JP4106460B2 - Method for producing copper powder - Google Patents
Method for producing copper powder Download PDFInfo
- Publication number
- JP4106460B2 JP4106460B2 JP2003012670A JP2003012670A JP4106460B2 JP 4106460 B2 JP4106460 B2 JP 4106460B2 JP 2003012670 A JP2003012670 A JP 2003012670A JP 2003012670 A JP2003012670 A JP 2003012670A JP 4106460 B2 JP4106460 B2 JP 4106460B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- polyol
- copper powder
- powder
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、銅粉末の製造方法、更に詳しくは、粒子径が均一且つ単分散性に優れて回路基板の配線パターンの形成やチップコンデンサーの外部電極の形成に用いられる導電ペーストに好適に用いられる銅粉末の製造方法に関するものである。
【0002】
【従来の技術】
回路基板の配線パターンの形成やチップコンデンサーの外部電極の形成に使用される導電ペーストを構成する銅粉は、微粒子で、粒子径が均一、且つ単分散性に優れることが必要とされている。例えば、導電ペーストに用いられる銅粉は、粒径が1μmから10μm程度のものが一般に用いられるが、昨今では、粒径1μm以下の要求が増えている。
【0003】
銅粉末を製造する方法として、機械的粉砕法、溶融銅を噴霧するアトマイズ法、陰極への電解析出法、銅塩や銅酸化物を還元性雰囲気中で加熱還元する方法、銅の塩化物蒸気を還元性ガスで還元する方法、銅塩水溶液からヒドラジンなどの還元剤により還元する方法等が知られている。このなかで、銅塩の水溶液からヒドラジンなどを還元剤として還元する湿式還元法は比較的容易な方法である〔例えば、特許文献1参照〕。
【0004】
また、湿式還元法において溶媒としてポリオールを用いて銅の酸化物、水酸化物または銅塩からなる固体化合物を加熱還元する方法(例えば、特許文献2、特許文献3参照)や、銅の酸化物粉をポリオール液中に縣濁させて銅粉とするとき、銅の酸化物以外の硫酸根、塩酸根、硝酸根などの酸性成分を中和して、銅粉の形状が球状から多面体状に変化して銅粉の単分散性を低下し、凝集し易くすることを抑える方法〔特許文献4参照〕などが提案されている。また、反応系内に更に還元剤として単糖類もしくは二糖類を加えて加熱還元する方法(例えば、特許文献5参照)で微細な銅粉を安全且つ安価に得る方法が提案されている。
【0005】
【特許文献1】
特開昭57−155302号公報
【特許文献2】
米国特許第4,539,041号明細書、
【特許文献3】
特公平4−24402号公報
【特許文献4】
特開平10−330809号公報(3頁)
【特許文献5】
特開平11−152506号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記ポリオールを用いる湿式還元法は、得られる銅粉の均一性や単分散性という点において、必ずしも満足のいくものではなかった。たとえば、原料に銅の酸化物や水酸化物を用いた場合、その銅酸化物や銅水酸化物の粒子形状、あるいは製法の違いによって、製造される金属銅粉末の粒径が異なり、また湿式還元において生成する金属銅粉末も均一性に劣り、分散性が高くないといった欠点があった。
【0007】
本発明はこれらの問題点を解決すべくなされたものであり、粒子径が均一、且つ単分散性に優れ、特に導電ペーストの製造に好適な銅粉末の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記問題点を解決するために鋭意研究した結果、銅化合物をポリオール液中に懸濁させ、加熱して銅粉を製造する方法において、銅化合物として塩基性炭酸銅を用いることで、従来の銅の酸化物や水酸化物を供給原料として使用する場合に比べて、均一で分散性の高い銅粉が得られることを見出し本発明をなすに至った。すなわち、請求項1の発明は銅粉末の製造方法に係り、塩基性炭酸銅を、ポリオールを含む液中に懸濁させて150〜350℃の任意の温度で加熱することからなっている。
【0009】
請求項2の発明は請求項1記載の銅粉末の製造方法に係り、前記ポリオールが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリンから選ばれる1種または2種以上である。
【0010】
【発明の実施の形態】
塩基性炭酸銅は、炭酸銅に一部水酸化物を含む化合物の総称で、銅(II)塩水溶液に炭酸アルカリを加えて得られるもので、生成条件により水酸化物の量が変動する組成となる。本発明で使用する塩基性炭酸銅は、硫酸銅、塩化銅または硝酸銅の水溶液にアルカリ金属、アルカリ土類金属炭酸塩、または炭酸アンモニウムの水溶液とを中性領域以上で混合して、析出した反応生成物を濾過分離して得るが、塩基性炭酸銅として市販されているものでもよい。
【0011】
本発明において用いるポリオールは、分子中にアルコール性ヒドロキシル基を2つ以上有する化合物で、具体的に例示すれば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリンであり、1種単独でもよく、あるいは2種以上組合せてもよい。本発明は、ポリオールを溶剤として反応の終始にわたって攪拌がスムーズに行える量を用いて実施するのが好ましく、150℃以上において液体であるポリオールが好ましく選ばれる。また、ポリオールを他の溶剤に溶解させて行ってもよい。他の溶剤を用いる場合、ポリオールの濃度は高いほど有利であるのはいうまでもないが、実用上は得られる銅1モルに対してポリオール2モル以上は必要である。ここで溶剤は水でもよいが、水が大量に共存すると還元反応を150℃以上に加熱して行うので、その場合には加圧下で行うなどの不利がある。従って、ここで使用される溶剤は、ブチルセロソルブなど常圧で沸点が150℃以上の水溶性溶剤が好ましい。
【0012】
本発明の実施は、先ず、ポリオールを含む液中に塩基性炭酸銅を懸濁させる。塩基性炭酸銅は、細かいほど有利であり、通常粒径10μm以下にする。次いで、この縣濁液温度を150〜350℃の任意の温度にして攪拌する。
【0013】
加熱時間は、加熱温度、ポリオールの種類およびその量などにより異なるが、代表的には0.5〜5時間程度である。反応が完全に終結したことの判定は、厳密には一部サンプルを採取してX線回折により行うのがよいが、反応系の色の変化、発泡がなくなるなど、状況変化で推定することができる。反応終了後、混合物をろ過し、水洗、乾燥して金属銅粉末が得られる。
【0014】
本発明は、塩基性炭酸銅を用いることにその特徴がある。塩基性炭酸銅から金属銅への還元反応は、ポリオールの末端水酸基がアルデヒド基を経てカルボキシル基になる酸化反応に伴って起きている。塩基性炭酸銅は、ポリオールを含む液体中で熱により容易に分解し、その状態から直ちにポリオールによる還元反応を受けるので、生成する金属銅の粒子が小さく、また均一になってくると考えられる。また、塩基性炭酸銅であることから、特許文献4で指摘されている硫酸根、塩酸根、硝酸根などによる銅粉の単分散性低下および凝集化の影響を回避できることも有利である。
【0015】
本発明において、ポリオール中にさらに糖類を加えて、還元反応を促進させることもできる。
【0016】
【実施例】
実施例における塩基性炭酸銅は、特に記載のない限り、1.6mol/L硫酸銅水溶液2Lと1.6mol/L炭酸ナトリウム水溶液をPH=7以上で70〜80℃にて混合して得られた反応生成物を分離した後十分水洗した。
【0017】
〔実施例1〕 塩基性炭酸銅およびポリオールとしてのエチレングリコール(沸点197℃)2kgを、5L容丸底セパラブルフラスコへ入れ、攪拌しながら180℃で1時間加熱し、銅粉を調製した。得られた銅粉を分離、洗浄および乾燥した後、粒度分布の測定および走査型電子顕微鏡による粒子の観察を行った。
【0018】
図1には得られた銅粉の粒度分布が示した。図1に示したグラフの傾きが大きいことから、分布幅が非常に狭い粒子(均一粒子)であることがわかる。また、累積頻度50%に相当する粒径は3.5μmであった。
【0019】
図2には得られた銅粉の電子顕微鏡写真を示した。粒子形状を観察すると、結晶面の成長した均一な大きさの多面体粒子が独立(単分散)していることが観察される。
【0020】
〔実施例2〕 ポリオールとしてトリエチレングリコール(沸点285℃)、加熱温度を250℃としたこと以外実施例1と同様に行い銅粉を調製した。得られた胴粉を粒度分布測定した結果、累積頻度50%に相当する粒径が0.2μmで、分布幅が非常に狭い粒子(均一粒子)であることがわかった。電子顕微鏡により粒子形状を観察すると、実施例1と同様に、結晶面の成長した均一な大きさの多面体粒子が独立(単分散)して観察された。
【0021】
〔実施例3〕 塩基性炭酸銅としてキシダ化学株式会社製試薬を0.383kg(CuCO3・Cu(OH)2・H2Oとして1.6モル)用いたこと以外、実施例1と同様に行い銅粉を調製した。得られた胴粉を粒度分布測定した結果、累積頻度50%に相当する粒径が3.6μmで、分布幅が非常に狭い粒子(均一粒子)であることがわかった。電子顕微鏡により粒子形状を観察すると、実施例1と同様に、結晶面の成長した均一な大きさの多面体粒子が独立(単分散)して観察された。
【0022】
〔実施例4〕 ポリオールとしてグリセリン(沸点290℃)、加熱温度が160℃で反応時間を3時間としたこと以外、実施例1と同様に行い銅粉を調製した。得られた胴粉を粒度分布測定した結果、累積頻度50%に相当する粒径が4.6μmで、分布幅が非常に狭い粒子(均一粒子)であることがわかった。電子顕微鏡により粒子形状を観察すると、実施例1と同様に、結晶面の成長した均一な大きさの多面体粒子が独立(単分散)して観察された。
【0023】
〔比較例1〕 塩基性炭酸銅の代わりに酸化第二銅(半井テスク株式会社試薬特級)0.254kg(3.2モル)を使用したこと以外、実施例1と同様に行った。得られた粉末は、X線回折法により、銅(Cu)、酸化第一銅(Cu2O)および酸化第二銅(CuO)の混合物であり、還元が不十分であることがわかった。
【0024】
〔比較例2〕 塩基性炭酸銅の代わりに硫酸銅五水和物0.798kg(3.2モル)、ポリオールとしてのエチレングリコールを4kg、および反応時間を7時間としたこと以外、実施例1と同様にして行った。得られた固体は、黒色でありX線回折法により同定すると、酸化第一銅が主で銅は僅かしか含まれていなかった。また反応後の液相は、濃い緑色に着色しており、未反応の銅化合物が残存することを示唆していた。
【0025】
〔比較例3〕 塩基性炭酸銅の代わりに塩化第二銅二水和物0.546kg(3.2モル)、ポリオールとしてのエチレングリコールを4kg、および反応時間を7時間としたこと以外、実施例1と同様に行った。得られた固体は、白色でありX線回折法により同定すると、塩化第一銅であった。
【0026】
〔比較例4〕 塩基性炭酸銅の代わりに酢酸第二銅一水和物0.639kg(3.2モル)、ポリオールとしてのエチレングリコールを4kgとしたこと以外、実施例1と同様に行った。得られた銅粉は、直径1〜5mmの凝集体を形成していた。
【0027】
〔比較例5〕 加熱温度が140℃で反応時間を10時間としたこと以外、実施例1と同様に行った。得られた固体粒子は、粉末X線回折分析の結果、塩基性炭酸銅であった。
【0028】
【発明の効果】
本発明により、粒子径が均一、且つ単分散性に優れる銅粉末を製造することができる。これは、回路基板の配線パターンの形成やチップコンデンサーの外部電極の形成に用いられる導電ペーストの製造に適したものである。
【図面の簡単な説明】
【図1】実施例1で得られた銅粉の粒度分布測定結果である。
【図2】実施例1で得られた銅粉の電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for a copper powder manufacturing method, more specifically, a conductive paste used for forming a wiring pattern of a circuit board and forming an external electrode of a chip capacitor with a uniform particle size and excellent monodispersibility. The present invention relates to a method for producing copper powder.
[0002]
[Prior art]
The copper powder constituting the conductive paste used for forming the wiring pattern of the circuit board and forming the external electrode of the chip capacitor is required to be fine, uniform in particle diameter and excellent in monodispersity. For example, the copper powder used in the conductive paste generally has a particle size of about 1 μm to 10 μm, but recently, there is an increasing demand for a particle size of 1 μm or less.
[0003]
Methods for producing copper powder include mechanical pulverization method, atomization method of spraying molten copper, electrolytic deposition method on cathode, method of heating and reducing copper salt and copper oxide in reducing atmosphere, copper chloride A method of reducing steam with a reducing gas, a method of reducing an aqueous copper salt solution with a reducing agent such as hydrazine, and the like are known. Among these, the wet reduction method in which hydrazine or the like is reduced from an aqueous copper salt solution as a reducing agent is a relatively easy method [see, for example, Patent Document 1].
[0004]
In addition, a method of heating and reducing a solid compound composed of a copper oxide, hydroxide, or copper salt using a polyol as a solvent in a wet reduction method (see, for example, Patent Document 2 and Patent Document 3), or a copper oxide When the powder is suspended in a polyol solution to make copper powder, the acidic components such as sulfate radical, hydrochloric acid radical, and nitrate radical other than the oxide of copper are neutralized so that the shape of the copper powder changes from spherical to polyhedral. There has been proposed a method [see Patent Document 4] that suppresses the monodispersibility of the copper powder from being changed to make it easy to aggregate. In addition, a method has been proposed in which fine copper powder is obtained safely and inexpensively by a method in which a monosaccharide or disaccharide is further added as a reducing agent in the reaction system and heated and reduced (for example, see Patent Document 5).
[0005]
[Patent Document 1]
JP 57-155302 A [Patent Document 2]
U.S. Pat.No. 4,539,041,
[Patent Document 3]
Japanese Patent Publication No. 4-24402 [Patent Document 4]
JP-A-10-330809 (page 3)
[Patent Document 5]
Japanese Patent Laid-Open No. 11-152506 [0006]
[Problems to be solved by the invention]
However, the wet reduction method using the above polyol is not always satisfactory in terms of uniformity and monodispersity of the obtained copper powder. For example, when copper oxide or hydroxide is used as a raw material, the particle size of the copper oxide or copper hydroxide, or the particle size of the metal copper powder produced differs depending on the manufacturing method, The copper metal powder produced in the reduction also has the disadvantages of poor uniformity and not high dispersibility.
[0007]
The present invention has been made to solve these problems, and an object of the present invention is to provide a method for producing a copper powder having a uniform particle size and excellent monodispersity, and particularly suitable for producing a conductive paste. .
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, a conventional copper is used as a copper compound in a method of suspending a copper compound in a polyol solution and heating to produce a copper powder. The present inventors have found that a copper powder that is uniform and highly dispersible can be obtained as compared with the case where the oxide or hydroxide is used as a feedstock. That is, the invention of
[0009]
Invention of Claim 2 concerns the manufacturing method of the copper powder of
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Basic copper carbonate is a general term for compounds containing a part of hydroxide in copper carbonate, and is obtained by adding alkali carbonate to a copper (II) salt aqueous solution. The composition of the amount of hydroxide varies depending on the production conditions. It becomes. Basic copper carbonate used in the present invention was precipitated by mixing an aqueous solution of alkali metal, alkaline earth metal carbonate, or ammonium carbonate in an aqueous solution of copper sulfate, copper chloride, or copper nitrate in the neutral region or more. Although the reaction product is obtained by filtration and separation, it may be commercially available as basic copper carbonate.
[0011]
The polyol used in the present invention is a compound having two or more alcoholic hydroxyl groups in the molecule. Specifically, it is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, or glycerin. One species may be used alone, or two or more species may be combined. The present invention is preferably carried out using a polyol as a solvent in such an amount that can be stirred smoothly throughout the reaction, and a polyol that is liquid at 150 ° C. or higher is preferably selected. Alternatively, the polyol may be dissolved in another solvent. In the case of using other solvents, it goes without saying that the higher the concentration of the polyol, the more advantageous, but in practice, 2 mol or more of the polyol is necessary for 1 mol of the obtained copper. Here, the solvent may be water, but if a large amount of water coexists, the reduction reaction is performed by heating to 150 ° C. or higher, and in that case, there are disadvantages such as performing under pressure. Therefore, the solvent used here is preferably a water-soluble solvent having a normal pressure and a boiling point of 150 ° C. or higher, such as butyl cellosolve.
[0012]
In carrying out the present invention, first, basic copper carbonate is suspended in a liquid containing a polyol. Basic copper carbonate is more advantageous as it is finer, and usually has a particle size of 10 μm or less. Next, the suspension is stirred at an arbitrary temperature of 150 to 350 ° C.
[0013]
The heating time varies depending on the heating temperature, the type and amount of polyol, and is typically about 0.5 to 5 hours. Strictly speaking, it is better to determine that the reaction has completely terminated by taking a sample and performing X-ray diffraction. However, it can be estimated by changing the color of the reaction system, no foaming, etc. it can. After completion of the reaction, the mixture is filtered, washed with water and dried to obtain metallic copper powder.
[0014]
The present invention is characterized by using basic copper carbonate. The reduction reaction from basic copper carbonate to metallic copper occurs with an oxidation reaction in which the terminal hydroxyl group of the polyol becomes a carboxyl group via an aldehyde group. Basic copper carbonate is easily decomposed by heat in a liquid containing a polyol, and immediately undergoes a reduction reaction with the polyol from the state, so that the generated copper metal particles are considered to be small and uniform. Moreover, since it is basic copper carbonate, it is also advantageous that the influence of the monodispersibility reduction and agglomeration of copper powder caused by sulfate radical, hydrochloric acid radical, nitrate radical, etc., pointed out in Patent Document 4 can be avoided.
[0015]
In the present invention, a saccharide can be further added to the polyol to promote the reduction reaction.
[0016]
【Example】
Unless otherwise stated, the basic copper carbonate in the examples is obtained by mixing 2 L of 1.6 mol / L aqueous copper sulfate solution and 1.6 mol / L aqueous sodium carbonate solution at 70 to 80 ° C. with PH = 7 or more. The reaction product was separated and thoroughly washed with water.
[0017]
Example 1 Basic copper carbonate and 2 kg of ethylene glycol (boiling point 197 ° C.) as a polyol were put into a 5 L round bottom separable flask and heated at 180 ° C. for 1 hour with stirring to prepare copper powder. After separating, washing and drying the obtained copper powder, the particle size distribution was measured and the particles were observed with a scanning electron microscope.
[0018]
FIG. 1 shows the particle size distribution of the obtained copper powder. Since the slope of the graph shown in FIG. 1 is large, it can be seen that the distribution width is a very narrow particle (uniform particle). The particle size corresponding to a cumulative frequency of 50% was 3.5 μm.
[0019]
FIG. 2 shows an electron micrograph of the obtained copper powder. When the particle shape is observed, it is observed that the polyhedral particles having a uniform crystal size and grown are independent (monodispersed).
[0020]
[Example 2] Copper powder was prepared in the same manner as in Example 1 except that triethylene glycol (boiling point 285 ° C) was used as the polyol and the heating temperature was 250 ° C. As a result of measuring the particle size distribution of the obtained body powder, it was found that the particle size corresponding to a cumulative frequency of 50% was 0.2 μm and the distribution width was very narrow (uniform particles). When the particle shape was observed with an electron microscope, as in Example 1, polyhedral particles of a uniform size with crystal planes grown were observed independently (monodispersed).
[0021]
[Example 3] Similar to Example 1, except that 0.383 kg of a reagent manufactured by Kishida Chemical Co., Ltd. (1.6 mol as CuCO 3 · Cu (OH) 2 · H 2 O) was used as basic copper carbonate. A copper powder was prepared. As a result of measuring the particle size distribution of the obtained body powder, it was found that the particle size corresponding to a cumulative frequency of 50% was 3.6 μm and the distribution width was very narrow (uniform particles). When the particle shape was observed with an electron microscope, as in Example 1, polyhedral particles of a uniform size with crystal planes grown were observed independently (monodispersed).
[0022]
[Example 4] Copper powder was prepared in the same manner as in Example 1 except that glycerin (boiling point: 290 ° C) as a polyol, heating temperature: 160 ° C, and reaction time: 3 hours. As a result of measuring the particle size distribution of the obtained body powder, it was found that the particle size corresponding to a cumulative frequency of 50% was 4.6 μm, and the distribution width was very narrow (uniform particles). When the particle shape was observed with an electron microscope, as in Example 1, polyhedral particles of a uniform size with crystal planes grown were observed independently (monodispersed).
[0023]
[Comparative Example 1] The same procedure as in Example 1 was conducted except that 0.254 kg (3.2 mol) of cupric oxide (special grade reagent by Hanai Tesque Co., Ltd.) was used instead of basic copper carbonate. The obtained powder was a mixture of copper (Cu), cuprous oxide (Cu 2 O) and cupric oxide (CuO) by an X-ray diffraction method, and was found to be insufficiently reduced.
[0024]
[Comparative Example 2] Example 1 except that 0.798 kg (3.2 mol) of copper sulfate pentahydrate instead of basic copper carbonate, 4 kg of ethylene glycol as a polyol, and 7 hours of reaction time were used. And performed in the same manner. The obtained solid was black and was identified by X-ray diffraction. As a result, cuprous oxide was mainly contained and copper was contained only a little. The liquid phase after the reaction was colored dark green, suggesting that unreacted copper compound remained.
[0025]
[Comparative Example 3] Except for 0.546 kg (3.2 mol) of cupric chloride dihydrate instead of basic copper carbonate, 4 kg of ethylene glycol as a polyol, and a reaction time of 7 hours. Performed as in Example 1. The resulting solid was white and was identified by cuprous chloride as identified by X-ray diffraction.
[0026]
[Comparative Example 4] The same procedure as in Example 1 was conducted except that 0.639 kg (3.2 mol) of cupric acetate monohydrate and 4 kg of ethylene glycol as the polyol were used instead of basic copper carbonate. . The obtained copper powder formed an aggregate having a diameter of 1 to 5 mm.
[0027]
[Comparative Example 5] The same operation as in Example 1 was performed except that the heating temperature was 140 ° C and the reaction time was 10 hours. As a result of powder X-ray diffraction analysis, the obtained solid particles were basic copper carbonate.
[0028]
【The invention's effect】
According to the present invention, a copper powder having a uniform particle diameter and excellent monodispersity can be produced. This is suitable for the production of a conductive paste used for forming a wiring pattern of a circuit board and forming an external electrode of a chip capacitor.
[Brief description of the drawings]
1 is a particle size distribution measurement result of the copper powder obtained in Example 1. FIG.
2 is an electron micrograph of the copper powder obtained in Example 1. FIG.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012670A JP4106460B2 (en) | 2003-01-21 | 2003-01-21 | Method for producing copper powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012670A JP4106460B2 (en) | 2003-01-21 | 2003-01-21 | Method for producing copper powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004225088A JP2004225088A (en) | 2004-08-12 |
JP4106460B2 true JP4106460B2 (en) | 2008-06-25 |
Family
ID=32901208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003012670A Expired - Fee Related JP4106460B2 (en) | 2003-01-21 | 2003-01-21 | Method for producing copper powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4106460B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5275778B2 (en) * | 2008-12-22 | 2013-08-28 | ラサ工業株式会社 | Method for producing copper powder |
JP5259375B2 (en) * | 2008-12-22 | 2013-08-07 | ラサ工業株式会社 | Method for producing basic copper carbonate |
JP5311147B2 (en) * | 2010-08-25 | 2013-10-09 | 株式会社豊田中央研究所 | Surface-coated metal nanoparticles, production method thereof, and metal nanoparticle paste including the same |
JP6213584B2 (en) * | 2016-01-29 | 2017-10-18 | 住友金属鉱山株式会社 | Method for producing copper powder and method for producing conductive paste |
CN111889692B (en) * | 2020-07-09 | 2022-10-14 | 荆楚理工学院 | Monodisperse superfine copper powder and preparation method thereof |
-
2003
- 2003-01-21 JP JP2003012670A patent/JP4106460B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004225088A (en) | 2004-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101193762B1 (en) | Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom | |
KR101945166B1 (en) | Copper powder for conductive paste and method for manufacturing same | |
US8864871B2 (en) | Method for manufacturing copper nanoparticles using microwaves | |
JP5047064B2 (en) | Method for producing nickel nanoparticles | |
US7566357B2 (en) | Method of producing fine-particle copper powders | |
EP2254692B1 (en) | Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions | |
KR100330459B1 (en) | Metallic powder, manufacturing method thereof and conductive paste | |
WO2014104032A1 (en) | Method for producing copper powder, copper powder, and copper paste | |
JP2007084930A (en) | Metal nanoparticles and method for manufacturing thereof | |
KR20080035315A (en) | Silver nano-particles and preparation method thereof | |
JP2012525506A (en) | Silver particles and method for producing the same | |
EP2611559A1 (en) | Silver particles and a process for making them | |
JP3570591B2 (en) | Production method of copper powder | |
JP4106460B2 (en) | Method for producing copper powder | |
JP4149364B2 (en) | Dendritic fine silver powder and method for producing the same | |
JP5141983B2 (en) | Nickel fine powder and method for producing the same | |
JP4120007B2 (en) | Method for producing copper powder | |
KR100631025B1 (en) | Method of manufacturing silver powder by chemical reduction | |
KR100851815B1 (en) | A method of preparing nano silver powder | |
JPS63125605A (en) | Production of fine metal powder | |
CN113953523B (en) | Preparation method of polyhedral submicron silver powder | |
JP2006219688A (en) | Method for refining metallic ultrafine powder | |
JP4616599B2 (en) | Fluid composition, electrode formed using the same, and wiring pattern | |
JP3353648B2 (en) | Method for producing copper powder and copper oxide powder used for the method | |
JP6491595B2 (en) | Method for producing platinum palladium rhodium alloy powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080313 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |