JP4106442B2 - Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure - Google Patents

Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure Download PDF

Info

Publication number
JP4106442B2
JP4106442B2 JP2004073711A JP2004073711A JP4106442B2 JP 4106442 B2 JP4106442 B2 JP 4106442B2 JP 2004073711 A JP2004073711 A JP 2004073711A JP 2004073711 A JP2004073711 A JP 2004073711A JP 4106442 B2 JP4106442 B2 JP 4106442B2
Authority
JP
Japan
Prior art keywords
sintered body
sintering
density
powder
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004073711A
Other languages
Japanese (ja)
Other versions
JP2005263504A (en
Inventor
利之 森
雅蓉 王
智昭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004073711A priority Critical patent/JP4106442B2/en
Publication of JP2005263504A publication Critical patent/JP2005263504A/en
Application granted granted Critical
Publication of JP4106442B2 publication Critical patent/JP4106442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、酸素センサ、炭酸ガスセンサ、一酸化窒素センサ、および燃料電池用固体電解質、などに利用される高密度でかつ、均一な微細構造を有するDyドープナノセリア系焼結体およびその製造方法に関する。   The present invention relates to a Dy-doped nano-ceria-based sintered body having a high-density and uniform microstructure used for an oxygen sensor, a carbon dioxide sensor, a nitric oxide sensor, a solid electrolyte for a fuel cell, and the like, and a method for producing the same About.

希土類元素をドープしたセリア系焼結体は、希土類元素としてサマリウム(Sm)やガドリウム(Gd)をドープしてなるセリア系焼結体は高導電率を有することで知られ、各種文献に発表されている(例えば、前者Smドープしてなるセリア系焼結体については、非特許文献1〜3、後者Gdドープしてなるセリア系焼結体については非特許文献4〜6を参照)。しかし、実際に焼結体を作製し、その導電率を測定してみると、その導電率は、直流3端子法で、700℃でそれぞれ、-1.8および-1.5(S/cm)と十分なものではなかった。固体電解質を各種ガスセンサや燃料電池へ応用するには、低い温度で高い導電率を確保することが求められている。そうした中、Dy元素をドープしたセリア系焼結体は、1ミクロン以上の粒子径を有する場合、その伝導率は、SmやGdなどをドープしたセリア系焼結体の値を下回る導電率(0.4ミクロンの粒径をもつDy0.2Ce0.81.9焼結体については、直流3端子法で、700℃において-3.4S/cm)を持ち、その低い導電率ゆえ、実用上有用な材料であるとは考えられていなかった。 Ceria-based sintered bodies doped with rare earth elements are known to have high electrical conductivity, and ceria-based sintered bodies doped with samarium (Sm) or gadolinium (Gd) as rare earth elements have been published in various literatures. (For example, for the ceria-based sintered body doped with Sm, refer to Non-Patent Documents 1 to 3, and for the ceria-based sintered body doped with Gd, refer to Non-Patent Documents 4 to 6). However, when a sintered body was actually produced and its electrical conductivity was measured, the electrical conductivity was −1.8 and −1.5 (S / cm, respectively) at 700 ° C. by the direct current three-terminal method. ) And was not enough. In order to apply the solid electrolyte to various gas sensors and fuel cells, it is required to ensure high conductivity at a low temperature. Among these, when the ceria-based sintered body doped with the Dy element has a particle diameter of 1 micron or more, the conductivity is lower than the value of the ceria-based sintered body doped with Sm, Gd or the like (0 A Dy 0.2 Ce 0.8 O 1.9 sintered body having a particle diameter of .4 microns has a -3.4 S / cm at 700.degree. C. in a direct current three-terminal method, and is a practically useful material because of its low conductivity. It was not considered to be.

そこで、本発明者らのグループにおいて鋭意研究した結果、易焼結性ナノサイズ微粉末を用いて、焼結体の平均粒子径が平均100nm以下、かつ焼結体密度が理論密度に対して95%以上の値を有し、700℃における直流3端子法における導電率の測定値が、-
1(S/cm)以上のDyドープ高電導性ナノセリア系焼結体及びその製造方法を開発するのに成功し、その成果について先に特許出願した(特許文献1;特願2004−064616)。この先の出願に係る発明によって得られてなる焼結体は、高い導電率を有している点で極めて優れた作用効果が期待でき、その点で画期的と言える発明ということができるが、なお、次の点で問題を含んでいた。すなわち、この発明は、前記導電率を得るために、焼結温度は1100度を超えないように配慮する必要があること、最終的に焼結体の設計を理論密度の95%以上に高密度化させ、しかも、焼結体を構成する結晶粒子を平均粒径100nm以下の超微粒にまで制御する必要があること、といった極めて困難な技術的制約があり、そのため出発原料として、極めて焼結性がよくかつ、分散性のよいナノサイズ微粉末を確保する必要があった。すなわち、出発原料は粒度に厳重な管理を要し、コスト高になることは避けられず、また焼結条件も温度管理等において厳しい制約のあるものであった。
Therefore, as a result of earnest research in the group of the present inventors, the average particle diameter of the sintered body was an average of 100 nm or less and the sintered body density was 95% of the theoretical density using the easily sinterable nanosize fine powder. %, And the measured value of conductivity in the DC three-terminal method at 700 ° C. is −
The inventors succeeded in developing a Dy-doped highly conductive nanoceria-based sintered body of 1 (S / cm) or more and a method for producing the same, and previously filed a patent application for the result (Patent Document 1; Japanese Patent Application No. 2004-066461). The sintered body obtained by the invention according to the earlier application can be expected to have an extremely excellent effect in terms of having high electrical conductivity, and can be said to be an epoch-making invention in that respect, In addition, the following points included problems. In other words, the present invention requires that the sintering temperature not exceed 1100 degrees in order to obtain the conductivity, and finally the sintered body is designed to have a high density of 95% or more of the theoretical density. In addition, there is an extremely difficult technical restriction that it is necessary to control the crystal particles constituting the sintered body to ultrafine particles having an average particle size of 100 nm or less. Therefore, it was necessary to secure nano-sized fine powder with good dispersibility. That is, the starting material requires strict management of the particle size, and it is inevitable that the cost is high, and the sintering conditions are severely limited in temperature management and the like.

C.Milliken,S.Guruswamy,A.Khandkar,J.Am.Ceram.Soc,85[10],2479(2002)C. Milliken, S.M. Guruswamy, A .; Khandkar, J .; Am. Ceram. Soc, 85 [10], 2479 (2002) R.Maric,S.Seward,P.W.Faguy,M.Oljaca,J.Electrochemical and Solid State Letters,6[5],A91(2003)R. Maric, S.M. Seward, P.M. W. Faguy, M .; Oljaca, J .; Electrochemical and Solid State Letters, 6 [5], A91 (2003) K.Eguchi,T.Kunisaki,and H.Arai,J.Am.Ceram.Soc,69[11],C−282(1986)K. Eguchi, T .; Kunisaki, and H.K. Arai, J. et al. Am. Ceram. Soc, 69 [11], C-282 (1986) T.Kudo,and H.Obayashi,J.Electrochem.Soc.,123[3],415(1976)T.A. Kudo, and H.K. Obayashi, J. et al. Electrochem. Soc. , 123 [3], 415 (1976) I.S.Park,S.J.Kim,B.H.Lee,S.Park,Jpn.J.Appl.Phys.,Part1,36[10],6426(1997)I. S. Park, S.M. J. et al. Kim, B.M. H. Lee, S.M. Park, Jpn. J. et al. Appl. Phys. Part 1, 36 [10], 6426 (1997). R.Doshi,V.L.Richards,J.D.Carter,X.Wang,and M.Krumpelt,J.Electrochem.Soc.,146[4],1273(1999)R. Doshi, V .; L. Richards, J.A. D. Carter, X. Wang, and M.M. Krumpelt, J .; Electrochem. Soc. , 146 [4], 1273 (1999) 特願2004−064616Japanese Patent Application No. 2004-064616

上記先の特許出願によるものも含め、従前の希土類元素をドープしてなるセリア系焼結体は、導電性の点で充分でない、あるいは、製造プロセスにおいても、出発材料となる粉末が極めて分散性の良い、易焼結性粉末をもちいないと、導電率の向上につながらないという、特定の費用のかかるセリア系粉末に依存せざるを得ない等いくつかの点で困難な問題があった。本発明は、このような問題を解消し、緻密で、均一な組織をもち、高い導電特性を有するDyドープセリア系焼結体の製造方法を提供しようというものである。   Conventional ceria-based sintered bodies doped with rare earth elements, including those according to the above-mentioned patent applications, are not sufficient in terms of conductivity, or the powder as a starting material is extremely dispersible in the manufacturing process. If there is no good and easily sinterable powder, there is a difficult problem in several respects, such as the fact that it does not lead to an improvement in conductivity, and it must be dependent on a specific expensive ceria-based powder. The present invention is intended to solve such problems and to provide a method for producing a Dy-doped ceria-based sintered body having a dense and uniform structure and having high conductive properties.

本発明者らは、上記従来技術の問題点に鑑み、鋭意検討を続けた結果、比較的粒子の凝集の少ない、易焼結性Dyドープナノセリア粉末を作成し、この粉末を用いて、予備焼結として、室温から400℃/分以上の昇温速度で、所定の焼結温度において予備通電焼結
した後、常圧焼結により焼結を行うことにより、焼結体内における粒径分布を狭くすることで、これまでのように、100nm以下に焼結体内の平均粒径を制御せずとも、高い導電率が得られることを見出し、本発明を完成するに至った。
In light of the above-mentioned problems of the prior art, the present inventors have conducted intensive studies, and as a result, prepared a sinterable Dy-doped nanoceria powder with relatively little particle aggregation, and used this powder as a preliminary. As sintering, after pre-sintering at a predetermined sintering temperature at a temperature rising rate of 400 ° C./min or more from room temperature, sintering is performed by atmospheric pressure sintering, thereby reducing the particle size distribution in the sintered body. By narrowing, it has been found that high conductivity can be obtained without controlling the average particle size in the sintered body to 100 nm or less as in the past, and the present invention has been completed.

すなわち本発明の上記課題を解決するための解決手段として講じた技術的構成は、以下(1)ないし(4)に記載する通りである。
(1)一般式DyxCe1-x2-δ(ただし、0.10≦x≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)で表される組成を有する粉末粒子であって、粉末の一次粒子径が10ナノメーター以上30ナノメーター以下、2次粒子径が50ナノメーター以上90ナノメーター以下のナノサイズ粒子を出発原料粉末に用いて、この出発原料粉末を成形し、通電焼結法により、室温から400℃/分以上の昇温速
度で、1100度以上1250度以下の温度において、30分以内の焼結時間において予備通電焼結し、その後、室温まで冷却し、得られた焼結体を引き続き空気中において、3℃/分以上10℃/分以下の昇温速度において、1100℃以上、予備通電焼結温度以下の焼結温度で、20分以上30時間以下再度の焼結を行うことで、焼結体密度が理論密度の95%以上、焼結体を構成する結晶粒子の平均粒子径100nm以上200nm以下、かつ平均粒子径の2倍以上の粒子径は含まない、高密度、均一微細構造を有する焼結体を得ることを特徴とする、高密度、均一微細構造のDyドープナノセリア系焼結体の製造方法。
(2)該出発原料粉末を成形し、通電焼結する際に、該出発原料粉末を予めアルコール液中に分散させて、超音波分散処理を施し、処理終了後不活性ガス気流中において、加熱することなく室温でアルコールを蒸発させて乾燥し、次いで該通電焼結工程に付すことを特徴とする、前記(1)記載の高密度、均一微細構造のDyドープナノセリア系焼結体の製造方法。
(3)該アルコールとしてエタノールを用いることを特徴とする、前記(2)記載の高密度、均一微細構造を持つDyドープナノセリア系焼結体の製造方法。
(4)該超音波分散処理をすくなとも1時間以上行うことを特徴とする、前記(2)記載の高密度、均一微細構造を持つDyドープナノセリア系焼結体の製造方法。
That is, the technical configuration taken as a means for solving the above-described problems of the present invention is as described in (1) to (4) below.
(1) Represented by the general formula Dy x Ce 1-x O 2- δ (where 0.10 ≦ x ≦ 0.3, δ represents the amount of oxygen defects determined from the balance of charges of the cation and anion) A powder particle having a composition having a primary particle diameter of 10 to 30 nanometers and a secondary particle diameter of 50 to 90 nanometers as a starting material powder, This starting material powder is molded, and pre-electrically sintered at a temperature of 1100 ° C. to 1250 ° C. at a temperature increase rate of 400 ° C./min or more from room temperature for a sintering time of 30 minutes or less by an electric current sintering method. Then, it is cooled to room temperature, and the obtained sintered body is subsequently sintered in the air at a heating rate of 3 ° C./min to 10 ° C./min at a temperature not lower than 1100 ° C. and not higher than the pre-energized sintering temperature. So, more than 20 minutes and 30 o'clock By re-sintering, the sintered body density is 95% or more of the theoretical density, the average particle diameter of the crystal particles constituting the sintered body is 100 nm or more and 200 nm or less, and the average particle diameter is twice or more A method for producing a Dy-doped nanoceria-based sintered body having a high density and a uniform fine structure, characterized in that a sintered body having a high density and a uniform fine structure is obtained.
(2) When the starting raw material powder is molded and subjected to current sintering, the starting raw material powder is dispersed in an alcohol liquid in advance, subjected to ultrasonic dispersion treatment, and heated in an inert gas stream after completion of the treatment. The high-density, uniformly fine-structured Dy-doped nanoceria-based sintered body as described in (1) above, wherein the alcohol is evaporated and dried at room temperature, and then subjected to the electric current sintering step. Method.
(3) The method for producing a Dy-doped nanoceria-based sintered body having a high-density, uniform fine structure according to (2), wherein ethanol is used as the alcohol.
(4) The method for producing a Dy-doped nanoceria-based sintered body having a high-density, uniform fine structure according to (2), wherein the ultrasonic dispersion treatment is performed for at least one hour.

本発明は、上記、特有なプロセスによって得られてなる焼結体を作成することにより、セリア系焼結体の電導率を大幅に上げることに成功したものであり、今後、700度以下の従来に比して低温で、高出力を発生する燃料電池の開発に、大いに寄与するものと期待
される。とりわけ、近年注目されている携帯機器への燃料電池の応用、家庭における燃料電池の普及に大いに寄与するものと期待され、その意義は極めて大きいし、重大である。
The present invention has succeeded in significantly increasing the electric conductivity of the ceria-based sintered body by producing a sintered body obtained by the above-mentioned specific process, and in the future, it will be 700 degrees or less in the past. It is expected to contribute greatly to the development of fuel cells that generate high output at low temperatures. In particular, it is expected to greatly contribute to the application of fuel cells to portable devices that have been attracting attention in recent years and to the widespread use of fuel cells in the home, and its significance is extremely large and serious.

ここに、本発明の焼結体の製造方法は、配合が、DyxCe1-x2-δ(ただし、0.10≦x≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)で表され、一次粒子径が10ナノメーター以上30ナノメーター以下であり、2次粒子径が50ナノメーター以上90ナノメーター以下のナノサイズ粒子を出発粉末に用いることが好ましい。該一般式中、xは、0.10以上0.30以下でなければならない。xが0.10を下回ると、酸素欠陥量が不足していることから、いくら焼結体の粒子径を小さく制御しても、導電率の向上は期待できないことから好ましくない。一方、xが0.30を上回ると、過剰な酸素欠陥が、結晶中において欠陥のクラスターを形成し、導電率を低下させることから、いくら通電焼結と常圧焼結を組み合わせて、焼結体の粒径をナノサイズに制御しても、導電率の向上は見込めないことから好ましくない。 Here, in the method for producing a sintered body according to the present invention, the composition is Dy x Ce 1-x O 2- δ (where 0.10 ≦ x ≦ 0.3, δ is based on the balance of charges of the cation and the anion) The primary particle diameter is 10 to 30 nanometers, and the secondary particle diameter is 50 to 90 nanometers as the starting powder. It is preferable. In the general formula, x must be 0.10 or more and 0.30 or less. If x is less than 0.10, the amount of oxygen defects is insufficient. Therefore, no matter how small the particle diameter of the sintered body is controlled, improvement in conductivity cannot be expected. On the other hand, if x exceeds 0.30, excessive oxygen defects form defect clusters in the crystal and lower the electrical conductivity. Even if the particle size of the body is controlled to be nano-sized, it is not preferable because an improvement in conductivity cannot be expected.

さらに、焼結体を作成する場合に使用する出発原料である、Dyドープセリア粉末は、一次粒子径が10ナノメーター以上30ナノメーター以下からなるものでなければならない。一次粒子径がこの範囲を下回ることは、実質的にはありえないことであり、最小値は10ナノメーター程度であり、一方、上記範囲を上回る場合、1次粒子が緩やかに会合してなる2次粒子径が大きくなりすぎ、予備焼結として行う通電焼結の効果がなくなるので、好ましくない。   Furthermore, the Dy-doped ceria powder, which is a starting material used when producing a sintered body, must have a primary particle size of 10 to 30 nanometers. When the primary particle size is below this range, it is practically impossible, and the minimum value is about 10 nanometers. On the other hand, when it exceeds the above range, the secondary particles are formed by gently associating the primary particles. This is not preferable because the particle diameter becomes too large and the effect of current sintering performed as pre-sintering is lost.

また、上記1次粒子径の好ましい範囲を満たす焼結体作成原料粉末の2次粒子径は、50ナノメーター以上90ナノメーター以下でなければならず、この範囲を下回るほど微細かつ分散性の高い粉末が得られるが、こうした粉末は、成形時の圧力伝達が悪く、成形体中に大きな不均一性を生み、この不均一な状態が焼結時に強調され、平均粒径の2倍を超える大きな粒子を焼結体中に生み、この大きな粒子中には、Dyの偏析が生じやすいことから、酸化物イオンの粒内の移動が制限され、十分に粒径を小さくした効果が現れにくいので好ましくない。一方、この範囲を上回ると、通電焼結や常圧焼結を組み合わせても、こうした大きな凝集を有する粉末は、緻密に焼結させることが難しいことから、高い導電特性をうることができないので好ましくない。   Moreover, the secondary particle diameter of the sintered compact production raw material powder that satisfies the preferable range of the primary particle diameter must be 50 nanometers or more and 90 nanometers or less, and the finer and more dispersible the smaller the range is, the lower the particle diameter is. Although a powder is obtained, such a powder has poor pressure transmission during molding, and produces a large non-uniformity in the molded body. This non-uniform state is emphasized during sintering, and is larger than twice the average particle size. Since particles are produced in the sintered body and segregation of Dy is likely to occur in these large particles, the movement of oxide ions within the particles is restricted, and the effect of sufficiently reducing the particle size is unlikely to appear. Absent. On the other hand, if it exceeds this range, even if combined with current sintering or atmospheric pressure sintering, such a powder having large agglomeration is difficult to densely sinter, so it is not preferable because high conductive properties cannot be obtained. Absent.

上記のような出発粉末を用いて、まず通電焼結法により、室温から400℃/分以上の
昇温速度で、1100度以上1250度以下の温度において、30分以内の焼結時間において予備通電焼結を行わなければならない。通電焼結法は、出発原料粉末にパルス状に電圧を印加しながら焼結する方法であり、この方法によれば、電気炉の急速加熱を行っても、試料内の温度も電気炉内の温度と同じに保たれることから、緻密で微細な構造を有する焼結体の作成が可能になる。一方、この焼結方法を用いないと、いくら昇温速度を早めても、試料内の温度が、電気炉内の温度と必ずしも等しくならないことから、昇温速度を早めることに対する十分な効果が生まれないので、好ましくない。
Using the starting powder as described above, preliminary energization is first performed by a current sintering method at a heating rate of 400 ° C./min or more from room temperature to a temperature of 1100 ° C. or more and 1250 ° C. or less for a sintering time of 30 minutes or less. Sintering must be performed. The electric current sintering method is a method in which a starting material powder is sintered while applying a pulsed voltage. According to this method, even if rapid heating of the electric furnace is performed, the temperature in the sample is not changed in the electric furnace. Since the temperature is kept the same, a sintered body having a dense and fine structure can be produced. On the other hand, if this sintering method is not used, no matter how much the heating rate is increased, the temperature in the sample is not necessarily equal to the temperature in the electric furnace, so that a sufficient effect for increasing the heating rate is produced. Since it is not, it is not preferable.

また、通電焼結における昇温速度は、室温から400℃/分以上でなければならない。
この速度を下回ると、焼結中にドーパントの偏析が生じ、このことが異常粒成長を引き起こすことから、均一で、微細な粒径を有する緻密焼結体を作成することができないため好ましくない。また、昇温速度はあまり早くしても、それなりの効果しか生まないために、900℃/分程度までの速度を確保すれば十分である。
In addition, the rate of temperature increase in current sintering must be from room temperature to 400 ° C./min or more.
Below this rate, dopant segregation occurs during sintering, which causes abnormal grain growth, which is not preferable because a dense sintered body having a uniform and fine grain size cannot be produced. Moreover, even if the heating rate is too fast, only a certain effect is produced, so it is sufficient to secure a rate of up to about 900 ° C./min.

この通電焼結における焼結温度は、1100度以上1250度以下の温度で行わなければならず、この温度を下回ると通電焼結においても理論密度の85%以上の密度を有する焼結体の作製はできなくなる。理論密度の85%とは、焼結の中期段階がほぼ終了してい
ることを意味する。焼結には、初期(約5%ほどの収縮を伴う)段階、中期(初期以降、理論密度の90%程度までを指す)段階、及び終期(中期以降理論密度までを指す)段階が存在する。焼結体中の異常粒成長は、このうち中期焼結中におこるとされている。焼結体中の異常粒成長は、焼結体内の組織の不均一性を増大させる。この不均一性は、ドーパントの偏析を誘発し、このドーパントの偏析が、イオン伝導現象の妨げとなるマイクロドメインの発生を誘発するといわれており、導電率の大きな低下につながる。よって、中期焼結までを急速に終了させ、異常粒成長の発生を抑えて、理論密度の85%以上の緻密な焼結体を作製できれば、その後の常圧焼結により、理論密度の95%以上に緻密で、異常粒成長のない均一な組織を有する焼結体の作製が可能になる。
The sintering temperature in this electric sintering must be 1100 degrees or more and 1250 degrees or less, and below this temperature, a sintered body having a density of 85% or more of the theoretical density even in electric sintering is produced. Can not. 85% of the theoretical density means that the middle stage of sintering is almost finished. Sintering includes an initial stage (with a shrinkage of about 5%), a middle stage (after the initial stage, refers to about 90% of the theoretical density), and a final stage (points to the theoretical density after the middle stage). . Abnormal grain growth in the sintered body is assumed to occur during the medium-term sintering. Abnormal grain growth in the sintered body increases the non-uniformity of the structure in the sintered body. This non-uniformity is said to induce the segregation of the dopant, and it is said that the segregation of the dopant induces the generation of microdomains that hinder the ion conduction phenomenon, leading to a large decrease in conductivity. Therefore, if a dense sintered body of 85% or more of the theoretical density can be produced by rapidly terminating the medium-term sintering and suppressing the occurrence of abnormal grain growth, the subsequent normal pressure sintering can achieve 95% of the theoretical density. As described above, it is possible to produce a sintered body having a dense structure and a uniform structure without abnormal grain growth.

こうした理由から、通電焼結によりえられた焼結体の密度は、理論密度の85%以上でなければならない。この密度を下回ると、その後の常圧焼結において、異常粒成長をおこし、結果として導電率向上の妨げとなるので、好ましくない。
この通電焼結時間は、30分以内でなければならず、この焼結時間を上回ると、通電焼結に際して用いるカーボン製のモールドから炭素が試料中に侵入し、かえって焼結を妨げるか、または、30分を超える時間、焼結を行うと、わずかに試料が還元されるために、焼結体に還元により亀裂が発生し、高密度な焼結体が得られないことから、通電焼結時間は30分以内でなければならない。また、あまり短くともそれなりの効果しかないので、最低1分程度の保持時間を設けることが、より好ましい。
For these reasons, the density of the sintered body obtained by current sintering must be 85% or more of the theoretical density. Below this density, abnormal grain growth occurs in the subsequent normal pressure sintering, resulting in hindering improvement in conductivity, which is not preferable.
The current sintering time must be within 30 minutes, and if this sintering time is exceeded, carbon will enter the sample from the carbon mold used for current sintering, and prevent the sintering, or If the sintering is performed for more than 30 minutes, the sample is slightly reduced, and cracking occurs in the sintered body due to the reduction, and a high-density sintered body cannot be obtained. The time must be within 30 minutes. Also, since it has a certain effect even if it is too short, it is more preferable to provide a holding time of at least about 1 minute.

得られた焼結体は、引き続き空気中において、3℃/分以上10℃/分以下の昇温速度において、1100℃以上、予備通電焼結温度以下の焼結温度において、20分以上30時間以下の常圧焼結を行わなければならい。この常圧焼結において、昇温速度が上記範囲を上回ると、通電焼結においてわずかに混入した炭素などの不純物が焼結体内において“すす”として取り残され、焼結体密度の低下を引き起こすので、好ましくない。   The obtained sintered body is continuously heated in air at a rate of temperature of 3 ° C./min to 10 ° C./min at a sintering temperature of 1100 ° C. or higher and a pre-energized sintering temperature or lower for 20 minutes to 30 hours. The following normal pressure sintering must be performed. In this normal pressure sintering, if the heating rate exceeds the above range, impurities such as carbon that are slightly mixed in the electric current sintering are left as “soot” in the sintered body, causing a decrease in the density of the sintered body. It is not preferable.

一方、常圧焼結における昇温速度をあまり遅くしても、それなりの効果しか現れないので、3℃/分以上に制御して、焼結することが、好ましい。くわえて、常圧焼結温度は、
1100℃以上、予備通電焼結温度以下でなければならず、この温度を下回ると、常圧焼結をおこなっても、さらなる密度の向上が期待できず、焼結体中の空孔がとりきれず、焼結体の導電率の低下を招くことから好ましくない。一方、第1段目に行った通電焼結(予
備通電焼結と呼ぶ)温度を超える温度で、常圧焼結を行うと、せっかく、微細で、均一な粒径をもち、理論密度の85%以上まで緻密化した焼結体が、さらなる高温処理により、不均一粒成長を引きおこし、結果として焼結体の密度の低下につながり、焼結体の導電率が低下するので好ましくない。また、この常圧焼結時間は、20分以上30時間以下でなければならない。この範囲を超えると長時間焼結による異常粒成長により焼結体の微細構造に不均一性が高まり、導電率の低下を招くので好ましくない。また、常圧焼結時間がこの範囲を下回ると、緻密化に必要な十分な効果が得られないので好ましくない。
On the other hand, even if the rate of temperature increase in atmospheric pressure sintering is made too slow, only a certain effect appears. Therefore, it is preferable to control the sintering at 3 ° C./min or higher for sintering. In addition, the atmospheric pressure sintering temperature is
The temperature must be at least 1100 ° C. and below the pre-energization sintering temperature. Below this temperature, no further improvement in density can be expected even if atmospheric pressure sintering is performed, and voids in the sintered body are removed. Therefore, it is not preferable because the conductivity of the sintered body is reduced. On the other hand, when normal pressure sintering is performed at a temperature exceeding the temperature of the first stage electric current sintering (referred to as pre-current current sintering), it has a fine, uniform particle size and a theoretical density of 85. The sintered body densified to more than% is caused by non-uniform grain growth by further high-temperature treatment, resulting in a decrease in the density of the sintered body and a decrease in the conductivity of the sintered body. Moreover, this atmospheric pressure sintering time must be 20 minutes or more and 30 hours or less. Exceeding this range is not preferable because abnormal grain growth due to long-term sintering increases non-uniformity in the microstructure of the sintered body, leading to a decrease in conductivity. Further, if the normal pressure sintering time is less than this range, it is not preferable because sufficient effects required for densification cannot be obtained.

こうしてえられた焼結体密度は、理論密度の95%以上でなければならない。この範囲を下回ると、焼結体内の空孔が導電率を低下させるので好ましくない。
さらに、以上の製造方法によりえられた均一組織を有する焼結体の平均粒子径は、100nm以上200nm以下で、かつ平均粒子径の2倍以上の粒子径を有する粒子を含まないものでなければ、導電率の向上は期待できない。平均粒径が200nm以上に大きい場合は、焼結体内の粒界が大きな抵抗となり、焼結体全体の導電率を低下させるので好ましくない。また、上記平均粒径の範囲を下回る場合は、この範囲同様に優れた特性が得られる可能性は大きいが、そのためには、本明細書で規定した出発原料よりさらに、微細で、凝集のすくない、特別に費用のかかる粉末を出発原料に用いることが必要であり好ましくない。ただし、上記の焼結体平均粒径の範囲を満たす場合でも、平均粒径の2倍を超えるような大きさをもつ粗大な粒子を含んではならない。こうした粗大粒が焼結体内に存在すると、その中にドーパントの偏析が起こり、そのために導電率が十分に向上しないので好ましくない。
The density of the sintered body thus obtained must be 95% or more of the theoretical density. Below this range, the pores in the sintered body lower the electrical conductivity, which is not preferable.
Further, the average particle size of the sintered body having a uniform structure obtained by the above production method should be 100 nm or more and 200 nm or less and does not include particles having a particle size twice or more of the average particle size. The improvement in conductivity cannot be expected. When the average particle size is larger than 200 nm, the grain boundary in the sintered body becomes a large resistance, which is not preferable because the electrical conductivity of the entire sintered body is lowered. In addition, when the average particle size is below the above range, there is a high possibility that excellent characteristics will be obtained as in this range, but for that purpose, it is finer and less agglomerated than the starting materials defined in this specification. It is necessary to use a particularly expensive powder as a starting material, which is not preferable. However, even when the range of the average particle size of the sintered body is satisfied, coarse particles having a size exceeding twice the average particle size must not be included. The presence of such coarse particles in the sintered body is not preferable because segregation of the dopant occurs therein and the conductivity is not sufficiently improved.

さらに好ましくは、上述の組成が、DyxCe1-x2-δ(ただし、0.10≦x≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)で表され、一次粒子径が10ナノメーター以上30ナノメーター以下であり、2次粒子径が50ナノメーター以上90ナノメーター以下のナノサイズ粒子を出発粉末に用いて、この粉末を用いて通電焼結を行う前に、エタノールを溶媒とした溶液中に分散させ、1時間以上超音波分散処理を施した後、不活性ガス気流中において、加熱することなく室温において、アルコールを蒸発させて乾燥した後、上記の通電焼結および常圧焼結を行うことで、通電焼結時において発生する可能性がある、試料のわれを防ぎ、理論密度の95%以上に高密度化し、さらに焼結体の平均粒子径が100nm以上200nm以下で、かつ平均粒子径の2倍以上の粒子径を有する粒子を含まない焼結体を安定に製造することが可能になる。 More preferably, the above-mentioned composition is Dy x Ce 1-x O 2- δ (where 0.10 ≦ x ≦ 0.3, δ represents the amount of oxygen defects determined from the charge balance between the cation and the anion) ), A primary particle diameter of 10 nanometers to 30 nanometers, and a secondary particle diameter of 50 nanometers to 90 nanometers are used as a starting powder. Before sintering, disperse it in a solution using ethanol as a solvent, perform ultrasonic dispersion treatment for 1 hour or more, and then evaporate the alcohol at room temperature without heating in an inert gas stream. After that, by conducting the above-mentioned current sintering and atmospheric pressure sintering, the cracking of the sample, which may occur during current sintering, is prevented, the density is increased to 95% or more of the theoretical density, and further sintering is performed. Average grain of body Diameter at 100nm or 200nm or less, and it is possible to stably produce a sintered body containing no particles having a particle size of at least 2 times the average particle diameter.

この際、特に溶媒に限定はないが、あまり揮発性の高い有機溶媒では、長時間の超音波処理が難しくなり、また人体に極めて有害な有機溶媒は、実質的には取り扱いが難しいので、エタノールやメタノールなどを用いることが好ましく、もっとも好ましい溶媒は、ゼオライトなどを用いて一晩脱水処理を施した無水エタノールであり、粉末にわずかにのこる凝集をなくし、高密度で、われることのない製品を製造することができる。通電焼結時に見られることがある、焼結体中の割れは、主として粉末の不均一な充填により通電焼結中に発生するものであり、この問題を解決するためには、粉末中に残存する凝集を低減させる必要がある。そのための超音波分散処理時間は1時間以上でなければならず、この処
理時間を下回ると、十分な分散効果が現れずに好ましくない。またあまり長時間処理を行っても、それなりの効果しか得られないので、最長でも3時間処理を行えば十分である。
また、エタノール中に分散させた粉末を乾燥する場合には、室温で乾燥不活性ガス流通下において行わなければならず、加熱により乾燥したり、湿潤ガスを用いて乾燥すると、せっかく分散した粉末が再び凝集するので好ましくない。
At this time, the solvent is not particularly limited, but an organic solvent having a high volatility makes it difficult to perform ultrasonic treatment for a long time, and an organic solvent extremely harmful to the human body is substantially difficult to handle. It is preferable to use anhydrous ethanol that has been dehydrated overnight using zeolite or the like, and eliminates agglomeration slightly remaining on the powder, resulting in a high-density, unbreakable product. Can be manufactured. Cracks in the sintered body, which can be seen during electric current sintering, mainly occur during electric current sintering due to uneven filling of the powder. To solve this problem, it remains in the powder. It is necessary to reduce the aggregation. Therefore, the ultrasonic dispersion treatment time must be 1 hour or longer, and if the treatment time is shorter than this, it is not preferable because a sufficient dispersion effect does not appear. Moreover, even if the treatment is performed for a very long time, only a certain effect can be obtained, so it is sufficient to perform the treatment for a maximum of 3 hours.
In addition, when the powder dispersed in ethanol is to be dried, it must be carried out at room temperature under a dry inert gas flow. When it is dried by heating or using a humid gas, the dispersed powder is not removed. Since it aggregates again, it is not preferable.

以上のべたように、出発粉末の性質、通電焼結と常圧焼結の組み合わせ、焼結の際の昇温速度、焼結時間、焼結体平均粒径、その分布、および焼結体密度のすべての条件を満たすことによって、高い導電特性である、700℃において-1(S/cm)以上の値が得
られることが明らかにされた。
As described above, the properties of the starting powder, the combination of electric current sintering and atmospheric pressure sintering, the heating rate during sintering, the sintering time, the average particle size of the sintered body, its distribution, and the sintered body density It was clarified that satisfying all of the conditions, a value of −1 (S / cm) or higher at 700 ° C., which is a high conductive property, can be obtained.

次に、本発明を実施例、図面及び比較例に基づいて説明する。但し、これらの実施例は、あくまでも本発明を具体的に示し、容易に理解するための一助として開示するものであって、本発明の内容は、これらの実施例により制限されるものではない。   Next, this invention is demonstrated based on an Example, drawing, and a comparative example. However, these examples are disclosed only as an aid for specifically showing and easily understanding the present invention, and the contents of the present invention are not limited by these examples.

実施例1;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.05モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、空気中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、一次粒子径が20ナノメーターであり、2次粒子径が70ナノメーター程度の粒子であることを、走査型電
子顕微鏡(SEM)により確認した。その観察結果を図1に示す。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、500℃/
分の昇温速度で、1200℃、2分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の87%にまで高密度化していた。そこで引き続き、5℃/分の昇温速度により、1200℃、30分常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の97%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が150ナノメーターであり、焼結体中の最大粒径も260ナノメーターであり均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-0.9(S/cm)と高
い値を示した。実施例1の結果を表1に示した。
Example 1;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.05 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is repeatedly washed with water and filtered three times alternately, dried in dry nitrogen gas, then calcined at a temperature of 700 ° C. in air for 2 hours through a 120 mesh sieve, Ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. The calcined powder was confirmed by a scanning electron microscope (SEM) to have a primary particle size of 20 nanometers and a secondary particle size of about 70 nanometers. The observation results are shown in FIG.
This powder was put into a carbon mold and uniaxially molded at 250 kg / cm 2 , and then at 500 ° C. /
Current heating was performed at 1200 ° C. for 2 minutes at a heating rate of 1 minute. The obtained sintered body was slightly blackened by carbon. However, when the black portion of the surface was removed by polishing and the sintered body density was measured, it was increased to 87% of the theoretical density. Then, when a normal pressure sintering was performed at 1200 ° C. for 30 minutes at a rate of temperature increase of 5 ° C./min, a yellow sintered body having an appearance was obtained. When the density of the sintered body was measured, the density was increased to 97% of the theoretical density, and it was found that no large voids were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle size of 150 nanometers, and the maximum particle size in the sintered body was 260 nanometers, indicating that it had a uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a high value of −0.9 (S / cm). The results of Example 1 are shown in Table 1.

実施例2;
配合がDy0.1Ce0.91.95になるように、出発原料として、0.20モル/リットルの硝酸セリウム溶液及び0.025モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、空気中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、実施例1同様SEM
により粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が80ナ
ノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、2分間通電焼結を行った。得られた焼結体は、極めてわずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の86%にまで高密度化していた。そこで引き続き、5℃/分の昇温速度により、1100℃、4時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の96%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が130ナノメーターであり、焼結体中の最大粒径も210ナノメーターであり均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-1.0(S/cm)と高
い値を示した。実施例1同様、得られた結果を表1に示した。
Example 2;
A 0.20 mol / liter cerium nitrate solution and a 0.025 mol / liter dysprosium nitrate solution were prepared as starting materials so that the blending would be Dy 0.1 Ce 0.9 O 1.95 , and then this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is repeatedly washed with water and filtered three times alternately, dried in dry nitrogen gas, then calcined at a temperature of 700 ° C. in air for 2 hours through a 120 mesh sieve, Ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. This calcined powder was also SEM as in Example 1.
As a result of observing the powder, the primary particle size was 20 nanometers, and the secondary particle size was about 80 nanometers.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 2 minutes at a heating rate of 700 ° C./min. The obtained sintered body was very slightly blackened by carbon, but when the black portion of the surface was removed by polishing and the sintered body density was measured, the density was increased to 86% of the theoretical density. . Then, when sintered at 1100 ° C. for 4 hours at a rate of temperature increase of 5 ° C./min, a sintered body having a yellow appearance was obtained. When the density of the sintered body was measured, the density was increased to 96% of the theoretical density, and it was found that no large pores were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle diameter of 130 nanometers, and the maximum particle diameter in the sintered body was also 210 nanometers, indicating that it had a uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a high value of −1.0 (S / cm). As in Example 1, the obtained results are shown in Table 1.

実施例3;
配合がDy0.28Ce0.781.86になるように、出発原料として、0.20モル/リットルの硝酸セリウム溶液及び0.056モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、空気中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、実施例1同様SEM
により粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が75ナ
ノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、900℃/分の昇温速度で、1250℃、1分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の90%にまで高密度化していた。そこで引き続き、5℃/分の昇温速度により、1100℃、6時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の98%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が110ナノメーターであり、焼結体中の最大粒径も190ナノメーターであり均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-1.0(S/cm)と高
い値を示した。実施例1同様、得られた結果を表1に示した。
Example 3;
A 0.20 mol / liter cerium nitrate solution and a 0.056 mol / liter dysprosium nitrate solution were prepared as starting materials so that the composition was Dy 0.28 Ce 0.78 O 1.86 , and then this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is repeatedly washed with water and filtered three times alternately, dried in dry nitrogen gas, then calcined at a temperature of 700 ° C. in air for 2 hours through a 120 mesh sieve, Ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Also, this calcined powder is SEM as in Example 1.
As a result of observing the powder, the primary particle size was 20 nanometers, and the secondary particle size was about 75 nanometers.
This powder was put in a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1250 ° C. for 1 minute at a heating rate of 900 ° C./min. Although the obtained sintered body was slightly blackened by carbon, the black portion of the surface was removed by polishing and the sintered body density was measured. As a result, the sintered body was densified to 90% of the theoretical density. Then, when a normal pressure sintering was performed at 1100 ° C. for 6 hours at a rate of temperature increase of 5 ° C./min, a sintered body having a yellow appearance was obtained. When the density of the sintered body was measured, the density was increased to 98% of the theoretical density, and it was found that no large voids were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle size of 110 nanometers, and the maximum particle size in the sintered body was also 190 nanometers, indicating that it had a uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a high value of −1.0 (S / cm). As in Example 1, the obtained results are shown in Table 1.

実施例4;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.05モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、実施例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が70ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1150℃、5分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の85%にまで高密度化していた。そこで引き続き、5℃/分の昇温速度により、1100℃、24時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の98%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が180ナノメーターであり、焼結体中の最大粒径も300ナノメーターであり均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-0.8(S/cm)と高
い値を示した。実施例1同様、得られた結果を表1に示した。
Example 4;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.05 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, as a result of observing the powder by SEM as in Example 1, this calcined powder was a particle having a primary particle size of 20 nanometers and a secondary particle size of about 70 nanometers.
This powder was put in a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1150 ° C. for 5 minutes at a heating rate of 700 ° C./min. The obtained sintered body was slightly blackened by carbon, but when the black portion of the surface was removed by polishing and the density of the sintered body was measured, the density was increased to 85% of the theoretical density. Then, when a normal pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 5 ° C./min, a yellow sintered body having an appearance was obtained. When the density of the sintered body was measured, the density was increased to 98% of the theoretical density, and it was found that no large voids were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle size of 180 nanometers, and the maximum particle size in the sintered body was also 300 nanometers, indicating that it had a uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a high value of −0.8 (S / cm). As in Example 1, the obtained results are shown in Table 1.

実施例5
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.05モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、実施例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が70ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、5分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の86%にまで高密度化していた。そこで引き続き、4℃/分の昇温速度により、1100℃、24時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の97%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が170ナノメーターであり、焼結体中の最大粒径も280ナノメーターであり均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-0.9(S/cm)と高
い値を示した。実施例1同様、得られた結果を表1に示した。
Example 5
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.05 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, as a result of observing the powder by SEM as in Example 1, this calcined powder was a particle having a primary particle size of 20 nanometers and a secondary particle size of about 70 nanometers.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 5 minutes at a heating rate of 700 ° C./min. The obtained sintered body was slightly blackened by carbon. However, when the black portion of the surface was removed by polishing and the sintered body density was measured, it was increased to 86% of the theoretical density. Then, when a normal pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 4 ° C./min, a yellow sintered body having an appearance was obtained. When the density of the sintered body was measured, the density was increased to 97% of the theoretical density, and it was found that no large voids were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle size of 170 nanometers, and the maximum particle size in the sintered body was also 280 nanometers, indicating that it had a uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a high value of −0.9 (S / cm). As in Example 1, the obtained results are shown in Table 1.

実施例6
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.05モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、実施例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が70ナノメーター程度の粒子であった。この粉末をさらに、ビーカーにいれたエタノール中に分散させ、そのビーカーを卓上超音波洗浄機中におき、1時間超音波分散処理を施した。この処理を行ったのち、エタノールは乾燥窒素ガスを吹き付けることにより、エタノールを乾燥させ、再度120メッシュのふるいをとおして、焼結用の粉末とした。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、5分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の89%にまで高密度化していた。そこで引き続き、9℃/分の昇温速度により、1100℃、24時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の98%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が180ナノメーターであり、焼結体中の最大粒径も210ナノメーターであり均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-0.8(S/cm)と高
い値を示した。実施例1同様、得られた結果を表1に示した。

Figure 0004106442
Example 6
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.05 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, as a result of observing the powder by SEM as in Example 1, this calcined powder was a particle having a primary particle size of 20 nanometers and a secondary particle size of about 70 nanometers. This powder was further dispersed in ethanol in a beaker, the beaker was placed in a tabletop ultrasonic cleaner, and subjected to ultrasonic dispersion treatment for 1 hour. After this treatment, ethanol was dried by blowing dry nitrogen gas, and again passed through a 120-mesh sieve to obtain a powder for sintering.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 5 minutes at a heating rate of 700 ° C./min. The obtained sintered body was slightly blackened by carbon, but the black portion of the surface was removed by polishing and the density of the sintered body was measured. As a result, the density was increased to 89% of the theoretical density. Then, when a normal pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 9 ° C./min, a yellow sintered body having an appearance was obtained. When the density of the sintered body was measured, the density was increased to 98% of the theoretical density, and it was found that no large voids were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle diameter of 180 nanometers, and the maximum particle diameter in the sintered body was also 210 nanometers, indicating that it had a uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a high value of −0.8 (S / cm). As in Example 1, the obtained results are shown in Table 1.
Figure 0004106442

比較例1;
配合がDy0.05Ce0.951.975になるように、出発原料として、0.20モル/リッ
トルの硝酸セリウム溶液及び0.01モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、実施例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が80ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、5分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の86%にまで高密度化していた。そこで引き続き、5℃/分の昇温速度により、1100℃、24時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の95%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が190ナノメーターであり、焼結体中の最大粒径も310ナノメーターであり均一な組織をしていることが分かった。
しかし、直流3端子法により、700℃において測定した導電率は、-2.7(S/c
m)と低い値を示した。こうして得られた結果を表2に示した。
Comparative Example 1;
A 0.20 mol / liter cerium nitrate solution and a 0.01 mol / liter dysprosium nitrate solution were prepared as starting materials so that the composition would be Dy 0.05 Ce 0.95 O 1.975 , and then this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, as a result of observing the powder by SEM as in Example 1, this calcined powder was a particle having a primary particle diameter of 20 nanometers and a secondary particle diameter of about 80 nanometers.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 5 minutes at a heating rate of 700 ° C./min. The obtained sintered body was slightly blackened by carbon. However, when the black portion of the surface was removed by polishing and the sintered body density was measured, it was increased to 86% of the theoretical density. Then, when a normal pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 5 ° C./min, a yellow sintered body having an appearance was obtained. When the density of the sintered body was measured, the density was increased to 95% of the theoretical density, and it was found that no large voids were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle size of 190 nanometers, and the maximum particle size in the sintered body was also 310 nanometers, indicating that it had a uniform structure.
However, the conductivity measured at 700 ° C. by the direct current three-terminal method is −2.7 (S / c
m) and a low value. The results thus obtained are shown in Table 2.

比較例2;
配合がDy0.4Ce0.61.95になるように、出発原料として、0.20モル/リットルの硝酸セリウム溶液及び0.08モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径が70ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、5分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の85%にまで高密度化していた。そこで引き続き、5℃/分の昇温速度により、1100℃、24時間常圧焼結を行ったところ、外観は黄色の焼結体が得られた。この焼結体の密度を測定したところ、理論密度の96%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。得られた焼結体は、平均粒子径が190ナノメーターであり、焼結体中の最大粒径も310ナノメーターであり均一な組織をしていることが分かった。
しかし、直流3端子法により、700℃において測定した導電率は、-3.1(S/c
m)と低い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 2;
A 0.20 mol / liter cerium nitrate solution and a 0.08 mol / liter dysprosium nitrate solution were prepared as starting materials so that the composition was Dy 0.4 Ce 0.6 O 1.95 , and then this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, as a result of observing the powder by SEM as in Comparative Example 1, this calcined powder was a particle having a primary particle size of 20 nanometers and a secondary particle size of about 70 nanometers.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 5 minutes at a heating rate of 700 ° C./min. The obtained sintered body was slightly blackened by carbon, but when the black portion of the surface was removed by polishing and the density of the sintered body was measured, the density was increased to 85% of the theoretical density. Then, when a normal pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 5 ° C./min, a yellow sintered body having an appearance was obtained. When the density of the sintered body was measured, the density was increased to 96% of the theoretical density, and it was found that no large pores were observed on the surface of the sintered body and the densification was progressing. The obtained sintered body had an average particle size of 190 nanometers, and the maximum particle size in the sintered body was also 310 nanometers, indicating that it had a uniform structure.
However, the conductivity measured at 700 ° C. by the direct current three-terminal method is −3.1 (S / c
m) and a low value. As in Comparative Example 1, the obtained results are shown in Table 2.

比較例3;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中1000℃の温度で10時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであったが、仮焼粉
末は凝集しており、2次粒子径が150ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、5分間通電焼結を行った。得られた焼結体は、わずかにカーボンにより黒化していたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の72%程度であった。そこで引き続き、5℃/分の昇温速度により、1100℃、24時間常圧焼結を行ったところ、外観は黄色の焼結体が得られたが、この焼結体の密度を測定したところ、理論密度の92%の密度を有しており、焼結体表面には、ところどころ大きな空孔は認めら、ち密化が必ずしも十分には進んでいないことが分かった。得られた焼結体は、平均粒子径が160ナノメーターであり、焼結体中の最大粒径も290ナノメーターであり、均一な組織をしていることが分かった。
しかし、直流3端子法により、700℃において測定した導電率は、-2.9(S/c
m)と低い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 3;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, and then calcined for 10 hours at a temperature of 1000 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, this calcined powder was observed by SEM as in Comparative Example 1. As a result, the primary particle diameter was 20 nanometers, but the calcined powder was agglomerated and the secondary particle diameter was about 150 nanometers. It was a particle.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 5 minutes at a heating rate of 700 ° C./min. The obtained sintered body was slightly blackened by carbon, but when the black portion of the surface was removed by polishing and the sintered body density was measured, it was about 72% of the theoretical density. Therefore, when a normal pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 5 ° C./min, a yellow sintered body was obtained. The density of this sintered body was measured. It has a density of 92% of the theoretical density, and some large pores are observed on the surface of the sintered body, and it has been found that the densification is not necessarily sufficiently advanced. The obtained sintered body had an average particle size of 160 nanometers, and the maximum particle size in the sintered body was also 290 nanometers, indicating that it had a uniform structure.
However, the conductivity measured at 700 ° C. by the direct current three-terminal method is −2.9 (S / c
m) and a low value. As in Comparative Example 1, the obtained results are shown in Table 2.

比較例4;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径は、80ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1000℃、20分間通電焼結を行った。得られた焼結体には、カーボンによる黒化した部分は認められず、セリア系焼結体特有の黄色を呈していた。この焼結体の密度を測定したところ、理論密度の68%程度であった。そこで引き続き、5℃/分
の昇温速度により、1100℃、24時間常圧焼結を行ったところ、焼結体の密度は、理論密度の90%程度であり、焼結体表面には、大きな空孔が認めら、ち密化が十分には進んでいないことが分かった。得られた焼結体は、平均粒子径が130ナノメーターであり、焼結体中の最大粒径も200ナノメーターであり、均一な組織をしていることが分かった。
しかし、直流3端子法により、700℃において測定した導電率は、-3.2(S/c
m)と低い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 4;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Further, this calcined powder was observed by SEM as in Comparative Example 1. As a result, the primary particle size was 20 nanometers, and the secondary particle size was about 80 nanometers.
This powder was put in a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1000 ° C. for 20 minutes at a heating rate of 700 ° C./min. In the obtained sintered body, a blackened portion due to carbon was not recognized, and a yellow characteristic of the ceria-based sintered body was exhibited. When the density of the sintered body was measured, it was about 68% of the theoretical density. Then, when the atmospheric pressure sintering was performed at 1100 ° C. for 24 hours at a rate of temperature increase of 5 ° C./min, the density of the sintered body was about 90% of the theoretical density. When large vacancies were observed, it was found that densification was not sufficiently advanced. The obtained sintered body had an average particle size of 130 nanometers, and the maximum particle size in the sintered body was also 200 nanometers, indicating that it had a uniform structure.
However, the conductivity measured at 700 ° C. by the direct current three-terminal method is −3.2 (S / c
m) and a low value. As in Comparative Example 1, the obtained results are shown in Table 2.

比較例5;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径は、
80ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1100℃、5分間通電焼結を行った。得られた焼結体は、極めて大きなカーボンによる黒化現象が認められ、焼結体の密度を測定したところ、理論密度の85%程度であった。そこで引き続き、5℃/分の昇温速度により、1100℃、40時間常圧焼結を行ったところ、焼結体の密度は、理論密度の88%程度であり、焼結体表面には、ところどころ、大きな空孔が認めら、ち密化が十分には進んでいないことが分かった。得られた焼結体は、平均粒子径が250ナノメーターであり、焼結体中の最大粒径も600ナノメーターであり、不均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-4.1(S/cm)と低
い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 5;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Moreover, as for this calcined powder, as a result of observing powder by SEM like the comparative example 1, a primary particle diameter is 20 nanometers and a secondary particle diameter is
The particles were about 80 nanometers.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1100 ° C. for 5 minutes at a heating rate of 700 ° C./min. In the obtained sintered body, an extremely large blackening phenomenon due to carbon was observed, and when the density of the sintered body was measured, it was about 85% of the theoretical density. Then, when the normal pressure sintering was performed at 1100 ° C. for 40 hours at a rate of temperature increase of 5 ° C./min, the density of the sintered body was about 88% of the theoretical density. On the other hand, large vacancies were observed and it was found that the densification was not sufficiently advanced. The obtained sintered body had an average particle diameter of 250 nanometers, and the maximum particle diameter in the sintered body was also 600 nanometers, indicating that it had a non-uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a low value of −4.1 (S / cm). As in Comparative Example 1, the obtained results are shown in Table 2.

比較例6;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製した
のち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径は、
80ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1300℃、1分間通電焼結を行った。得られた焼結体は、極めて大きなカーボンによる黒化現象が認められ、焼結体の密度を測定したところ、理論密度の80%程度であった。そこで引き続き、5℃/分の昇温速度により、1300℃、2時間常圧焼結を行ったところ、焼結体の密度は、理論密度の92%程度であり、焼結体表面には、ところどころ、大きな空孔が認めら、ち密化が十分には進んでいないことが分かった。得られた焼結体は、平均粒子径が230ナノメーターであり、焼結体中の最大粒径も550ナノメーターであり、不均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-3.5(S/cm)と低
い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 6;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Moreover, as for this calcined powder, as a result of observing powder by SEM like the comparative example 1, a primary particle diameter is 20 nanometers and a secondary particle diameter is
The particles were about 80 nanometers.
This powder was put in a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1300 ° C. for 1 minute at a heating rate of 700 ° C./min. In the obtained sintered body, an extremely large blackening phenomenon due to carbon was observed, and when the density of the sintered body was measured, it was about 80% of the theoretical density. Then, when the normal pressure sintering was performed at 1300 ° C. for 2 hours at a rate of temperature increase of 5 ° C./min, the density of the sintered body was about 92% of the theoretical density. On the other hand, large vacancies were observed and it was found that the densification was not sufficiently advanced. The obtained sintered body had an average particle size of 230 nanometers, and the maximum particle size in the sintered body was also 550 nanometers, indicating that it had a non-uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a low value of −3.5 (S / cm). As in Comparative Example 1, the obtained results are shown in Table 2.

比較例7;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径は、
80ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1200℃、2分間通電焼結を行った。得られた焼結体は、わずかにカーボンが焼結体中に侵入したと思われる黒化現象が認められたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の87%程度であった。そこで引き続き、20℃/分の昇温速度により、1200℃、2時間常圧焼結を行ったところ、焼結体の密度は、理論密度の95%程度であり、焼結体表面には、大きな空孔が認められず、ち密化が進んでいることが分かった。しかし、得られた焼結体は、平均粒子径が180ナノメーターであったが、焼結体中の最大粒径も480ナノメーターであり、不均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-3.2(S/cm)と低
い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 7;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Moreover, as for this calcined powder, as a result of observing powder by SEM like the comparative example 1, a primary particle diameter is 20 nanometers and a secondary particle diameter is
The particles were about 80 nanometers.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1200 ° C. for 2 minutes at a temperature rising rate of 700 ° C./min. In the obtained sintered body, a blackening phenomenon that carbon slightly intruded into the sintered body was observed, but when the black portion of this surface was removed by polishing and the sintered body density was measured, It was about 87% of the theoretical density. Then, when the atmospheric pressure sintering was performed at 1200 ° C. for 2 hours at a rate of temperature increase of 20 ° C./min, the density of the sintered body was about 95% of the theoretical density. It was found that no large vacancies were observed and the densification was progressing. However, although the obtained sintered body had an average particle diameter of 180 nanometers, the maximum particle diameter in the sintered body was also 480 nanometers, and it was found that the sintered body had a non-uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a low value of −3.2 (S / cm). As in Comparative Example 1, the obtained results are shown in Table 2.

比較例8;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の
結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径は、
80ナノメーター程度の粒子であった。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、200℃/分の昇温速度で、1200℃、2分間通電焼結を行った。得られた焼結体は、わずかにカーボンが焼結体中に侵入したと思われる黒化現象が認められたが、この表面の黒色部を研磨により取り除き、焼結体密度を測定したところ、理論密度の86%程度であった。そこで引き続き、5℃/分の昇温速度により、1200℃、2時間常圧焼結を行ったところ、焼結体の密度は、理論密度の96%程度であり、焼結体表面には、大きな空孔が認められず、ち密化が進んでいることが分かった。しかし、得られた焼結体は、平均粒子径が210ナノメーターであったが、焼結体中の最大粒径も500ナノメーターであり、不均一な組織をしていることが分かった。
直流3端子法により、700℃において測定した導電率は、-3.4(S/cm)と低
い値を示した。比較例1同様、得られた結果を表2に示した。
Comparative Example 8;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Moreover, as for this calcined powder, as a result of observing powder by SEM like the comparative example 1, a primary particle diameter is 20 nanometers and a secondary particle diameter is
The particles were about 80 nanometers.
This powder was put in a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1200 ° C. for 2 minutes at a temperature rising rate of 200 ° C./min. In the obtained sintered body, a blackening phenomenon that carbon slightly intruded into the sintered body was observed, but when the black portion of this surface was removed by polishing and the sintered body density was measured, It was about 86% of the theoretical density. Therefore, when atmospheric pressure sintering was performed at 1200 ° C. for 2 hours at a rate of temperature increase of 5 ° C./min, the density of the sintered body was about 96% of the theoretical density. It was found that no large vacancies were observed and the densification was progressing. However, although the obtained sintered body had an average particle diameter of 210 nanometers, the maximum particle diameter in the sintered body was also 500 nanometers, and it was found that the sintered body had a non-uniform structure.
The conductivity measured at 700 ° C. by the direct current three-terminal method showed a low value of −3.4 (S / cm). As in Comparative Example 1, the obtained results are shown in Table 2.

比較例9;
配合がDy0.2Ce0.81.9になるように、出発原料として、0.20モル/リットル
の硝酸セリウム溶液及び0.04モル/リットルの硝酸ディスプロシウム溶液を作製したのち、この液体を混合した混合溶液に、炭酸水素アンモニウム水溶液を2滴/秒となるように滴下して、滴下終了後、室温において、1時間熟成処理を行った。
こうして得られた沈殿は、水洗処理とろ過とを交互に3回繰り返したのち、乾燥窒素ガス中において乾燥したのち、120メッシュの篩を通して、酸素気流中700℃の温度で2時間仮焼して、セリア系化合物粉末を作成した。えられた仮焼粉末は、ホタル石単一の結晶相からなることをX線回折試験により確認した。またこの仮焼粉末は、比較例1同様SEMにより粉末を観察した結果、一次粒子径が20ナノメーターであり、2次粒子径は、
80ナノメーター程度の粒子であった。この粉末を、エタノール中において、卓上超音波洗浄機を用いて、1時間超音波分散処理を施したのち、80度に加熱したホットプレート上で、エタノールを蒸発させ、さらに100度の温度に設定した乾燥機中において12時間乾燥させ、焼結体原料とした。
この粉末をカーボン製の型にいれ、250kg/cm2の一軸成形を行った後、700℃/分の昇温速度で、1200℃、2分間通電焼結を行った。得られた焼結体は、カーボン型から取り出した時点で、6つに割れており、密度、導電率を測定できる状態にはなかった。

Figure 0004106442
Comparative Example 9;
After preparing a 0.20 mol / liter cerium nitrate solution and a 0.04 mol / liter dysprosium nitrate solution as starting materials so that the blending was Dy 0.2 Ce 0.8 O 1.9 , this liquid was mixed. An aqueous ammonium hydrogen carbonate solution was dropped into the mixed solution at 2 drops / second, and after completion of the dropping, an aging treatment was performed at room temperature for 1 hour.
The precipitate thus obtained is alternately washed with water and filtered three times, dried in dry nitrogen gas, then calcined for 2 hours at a temperature of 700 ° C. in an oxygen stream through a 120-mesh sieve. A ceria compound powder was prepared. It was confirmed by an X-ray diffraction test that the obtained calcined powder was composed of a single crystal phase of fluorite. Moreover, as for this calcined powder, as a result of observing powder by SEM like the comparative example 1, a primary particle diameter is 20 nanometers and a secondary particle diameter is
The particles were about 80 nanometers. This powder is subjected to ultrasonic dispersion treatment in ethanol using a tabletop ultrasonic cleaner for 1 hour, and then the ethanol is evaporated on a hot plate heated to 80 ° C. and set to a temperature of 100 ° C. The dried material was dried for 12 hours to obtain a sintered compact raw material.
This powder was put into a carbon mold, uniaxially molded at 250 kg / cm 2 , and then subjected to current sintering at 1200 ° C. for 2 minutes at a temperature rising rate of 700 ° C./min. When the obtained sintered body was taken out from the carbon mold, it was broken into six, and it was not in a state where the density and conductivity could be measured.
Figure 0004106442

以上の実施例、比較例を総合すると、本発明の特許請求の範囲で規定した、配合に基づき調合された粉末であって、1次粒子径、2次粒子径、通電焼結昇温速度、通電焼結温度、通電焼結時間、焼結体密度、常圧焼結温度、常圧焼結体密度、焼結体内平均粒径、最大粒径がそれぞれ特定の値を有してなる場合、その範囲外に比し極めて高い導電率を有することが明らかにされた。すなわち、このデータによると特許請求の範囲で規定した各要件事項は、それぞれ格別意義のある事項を規定したものと言える。   Summarizing the above examples and comparative examples, the powders formulated based on the blending defined in the claims of the present invention, the primary particle diameter, the secondary particle diameter, the current sintering temperature rise rate, When the current sintering temperature, the current sintering time, the sintered body density, the atmospheric pressure sintering temperature, the atmospheric pressure sintered body density, the average particle size within the sintered body, and the maximum particle size have specific values, It has been clarified that it has an extremely high conductivity as compared to outside the range. In other words, according to this data, it can be said that each requirement defined in the scope of claims defines a matter of exceptional significance.

近年、温暖化対策の一環として二酸化炭素削減が叫ばれる一方、高まるエネルギー需要に応えるために、高出力小型燃料電池の開発が活発に進められている。こうした燃料電池の開発には、500℃から700℃といった温度域で高い出力を示す燃料電池用固体電解質の研究、開発が必要不可欠である。本発明は、まさにこのニーズに対応した700℃の温度で大きな電導率を示すセリア系焼結体固体電解質の製造方法を提供するもので、今後大いに利用されることが期待される。今後は、燃料電池のみならず、各種技術分野において優れた固体電解質として供され、且つ利用されるものと期待される。とくに、耐熱性に優れた固体電解質であるところからその利用範囲は広く、新産業創出へと発展することが期待される。   In recent years, reduction of carbon dioxide has been called out as part of global warming countermeasures, while development of high-power small fuel cells has been actively promoted to meet increasing energy demand. For the development of such a fuel cell, research and development of a solid electrolyte for a fuel cell exhibiting a high output in a temperature range of 500 ° C. to 700 ° C. is indispensable. The present invention provides a method for producing a ceria-based sintered solid electrolyte exhibiting a large electrical conductivity at a temperature of 700 ° C. exactly corresponding to this need, and is expected to be used greatly in the future. In the future, it is expected to be used and used as an excellent solid electrolyte in various technical fields as well as fuel cells. In particular, since it is a solid electrolyte with excellent heat resistance, its range of use is wide and it is expected to develop into the creation of new industries.

本発明の製造方法で合成した焼結原料のSEM観察図SEM observation drawing of sintered raw material synthesized by the production method of the present invention

Claims (4)

一般式DyxCe1-x2-δ(ただし、0.10≦x≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)で表される組成を有する粉末粒子であって、粉末の一次粒子径が10ナノメーター以上30ナノメーター以下、2次粒子径が50ナノメーター以上90ナノメーター以下のナノサイズ粒子を出発原料粉末に用いて、この出発原料粉末を成形し、通電焼結法により、室温から400℃/分以上の昇温速度で、
1100度以上1250度以下の温度において、30分以内の焼結時間において予備通電焼結し、その後、室温まで冷却し、得られた焼結体を引き続き空気中において、3℃/分
以上10℃/分以下の昇温速度において、1100℃以上、予備通電焼結温度以下の焼結
温度で、20分以上30時間以下再度の焼結を行うことで、焼結体密度が理論密度の95%以上、焼結体を構成する結晶粒子の平均粒子径100nm以上200nm以下、かつ平均粒子径の2倍以上の粒子径は含まない、高密度、均一微細構造を有する焼結体を得ることを特徴とする、高密度、均一微細構造のDyドープナノセリア系焼結体の製造方法。
The composition represented by the general formula Dy x Ce 1-x O 2- δ (where 0.10 ≦ x ≦ 0.3, δ represents the amount of oxygen defects determined from the balance of charges of the cation and anion) A powder particle having a primary particle diameter of 10 to 30 nanometers and a secondary particle diameter of 50 to 90 nanometers as a starting material powder. Molding the powder, by the current sintering method, at a temperature rising rate of 400 ° C./min or more from room temperature,
Pre-energization sintering is performed at a temperature of 1100 ° C. or more and 1250 ° C. or less for a sintering time of 30 minutes or less, and then cooled to room temperature. The obtained sintered body is subsequently kept at 3 ° C./min to 10 ° C. in the air. The sintering density is 95% of the theoretical density by performing sintering again at a sintering temperature not lower than 1100 ° C. and not higher than the pre-current sintering temperature at a heating rate of not higher than 1 / min. As described above, it is characterized in that a sintered body having a high density and a uniform fine structure is obtained which does not include an average particle diameter of 100 nm or more and 200 nm or less of crystal grains constituting the sintered body, and does not include a particle diameter more than twice the average particle diameter. A method for producing a Dy-doped nanoceria-based sintered body having a high density and a uniform fine structure.
該出発原料粉末を成形し、通電焼結する際に、該出発原料粉末を予めアルコール液中に分散させて、超音波分散処理を施し、処理終了後不活性ガス気流中において、加熱することなく室温でアルコールを蒸発させて乾燥し、次いで該通電焼結工程に付すことを特徴とする、請求項1記載の高密度、均一微細構造のDyドープナノセリア系焼結体の製造方法。 When the starting raw material powder is molded and subjected to current sintering, the starting raw material powder is dispersed in an alcohol liquid in advance and subjected to ultrasonic dispersion treatment, and after the treatment is completed, without heating in an inert gas stream The method for producing a Dy-doped nano-ceria-based sintered body having a high density and a uniform fine structure according to claim 1, wherein the alcohol is evaporated and dried at room temperature and then subjected to the electric current sintering step. 該アルコールとしてエタノールを用いることを特徴とする、請求項2記載の高密度、均一微細構造を持つDyドープナノセリア系焼結体の製造方法。 Ethanol is used as this alcohol, The manufacturing method of the Dy dope nano ceria-type sintered compact with a high-density and uniform fine structure of Claim 2 characterized by the above-mentioned. 該超音波分散処理をすくなとも1時間以上行うことを特徴とする、請求項2記載の高密度、均一微細構造を持つDyドープナノセリア系焼結体の製造方法。
The method for producing a Dy-doped nanoceria-based sintered body having a high density and uniform microstructure according to claim 2, wherein the ultrasonic dispersion treatment is performed for at least one hour.
JP2004073711A 2004-03-16 2004-03-16 Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure Expired - Lifetime JP4106442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073711A JP4106442B2 (en) 2004-03-16 2004-03-16 Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073711A JP4106442B2 (en) 2004-03-16 2004-03-16 Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure

Publications (2)

Publication Number Publication Date
JP2005263504A JP2005263504A (en) 2005-09-29
JP4106442B2 true JP4106442B2 (en) 2008-06-25

Family

ID=35088439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073711A Expired - Lifetime JP4106442B2 (en) 2004-03-16 2004-03-16 Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure

Country Status (1)

Country Link
JP (1) JP4106442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429678B2 (en) 2016-02-03 2024-02-08 ハッチンソン テクノロジー インコーポレイテッド Compact pressure and force sensor with integrated leads

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019323B2 (en) * 2007-03-20 2012-09-05 独立行政法人物質・材料研究機構 Ceria sintered body doped with rare earth element and manufacturing method thereof
KR101184731B1 (en) * 2008-03-20 2012-09-20 주식회사 엘지화학 Method for preparing cerium oxide, cerium oxide prepared therefrom and cmp slurry comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429678B2 (en) 2016-02-03 2024-02-08 ハッチンソン テクノロジー インコーポレイテッド Compact pressure and force sensor with integrated leads

Also Published As

Publication number Publication date
JP2005263504A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
Rioja-Monllor et al. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
US11597658B2 (en) Preparation of nanosized cubic lithium lanthanum zirconate fast ion conductor via facile polymer-chelate combustion route
Zhang et al. Sinterability and ionic conductivity of coprecipitated Ce0. 8Gd0. 2O2− δ powders treated via a high-energy ball-milling process
Jamshidijam et al. Effect of rare earth dopants on structural characteristics of nanoceria synthesized by combustion method
Zhang et al. Preparation and properties of dense Ce0. 9Gd0. 1O2− δ ceramics for use as electrolytes in IT-SOFCs
Jakubczyk et al. Enhancing thermoelectric properties of NaCo2O4 ceramics through Na pre-treatment induced nano-decoration
Li et al. Reactive 10 mol% RE2O3 (RE= Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics
Liu et al. Synthesis of nanostructured Nd: Y2O3 powders by carbonate-precipitation process for Nd: YAG ceramics
Jothinathan et al. Synthesis of nano-crystalline apatite type electrolyte powders for solid oxide fuel cells
JP5019323B2 (en) Ceria sintered body doped with rare earth element and manufacturing method thereof
JP4334894B2 (en) Method for producing solid electrolyte
JP4106442B2 (en) Method for producing Dy-doped nano-ceria-based sintered body having uniform microstructure
CN114450259A (en) Composite oxide powder, method for producing solid electrolyte, and method for producing lithium ion secondary battery
Thomas et al. Structure and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
Ahlawat Preparation and effect of thermal treatment on Gd 2 O 3: SiO 2 nanocomposite
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
Bakir et al. Synthesis and Characterization of Sm-Ho-CeO2 Compounds Produced by Different Synthesis Methods.
CN110791287B (en) Rare earth doped tungsten molybdate and preparation method and application thereof
Solodkyi et al. Effect of grain size on the electrical properties of samaria-doped ceria solid electrolyte
KR102016916B1 (en) Method for producing LLZO oxide solid electrolyte powder
JPH09227212A (en) Production of ni/ysz cermet raw material
Oveisi et al. Processing study of gel-cast tubular porous NiO/SDC composite materials from gel-combustion synthesized nanopowder
JP3077054B2 (en) Heat-resistant conductive ceramics
Jiang et al. Densification and electrical conductivity of Fe and Mn‐doped Ce0. 83Sm0. 085Nd0. 085O2‐& by solid‐liquid method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350