode 55, and the upper end 541 of the negative electrode can 54 is connected to the outer periphery of the outer explosion-proof valve plate 56. The end portion and the outer peripheral end portion of the positive electrode lid 57 are caulked through a packing 58, and the central concave portion of the explosion-proof valve plate 56 is electrically connected to the positive electrode collector electrode 59, and is manufactured according to the invention of claim 1 or 2. In the thin temperature fuse, as shown in the figure, the thin temperature fuse is disposed in the space between the explosion-proof valve plate 56 and the positive electrode cover 57 of the lithium ion secondary battery, and the outer peripheral end of the explosion-proof valve plate 56 An insulating spacer r is interposed between the outer peripheral end of the positive electrode cover 57. One strip-shaped lead conductor 2 is held between the outer peripheral end portion of the explosion-proof valve plate 56 and the insulating spacer ring r, and the other strip-shaped lead conductor 2 is sandwiched between the outer peripheral end portion of the positive electrode lid 57 and the insulating spacer ring. It can be used by being held in r and incorporated in series in the battery.
[0018]
6 (a) and 6 (b) (a cross-sectional view of the roll in FIG. 6 (a)) are drawings showing another embodiment of a thin temperature fuse manufactured by the invention according to claim 2. FIG. is there.
In FIG. 6, F is frame - indicates the beam, in FIG. 7 the inner one strip re the circumference of the annular portion 201 shown in (a) - the foil electrode f 1 while having a de conductor 21, in FIG. 7 ( an annular resin space shown in b) - foil electrodes f 0 having de conductor 2 Toori - - Sa film s and, strip re inner periphery to the other of the annular portion 200 shown in (c) of FIG. 7 de section 2, 21 are staggered 180 ° and overlapped by heat fusion or the like. Of these strip-shaped lead conductors 2 and 21, a resin layer (film) a is fused to the sealed portion 20 of the strip-shaped lead conductor 2, and the fusion of the resin film a is a foil. Can be performed by hot pressing at the time of fusion between the electrode f 0 , f 1 and the resin spacer film s.
[0019]
In FIG. 6, A is a temperature fuse main body arranged in the central space of the frame F, and fixes the leading end of one strip-shaped lead conductor 21 to one surface of the resin base film 11 and the film. 11 is locally exposed from one surface to the other surface, and the leading end portion of the other strip-shaped lead conductor 2 is fixed to the other surface of the resin base film 12 so as to be locally exposed to the leading end portion. The low melting point soluble alloy piece 3 is connected by welding or the like between the one end of the strip-shaped lead conductor 21 and the flux 4 is applied to the low melting point soluble alloy piece 3. A resin cover film 12 is arranged on the melting point soluble alloy piece, and between the resin base film 11 and the resin cover film 12 around the resin cover film 12 and between the resin cover film 12 and the other strip-shaped lead. Between the sealed portion resin layer (film) a of the conductor 2 Le or ultrasonic welding or Le - are joined by The irradiation.
[0020]
In this thin temperature fuse, in FIG. 5, the foil-shaped electrode f of the explosion-proof valve plate 56 and the frame F is held between the outer peripheral end portion of the explosion-proof valve plate 56 and the outer peripheral end portion of the positive electrode cover 57. electrical contact → Li foil-like electrode f1 of 1 - de conductor 21 → the low melting-point fusible alloy piece 3 → foil electrodes f 0 of the Li - de conductor 2 → frame - foil electrodes f 0 of the beam F and the positive electrode Due to the electrical contact with the lid 57, the temperature fuse is electrically connected in series to the battery.
[0021]
【The invention's effect】
According to the thin temperature fuse manufacturing method of the present invention, the low melting point soluble alloy pieces are not affected between the resin films or the sealed portion of the strip-shaped lead conductor with respect to the resin base film. Before the low melting point soluble alloy piece is connected, the resin layer is fused to the sealed portion, and the sealing around the temperature fuse body is performed after the low melting point soluble alloy piece is connected. Since the resin is fused together, sealing around the temperature fuse body is good with a sufficiently low heat output hot plate, laser irradiation, or sufficiently low output ultrasonic horn. It can be performed, and excellent sealing properties can be ensured and damage to the low melting point soluble alloy piece due to heat or vibration can be well suppressed. Therefore, a good quality thin temperature fuse can be manufactured.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a thin temperature fuse manufactured by the invention according to claim 1;
FIG. 2 is a drawing showing a sealing portion resin layer of a strip-shaped lead conductor used in the present invention.
FIG. 3 is a drawing showing a method for coating a sealing layer resin layer of a strip-shaped lead conductor used in the present invention .
4 is a view showing an example of a thin temperature fuse manufactured by the invention according to claim 2. FIG.
FIG. 5 is a view showing an example of a usage state of a thin temperature fuse manufactured according to the present invention.
6 is a view showing another example of a thin temperature fuse manufactured by the invention according to claim 2. FIG.
FIG. 7 is a view showing a frame used for the above-described another thin temperature fuse manufactured by the invention according to claim 2 ;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin film 11 Resin base film 12 Resin cover film 2 Strip-shaped lead conductor 20 Sealed part of strip-shaped lead conductor 2 a Sealed resin layer of strip-shaped lead conductor 2 3 Low melting point soluble Alloy piece 4 Flux

Claims (2)

一対の帯状リード導体の被封止部に樹脂層を被覆し、これら帯状リード導体の先端間に低融点可溶合金片を接続し、而るのち、この低融点可溶合金片及び前記被封止部を含む帯状リード導体端部を樹脂フィルムで挾み、両樹脂フィルム周辺のフィルム間及び樹脂フィルムと帯状リード導体被封止部樹脂層との間を融着することを特徴とする薄型温度ヒューズの製造方法。 The sealing portion of the pair of strip-shaped lead conductors is covered with a resin layer, and a low-melting-point soluble alloy piece is connected between the ends of these strip-shaped lead conductors. A thin temperature characterized by sandwiching the end of the strip-shaped lead conductor including the stop portion with a resin film and fusing between the films around both resin films and between the resin film and the resin layer of the strip-shaped lead conductor encapsulated portion Fuse manufacturing method. 一方の帯状リ−ド導体の先端部を樹脂ベ−スフィルムにその裏面側から表面側に表出させて固着し、他方の帯状リ−ド導体の先端部を樹脂ベ−スフィルムの表面側に固着し、両帯状リ−ド導体の先端間に低融点可溶合金片を接続し、樹脂ベ−スフィルムの表面上に樹脂カバ−フィルムを配し、両樹脂フィルム周辺のフィルム間及び樹脂カバ−フィルムと他方の帯状リ−ド導体との間を封止して温度ヒュ−ズを製造する方法において、他方の帯状リ−ド導体の被封止部に予め樹脂層を被覆し、上記両樹脂フィルム周辺のフィルム間及び樹脂カバ−フィルムと他方の帯状リ−ド導体被封止部樹脂層との間を融着することを特徴とする薄型温度ヒュ−ズの製造方法。The front end of one strip-shaped lead conductor is fixed to the resin base film by exposing it from the back side to the front side, and the front end of the other strip-shaped lead conductor is fixed to the front side of the resin base film. The low melting point soluble alloy piece is connected between the ends of both strip-shaped lead conductors, a resin cover film is arranged on the surface of the resin base film, and between the films around both resin films and the resin In the method of manufacturing the temperature fuse by sealing between the cover film and the other strip-shaped lead conductor, a sealed portion of the other strip-shaped lead conductor is coated with a resin layer in advance, A method for producing a thin temperature fuse, characterized by fusing between a film around both resin films and between a resin cover film and the other belt-shaped lead conductor encapsulated portion resin layer.
JP17967498A 1998-06-11 1998-06-11 Manufacturing method of thin temperature fuse Expired - Fee Related JP4108184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17967498A JP4108184B2 (en) 1998-06-11 1998-06-11 Manufacturing method of thin temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17967498A JP4108184B2 (en) 1998-06-11 1998-06-11 Manufacturing method of thin temperature fuse

Publications (2)

Publication Number Publication Date
JPH11353995A JPH11353995A (en) 1999-12-24
JP4108184B2 true JP4108184B2 (en) 2008-06-25

Family

ID=16069903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17967498A Expired - Fee Related JP4108184B2 (en) 1998-06-11 1998-06-11 Manufacturing method of thin temperature fuse

Country Status (1)

Country Link
JP (1) JP4108184B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478785B2 (en) 2000-07-21 2003-12-15 松下電器産業株式会社 Thermal fuse and battery pack
CN100492574C (en) 2001-06-05 2009-05-27 松下电器产业株式会社 Temperature fuse, and battery using same
KR100420148B1 (en) * 2001-10-19 2004-03-02 삼성에스디아이 주식회사 Protector and secondary battery mounting the such
JP4207686B2 (en) 2003-07-01 2009-01-14 パナソニック株式会社 Fuse, battery pack and fuse manufacturing method using the same
JP4943408B2 (en) * 2008-12-10 2012-05-30 内橋エステック株式会社 Alloy type thermal fuse
JP5391796B2 (en) * 2009-04-13 2014-01-15 パナソニック株式会社 Thermal fuse
JP4912447B2 (en) * 2009-10-02 2012-04-11 内橋エステック株式会社 Alloy type thermal fuse

Also Published As

Publication number Publication date
JPH11353995A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
JP4396787B2 (en) Thin temperature fuse and method of manufacturing thin temperature fuse
EP3800718B1 (en) Secondary battery, device, and manufacturing method for secondary battery
JP6931460B2 (en) Batteries and battery manufacturing methods
JP6019224B2 (en) Manufacturing method and manufacturing apparatus for laminate type secondary battery
JP7088410B2 (en) Power storage module
KR101011807B1 (en) Secondary Battery with Top Sealed Portion of Improved Structure
JP2014032924A (en) Film sheathed battery and method for manufacturing the same
JP4108184B2 (en) Manufacturing method of thin temperature fuse
JP2005019213A (en) Structure of electric lead, electric device having lead structure, battery and battery pack
JP2023103708A (en) Secondary battery and manufacturing method thereof
JP2006294367A (en) Thin battery
JP2005116228A (en) Heat-fusing method of laminate film, manufacturing method of film coating battery, and heat-fusing device for laminate film
JP4118394B2 (en) Manufacturing method of thin temperature fuse
JP4097790B2 (en) Thin temperature fuse
JP2596034B2 (en) Sealed lead-acid battery
WO2014178238A1 (en) Laminate-type secondary battery manufacturing device and manufacturing method
JP2006294309A (en) Thin battery
JP2001085274A (en) Electronic double layer capacitor and its manufacture
JP3601583B2 (en) Laminated film encapsulated battery and manufacturing method thereof
JP7576813B2 (en) Electricity storage device and method for manufacturing the same
JP5626858B2 (en) Laminated film exterior type secondary battery
JP7189636B2 (en) Electric vehicle battery module manufacturing method and electric vehicle battery module manufactured by the method
JP7576374B2 (en) Electricity storage device and method for manufacturing the same
JPH11204005A (en) Thermal fuse and inside-mounted structure of thermal fuse in battery
JP3878733B2 (en) Internal structure of temperature fuse in battery and temperature fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees