JP4106412B1 - Controlled cooling method for steel bars - Google Patents

Controlled cooling method for steel bars Download PDF

Info

Publication number
JP4106412B1
JP4106412B1 JP2007214301A JP2007214301A JP4106412B1 JP 4106412 B1 JP4106412 B1 JP 4106412B1 JP 2007214301 A JP2007214301 A JP 2007214301A JP 2007214301 A JP2007214301 A JP 2007214301A JP 4106412 B1 JP4106412 B1 JP 4106412B1
Authority
JP
Japan
Prior art keywords
cooling
steel
fluidized bed
bar
steel bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007214301A
Other languages
Japanese (ja)
Other versions
JP2009045652A (en
Inventor
勝彦 山田
Original Assignee
株式会社アルケミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルケミー filed Critical 株式会社アルケミー
Priority to JP2007214301A priority Critical patent/JP4106412B1/en
Application granted granted Critical
Publication of JP4106412B1 publication Critical patent/JP4106412B1/en
Publication of JP2009045652A publication Critical patent/JP2009045652A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract


【課題】 熱間圧延直後の棒鋼を全長均一に制御冷却して各種の熱処理を施す方法を提供する。
【解決手段】 棒鋼を並列させ、自転させつつ且つ斜行並進させつつ冷却帯を通過させる。冷却帯は棒全長を同時に同一条件で冷却する単位流動床槽を多数並列させた構造であり、各単位はA)強冷却能の常温流動床、B)空冷、C)保温の3冷却能を持ち、並列する各単位に適宜上記3状態を設定して、冷却のタイミングと冷却の強度を自在に調節する。冷却パターンにより焼鈍から焼入まで各種熱処理が可能になる。
【選択図】図1

PROBLEM TO BE SOLVED: To provide a method for performing various heat treatments by controlling and cooling a steel bar immediately after hot rolling uniformly over its entire length.
SOLUTION: Steel bars are juxtaposed, passed through a cooling zone while being rotated and translated obliquely. The cooling zone has a structure in which a large number of unit fluidized bed tanks that simultaneously cool the entire length of the rod under the same conditions are arranged in parallel. Each unit has three cooling capacities: A) Strong cooling capacity room temperature fluidized bed, B) Air cooling, C) Thermal insulation. The above-mentioned three states are set appropriately for each unit that is held in parallel, and the cooling timing and the cooling intensity are freely adjusted. The cooling pattern enables various heat treatments from annealing to quenching.
[Selection] Figure 1

Description

本発明は鋼片が熱間圧延により棒鋼に加工された後の制御冷却方法に関するものである。   The present invention relates to a controlled cooling method after a steel slab is processed into a steel bar by hot rolling.

棒鋼圧延においては通常、圧延直後の棒鋼は個々に冷却台上に並列され、棒軸方向と直交して並進しつつ空冷される。その結果焼準と同様の金属組織を持ち、中庸の強度と安定した延靭性が得られている。特別の機械的性質例えば高強度、低強度、高加工性、高延性等を必要とする場合には、棒鋼に2次加工処理例えば焼入れ焼戻しや焼鈍等が施される。   In the steel bar rolling, the steel bars immediately after rolling are usually juxtaposed on the cooling table and air-cooled while being translated perpendicularly to the bar axis direction. As a result, it has the same metal structure as that of normalization, and has a medium strength and a stable ductility. When special mechanical properties such as high strength, low strength, high workability, and high ductility are required, the steel bar is subjected to secondary processing such as quenching and tempering or annealing.

線材では圧延直後の制御冷却の技術が充実していて各種の熱処理が施され2次加工の多くが省略されているが、棒鋼では例が少ない。
その理由は、需要面からは素材に特別の熱処理を要しない製品が多い、要する場合でも多少の性能向上程度では熱処理省略は無理である、等によりあまり期待されていない。
技術面からは棒径が大きいので金属組織の改質に必要な冷却速度ないし冷却ガイドラインが得にくい、合金量で改質しようとすると経済性に問題が生ずる、必要な冷却能をもつ冷却方法があっても圧延工場の大きな生産能率(50〜150t/h)に適応して並列並進する棒鋼に適切な冷却ガイドラインで全長均一に冷却し得る設備を考案することは極めて困難であること等が挙げられる。
For wire rods, the technology of controlled cooling immediately after rolling is substantial and various heat treatments are performed, and much of the secondary processing is omitted, but there are few examples of steel bars.
The reason for this is that there are many products that do not require special heat treatment from the viewpoint of demand, and even if necessary, heat treatment can not be omitted with some degree of performance improvement.
From the technical point of view, the rod diameter is large, so it is difficult to obtain the cooling rate or cooling guidelines necessary for metal structure modification. Even so, it is extremely difficult to devise equipment that can cool the entire length uniformly with the appropriate cooling guideline for steel bars that are parallel-translated to adapt to the large production efficiency (50 to 150 t / h) of the rolling mill. It is done.

棒鋼の中で最大生産量を占める汎用鉄筋の降伏強度は約300MPaである。細径(10〜18mm)では合金添加と圧延直後の水冷の適用により600MPaとなる高強度品が製造されているが、近年太径(22〜51mm径)の高強度材が期待されている。これは本発明の目的の一つである。   The yield strength of a general-purpose steel bar that occupies the maximum production amount of steel bars is about 300 MPa. With a small diameter (10 to 18 mm), a high-strength product having a pressure of 600 MPa is manufactured by adding an alloy and applying water cooling immediately after rolling. Recently, a high-strength material with a large diameter (22 to 51 mm diameter) is expected. This is one of the objects of the present invention.

棒鋼の高強度化を目指した制御冷却に関連する先行事例を検討する。
テンプコア法: 非特許文献1
主に鉄筋用低炭素鋼を対象に仕上げ圧延直後の直進する棒鋼を強力な水冷装置により急冷して表層をMs点(マルテンサイトが発生する温度)以下に冷却して焼入れし、以後空冷して内部の自己熱により焼入れ部を焼き戻す方法で降伏強度は約500MPa、合金添加により600MPaが得られる。問題は、1)棒径が大きいほど強度、延靭性が低下する、2)強力な水冷に依存するので冷却の安定性に欠き、品質が安定しにくい。強度を上げるため炭素量を増加させるとMs点が低下し、自己熱焼戻しが上手くいかず、得られる強度に限界がある。国内ではほとんど製造されていない。
This study examines previous cases related to controlled cooling aimed at increasing the strength of steel bars.
Temp Core Method: Non-Patent Document 1
Mainly for low-carbon steel for reinforcing steel, the straight bar immediately after finish rolling is quenched with a powerful water-cooling device, the surface layer is cooled to below the Ms point (temperature at which martensite is generated), quenched, and then air-cooled. A yield strength of about 500 MPa is obtained by tempering the quenched portion by internal self-heating, and 600 MPa is obtained by adding an alloy. The problems are: 1) the larger the rod diameter, the lower the strength and toughness. 2) Since it depends on strong water cooling, the cooling stability is lacking and the quality is difficult to stabilize. If the amount of carbon is increased to increase the strength, the Ms point is lowered, self-thermal tempering is not successful, and the strength obtained is limited. It is hardly manufactured in Japan.

ミスト冷却法: 特許文献1、特許文献2
圧延後の棒鋼を棒列に形成して冷却台上で並列並進させるに当たり、上方にミストスプレイ・ノズルを全面に配置し、且つ各棒を自転させつつ斜めに並進させることによりスプレイ冷却が棒軸方向、接線方向共に均等となるよう工夫されている。問題は、スプレイ冷却は基本的には沸騰冷却であり、冷却強化のため水量を増加すると作業温度で膜沸騰と核沸騰が混在して不均一冷却となること、上方だけからの噴射であるため実効表面積が約1/3となり、この2点から大きな冷却能が得られず、平均総括熱伝達率は高々150W/mK程度である。そのため高炭素低合金鋼の微細パーライト組織を持つ高強度PC鋼棒には適するが鉄筋の高強度化や中炭素鋼の調質高強度鋼の製造には冷却能不足である。
Mist cooling method: Patent Document 1, Patent Document 2
When forming rolled steel bars into a row of bars and translating them in parallel on the cooling table, spray cooling is performed by arranging the mist spray nozzles on the entire surface and translating each bar diagonally while rotating each bar. The direction and tangential direction are devised to be equal. The problem is that spray cooling is basically boiling cooling, and if the amount of water is increased to enhance cooling, film boiling and nucleate boiling are mixed at the working temperature, resulting in uneven cooling, and jetting from above only. The effective surface area is about 1/3, and a large cooling capacity cannot be obtained from these two points, and the average overall heat transfer coefficient is about 150 W / m 2 K at most. Therefore, it is suitable for high-strength PC steel rods with a fine pearlite structure of high-carbon low-alloy steel, but it has insufficient cooling capacity for increasing the strength of rebars and producing tempered high-strength steels of medium-carbon steel.

TMCP法: 非特許文献2
成分、圧延条件、冷却条件の3要因を総合的に組み合わせて所望の結晶粒度と金属組織を得る方法であり、特に微細粒効果によって高強度を目指す。
上記文献には、細粒化元素(V,Nb)の添加、800℃以下の低温圧延によるオーステナイトの微細化、再結晶粒の成長抑止と変態組織制御のための適切な水冷の3プロセスにより3μm径以下の微細フェライトを主組織とし、厚板において500〜800MPaの高強度化が可能と示されている。
TMCP method: Non-patent document 2
This is a method for obtaining a desired crystal grain size and metal structure by comprehensively combining the three factors of components, rolling conditions and cooling conditions, and aims at high strength by the fine grain effect.
In the above document, 3 μm is obtained by three processes of addition of grain refinement elements (V, Nb), refinement of austenite by low-temperature rolling at 800 ° C. or less, appropriate water cooling for preventing growth of recrystallized grains and controlling transformation structure. It is shown that the strength of 500 to 800 MPa can be increased in a thick plate with fine ferrite having a diameter smaller than that of the main structure.

本方法の問題は、棒鋼に応用する場合圧延機耐力の抜本強化と圧延後の強制冷却が不可欠となる。後者に対して棒鋼を直進させつつ水冷により制御冷却する方法では走行距離が過大になってスペース上実施不能である。因みに厚板では断面積が大きいので走行速度は小さく、必要冷却時間約100秒に対してスペース上の問題は大きくないので実施されている。他の実施方法として上記低温圧延後、既述のミスト冷却法を適用するなら再結晶粒の成長を抑止して600〜700MPaの強度が期待されるが、マルテンサイトの生成を前提とする高強度材は冷却能不足の故に困難である。   The problem with this method is that, when applied to steel bars, drastic strengthening of rolling mill strength and forced cooling after rolling are essential. In contrast to the latter, the method of controlling cooling by water cooling while straightly moving the steel bar is too long for the travel distance. Incidentally, since the thick plate has a large cross-sectional area, the traveling speed is low, and the problem of space is not large for the required cooling time of about 100 seconds. As another implementation method, if the above-described mist cooling method is applied after the low-temperature rolling, a strength of 600 to 700 MPa is expected by suppressing the growth of recrystallized grains, but a high strength premised on the formation of martensite. The material is difficult due to lack of cooling capacity.

棒鋼の圧延・冷却とは直接関係が無いが、特許文献3には常温流動床が実質的に鉛浴焼入より大きな冷却能を持つこと、冷却能の調節は該流動床との間欠接触によってなされ、線材のパテンティングに対して効果的であり品質は従来方法より優れると開示されている。直進する線材に対して適切な応用方法が開示されているが、棒鋼や、冷却帯を並進横断する棒列に応用するには新たに種々の問題が予想されるが何ら示唆が無い。   Although there is no direct relationship with the rolling and cooling of steel bars, Patent Document 3 discloses that the normal temperature fluidized bed has substantially larger cooling capacity than the lead bath quenching, and the adjustment of the cooling capacity is achieved by intermittent contact with the fluidized bed. It is disclosed that it is effective for the patenting of wire rods and the quality is superior to that of the conventional method. Although an appropriate application method for a straight wire is disclosed, various problems are newly expected to be applied to a steel bar and a row of bars crossing a cooling zone in translation, but there is no suggestion.

日本鉄鋼協会、鉄鋼技術の流れ4:制御圧延・制御冷却、P.151Japan Iron and Steel Institute, Steel Technology Flow 4: Controlled Rolling / Controlled Cooling, P.151 公開特許公報平1−234527Published Patent Publication No. Hei 1-234527 公開特許公報昭61−26730Published Patent Publication No. 61-26730 新日本製鐵(株)監修、NIPPON STEEL MONTHRY 2007,6,p.7~8Supervised by Nippon Steel Co., Ltd., NIPPON STEEL MONTHRY 2007,6, p.7 ~ 8 特許3914953Patent 3914953

解決しようとする問題点は、大量生産の棒鋼ミルにおいて、制御冷却により棒鋼に各種の熱処理効果を与えるという目的に対して、並列並進する棒鋼の列に適切な冷却強さとその調節能を持った冷却方法が見当たらないことである。本発明は該問題の解決策を課題とする。   The problem to be solved is that in a mass-produced steel bar mill, the parallel translation of steel bars has the appropriate cooling strength and adjustability for the purpose of giving various heat treatment effects to the steel bars by controlled cooling. There is no cooling method. An object of the present invention is to solve this problem.

本発明は、上記問題の解決のため、先行例の棒列を自転させつつ並列斜行並進させて冷却帯を通過させる方法において、強冷却能を持つ常温流動床を内包し、且つ棒鋼全長を同時に同一処理する単位槽を並列させて冷却帯を構成し、各単位槽を個別に開閉して間欠冷却を誘導し、冷却を自在に調節可能とすることを最も主要な特徴とする。   In order to solve the above problems, the present invention includes a room temperature fluidized bed having a strong cooling capacity in a method in which the rod row of the preceding example is rotated in parallel while passing through the cooling zone and passes through the cooling zone. The most important feature is that the unit tanks that are simultaneously processed in parallel are configured to form a cooling zone, each unit tank is individually opened and closed to induce intermittent cooling, and cooling can be freely adjusted.

第1発明は、熱間圧延直後の棒鋼の制御冷却方法であって、最終圧延通過後の直進する棒鋼を所定長さで切断し、順次棒軸直交方向に移動させ、所定間隔で水平平行に並列させて棒列を形成し、個々の棒を棒軸回りに自転させつつ且つ棒軸に対して斜めに並進させつつ冷却帯を通過させて強制冷却する方法において、1)該冷却帯を常温流動床槽によって構成し、2)該流動床槽は棒軸と平行の多数の単位流動床槽を密接並列した構造とし、3)該単位槽は、主としてa)棒軸と平行であり棒列が並進通過し得る開口を持つ水冷側壁と、b)底面中央に設けられ棒軸と平行な送風孔列と、c)流動砂とから成り、4)該送風孔列の送風状態では通過する棒鋼を包囲する流動床を形成して冷却し、閉鎖状態では流動砂は沈積して棒鋼を空冷し、5)該単位槽の送風の開閉を個々に設定することにより、通過する棒鋼に対して全長同一条件で所定の冷却速度に調節することを特徴とする棒鋼の制御冷却方法である。 1st invention is the control cooling method of the steel bar immediately after hot rolling, and cuts the steel bar which goes straight after passing through the final rolling by a predetermined length, moves it in the direction perpendicular to the bar axis, and makes it horizontally parallel at a predetermined interval. In a method of forming a row of rods in parallel and forcibly cooling each rod by rotating around the axis of the rod and translating obliquely with respect to the axis of the rod while passing through the cooling zone, 1) 2) The fluidized bed tank has a structure in which a large number of unit fluidized bed tanks parallel to the rod axis are closely paralleled. 3) The unit tank is mainly a) parallel to the rod axis, and a row of bars. Comprises a water-cooled side wall having an opening through which b can be translated, b) a row of air holes provided in the center of the bottom surface and parallel to the rod axis, and c) fluidized sand. Forming a fluidized bed that surrounds and cooling, and in a closed state, the fluidized sand is deposited to air-cool the steel bar, ) By setting the opening and closing of the blowing of the unit tank individually, it is a control method of cooling a steel bar, characterized in that to adjust to a predetermined cooling rate in the entire length the same conditions for steel bar passing.

第2発明は、各単位槽上方に開閉可能な天井を設け、送風停止の状態において該天井を閉鎖して保温とすることを特徴とする第1発明に記載の棒鋼の制御冷却方法である。   The second invention is the method for controlling and cooling a steel bar according to the first invention, wherein a ceiling that can be opened and closed is provided above each unit tank, and the ceiling is closed and kept warm in a state where the air blowing is stopped.

第3発明は、低中炭素低合金鋼の公称22〜51mm径の熱間の棒鋼を第1発明又は第2発明の方法によってパーライト変態の発生を回避しつつ表面温度が当該鋼種のMs点より低い温度に急冷して焼き入れし、その後空冷又は保温を行って自己熱焼戻しを行うことを特徴とする棒鋼の制御冷却方法である。   The third invention is a low-medium-carbon low-alloy steel hot steel bar having a nominal diameter of 22 to 51 mm, which avoids the occurrence of pearlite transformation by the method of the first or second invention, and the surface temperature is higher than the Ms point of the steel type. A steel bar controlled cooling method characterized by quenching by quenching to a low temperature and then performing air cooling or heat insulation to perform self-thermal tempering.

第4発明は、低中炭素低合金鋼の公称22〜51mm径の熱間の棒鋼を850℃以下で仕上げ圧延し、第1発明又は第2発明の方法によって表面温度が700℃まで5℃/s以上の速度で冷却することにより、再結晶粒の成長を抑制し、金属組織が3μm径以下の微細フェライトを維持することを特徴とする棒鋼の制御冷却方法である。   In the fourth invention, a hot steel bar having a nominal diameter of 22 to 51 mm, which is a low-medium carbon low alloy steel, is finish-rolled at 850 ° C. or less, and the surface temperature is increased to 700 ° C. by the method of the first invention or the second invention. A steel bar controlled cooling method characterized by suppressing the growth of recrystallized grains by cooling at a rate of s or more and maintaining fine ferrite having a metal structure of 3 μm or less in diameter.

第5発明は、高炭素低合金鋼の22〜51mm径の熱間の棒鋼を第1発明又は第2発明の方法によって冷却し、パーライト変態の極小温度を570℃以上、極大温度を640℃以下に誘導してパテンティング処理を行うことを特徴とする高強度PC鋼棒である。   In the fifth invention, a hot steel bar having a diameter of 22 to 51 mm of high carbon low alloy steel is cooled by the method of the first invention or the second invention, and the minimum temperature of pearlite transformation is 570 ° C. or more and the maximum temperature is 640 ° C. or less. It is a high-strength PC steel bar characterized in that the patenting process is performed by induction.

第6発明は、中高炭素低合金鋼の公称22〜51mm径の熱間の棒鋼を850℃以下で仕上げ圧延し、第1発明又は第2発明の方法によって640〜680℃まで冷却し、以後保温してパーライト変態を誘導し、疑似焼鈍処理を行うことを特徴とする棒鋼の制御冷却方法である。   The sixth invention is a hot rolling steel bar having a nominal diameter of 22 to 51 mm of medium and high carbon low alloy steel, finish-rolled at 850 ° C. or less, cooled to 640 to 680 ° C. by the method of the first invention or the second invention, and then kept warm. Then, a pearlite transformation is induced, and a pseudo-annealing process is performed, which is a controlled cooling method for steel bars.

本発明の棒鋼の制御冷却方法では、第1に常温流動床を使用するため冷極めて大きな却能を持つ。その結果1)焼入が容易になる、2)焼入性合金の量を節減することができる。
第2に間欠冷却により冷却能と冷却タイミングを自在に調節することが可能になり、各
種熱処理が容易になる。
第3に通常の大量生産棒鋼ミルに付設することができ、低コストで熱処理を附加することができるという利点がある。
The steel bar controlled cooling method of the present invention uses a fluidized bed at room temperature, and therefore has a very high cooling capacity. As a result, 1) quenching is facilitated, and 2) the amount of hardenable alloy can be reduced.
Secondly, the cooling capacity and the cooling timing can be freely adjusted by intermittent cooling, and various heat treatments are facilitated.
Third, there is an advantage that it can be attached to an ordinary mass production steel bar mill and heat treatment can be added at low cost.

高炭素低合金鋼のPC鋼棒のパテンティングによる高強度化に利用することができる。
中低炭素鋼の調質(焼入焼戻し)された高強度棒鋼の製造に適用することができる。
低炭素鋼の細粒化による高強度溶接性の鉄筋用異形棒鋼の製造を可能にする。
中高炭素低合金鋼の棒鋼の疑似焼鈍材の製造を可能にする。
It can be used to increase the strength of high-carbon low-alloy steel PC steel bars by patenting.
It can be applied to the production of high-strength steel bar that has been tempered (quenched and tempered) of medium-low carbon steel.
This makes it possible to manufacture deformed steel bars for reinforcing bars with high strength weldability by reducing the grain size of low carbon steel.
Enables the production of pseudo-annealed steel bars for medium and high carbon low alloy steel.

圧延直後の棒鋼に適切な制御冷却を施し、熱処理効果を得て製品の機械的性質を向上させるという目的を、比較的困難でない方法、比較的高額でなく、しかも冗長でない設備で且つ低コストの方法を実現した。
図1(平面図)は本発明の方法を実施する設備の例の全体を説明する概略図である。仕上げ圧延を通過し、所定長さに切断され、ローラーガンク2上を直進し、冷却床である流動床槽3の横に到着した棒鋼1は順次直交方向にけり出され、並列して棒列4を形成する。該列4はループ・コンベア5と斜行ベルト6を介して個々に自転しつつ斜行並進して該槽3内を通過し所定の冷却処理を受ける。制御冷却の終わった棒は該槽から押し上げられて搬出用ローラーガンクにより搬出される。
The purpose of applying appropriate controlled cooling to the steel bar immediately after rolling and obtaining the heat treatment effect to improve the mechanical properties of the product is a relatively difficult method, relatively inexpensive, non-redundant equipment and low cost. Realized the method.
FIG. 1 (plan view) is a schematic diagram illustrating the entire example of equipment for carrying out the method of the present invention. The steel bar 1 that has passed through the finish rolling, cut to a predetermined length, traveled straight on the roller gang 2 and arrived at the side of the fluidized bed tank 3 serving as a cooling bed, was sequentially squeezed out in the orthogonal direction, and parallel to the bar. Column 4 is formed. The row 4 undergoes a skew translation while rotating individually via a loop conveyor 5 and a skew belt 6 and passes through the tank 3 to undergo a predetermined cooling process. The rod after the controlled cooling is pushed up from the tank and carried out by the carrying-out roller gunk.

図2(側面図)は棒列4の移送機構の説明図である。けり出された傾斜レール8上の棒鋼1は並進方向(棒軸と直交)に走行する平行数条のループ・コンベア5の下方で該コンベア5の外周に設けられた仕切り爪7によって所定間隔の棒列4を形成し、次いで平行数条の斜行ベルト6上に移送される。該コンベア5、該ベルト6とも流動床槽3を貫通して走行する。該コンベア5は当然圧延ピッチと同期した速度で走行する。該ベルト6は水平且つ棒軸方向と斜めに張られて走行する。該コンベアの走行軌跡は該流動床槽の下方を反転させてもよい。   FIG. 2 (side view) is an explanatory view of the transfer mechanism of the rod row 4. The steel bar 1 on the tilted rail 8 is projected at a predetermined interval by a partition claw 7 provided on the outer periphery of the conveyor 5 below a parallel number of loop conveyors 5 running in the translational direction (perpendicular to the bar axis). A bar array 4 is formed and then transferred onto a parallel number of skew belts 6. Both the conveyor 5 and the belt 6 travel through the fluidized bed tank 3. The conveyor 5 naturally runs at a speed synchronized with the rolling pitch. The belt 6 is stretched horizontally and obliquely with respect to the rod axis direction. The traveling path of the conveyor may be reversed below the fluidized bed tank.

斜行ベルト6の走行と仕切り爪7による拘束をともなうコンベア5の走行により個々の棒鋼1は自転力とスラスト力を受け、自転しながら斜行する。このときコンベアとベルトの両速度が一致すると自転も斜行も生じない。斜行角は一定ではなく両速度比に依存する。この自転は棒鋼の流動床冷却において、熱伝達率の接線方向の不均一分布の影響を平準化する効果を持つ。斜行は棒鋼とコンベア等構造物との接触に起因する局所異常冷却を分散する。合わせて棒軸方向、接線方向の冷却の均一性を改善する。本発明の必須の機構のひとつである。   The individual steel bars 1 are subjected to a rotation force and a thrust force by the traveling of the oblique belt 6 and the traveling of the conveyor 5 accompanied by the restraining by the partitioning claws 7, and are skewed while rotating. At this time, if the speeds of the conveyor and the belt coincide with each other, neither rotation nor skew occurs. The skew angle is not constant and depends on both speed ratios. This rotation has the effect of leveling the influence of the tangential non-uniform distribution of heat transfer coefficient in the fluidized bed cooling of steel bars. The skew disperses the local abnormal cooling caused by the contact between the steel bar and the structure such as the conveyor. In addition, the uniformity of cooling in the rod axis direction and tangential direction is improved. This is one of the essential mechanisms of the present invention.

図3(側面図)は流動床槽3の要所を説明する図である。該槽3は棒鋼を収容し得る長さと棒列間隔に近い幅をもつ単位流動床槽10を棒軸と平行に多数並列させた構造を持つ。該単位流動床槽10は、主に棒軸と平行で水冷構造の側壁11と、該側壁11に設けた棒列4を並進して貫通させる開口12と、棒軸と平行で槽全長にわたる送風孔列13又はスリット・ノズルを設けた底部構造と、開閉可能な天井16と、槽内の約0.1〜0.7mm径のジルコン砂14の約300mm厚堆積層から成る。槽全長均等な流動床を形成するためノズルの大きさ、配置、元圧一定化等は当業者なら容易に注意点として解る。   FIG. 3 (side view) is a diagram illustrating the main points of the fluidized bed tank 3. The tank 3 has a structure in which a large number of unit fluidized bed tanks 10 having a length capable of accommodating bar steel and a width close to the interval between the row of bars are arranged in parallel in parallel with the rod axis. The unit fluidized bed tank 10 is mainly parallel to the rod axis and has a water-cooled side wall 11, an opening 12 that translates and penetrates the row of rods 4 provided on the side wall 11, and an air flow that extends parallel to the rod axis and covers the entire length of the tank. It consists of a bottom structure provided with a row of holes 13 or slit nozzles, a ceiling 16 that can be opened and closed, and a deposited layer of about 300 mm thick of about 0.1-0.7 mm diameter zircon sand 14 in the bath. Those skilled in the art can easily understand the size, arrangement, and constant pressure of the nozzle in order to form a fluidized bed having a uniform tank length.

図3Aに示すように、圧縮空気の噴射により該砂は浮遊し、約100〜150mm厚膨れあがった流動床15を形成する。斜行ベルト6の走行レベルは静止砂の高さより上であり上記流動床高さより下とする。棒鋼1は流動床15内を通過し接触冷却される。送風を停止すると砂は沈積して棒鋼は放置状態になる。天井を開放すると空冷状態(図3B)、天井を閉じると保温に近い状態(図3C)になる。即ち単位流動床は送風と天井の開閉により3種の冷却能を保有し切替可能である。   As shown in FIG. 3A, the sand floats by the injection of compressed air, and forms a fluidized bed 15 swelled by about 100 to 150 mm. The running level of the oblique belt 6 is higher than the height of the stationary sand and lower than the fluidized bed height. The steel bar 1 passes through the fluidized bed 15 and is cooled by contact. When the blowing is stopped, the sand is deposited and the bar is left unattended. When the ceiling is opened, it is in an air-cooled state (FIG. 3B), and when the ceiling is closed, it is in a state close to heat retention (FIG. 3C). That is, the unit fluidized bed has three kinds of cooling ability and can be switched by blowing and opening / closing the ceiling.

通常の流動床冷却においては、冷却能は流動床温度により制御される。そのため加熱装置、冷却装置、制御装置が付設されるが本発明では冷却装置のみ付設され他は不要である。流動床は常時、『常温』に維持する。(本発明において『常温』とは作業上の常温を意味し、100℃以下と定義する。)流動床を常温とする第1の理由は、被処理材との温度差が大きく冷却能が最大となること、第2は温度制御が容易で設備が簡素且つ省エネになること、第3に冷却能を自在に調節し得る機構が考案できたからである。即ち単位流動床槽を並列し、個別に適宜3状態を設定する方式である。 In normal fluidized bed cooling, the cooling capacity is controlled by the fluidized bed temperature. Therefore, although a heating device, a cooling device, and a control device are attached, in the present invention, only the cooling device is attached and the others are unnecessary. The fluidized bed is always maintained at “room temperature”. (In the present invention, “normal temperature” means normal temperature at work and is defined as 100 ° C. or lower.) The first reason for setting the fluidized bed to normal temperature is that the temperature difference from the material to be treated is large and the cooling capacity is maximum. The second is that temperature control is easy, the equipment is simple and energy saving, and the third is that a mechanism capable of freely adjusting the cooling capacity has been devised. That is, it is a system in which unit fluidized bed tanks are arranged in parallel and three states are individually set as appropriate.

各状態の冷却能は以下である。
冷却能Q=熱伝達率α×(棒鋼温度θ−周辺温度θs)
状態A: 熱伝達率α1≒1100(W/mK)、 周辺温度θs1≒100℃
状態B: α2≒ 110 θs2≒100℃
状態C: α3≒ 50 θs3≒300℃
The cooling capacity in each state is as follows.
Cooling capacity Q = heat transfer coefficient α × (bar temperature θ−ambient temperature θs)
State A: Heat transfer coefficient α1≈1100 (W / m 2 K), ambient temperature θs1≈100 ° C.
Condition B: α2 ≒ 110 θs2 ≒ 100 ℃
Condition C: α3 ≒ 50 θs3 ≒ 300 ℃

制御冷却においては、目的とする熱処理に対応して冷却のタイミングと冷却強さを適切に設定しなければならない。本発明では以下の調節方法を採る。即ち、各単位流動床槽を上流側から上記3状態のどれかに設定する。例えば焼入自己焼戻し、パテンティングの場合は定性的には以下となる。
焼入自己熱焼戻し: AAAAAAAAAAACCCCCCCCCCC
パテンティング: AAAAABBABABBCCCCCCCCCC
In the controlled cooling, the cooling timing and cooling strength must be set appropriately in accordance with the target heat treatment. In the present invention, the following adjustment method is adopted. That is, each unit fluidized bed tank is set to one of the above three states from the upstream side. For example, in the case of quenching self-tempering and patenting, the following is qualitative.
Quenching self-thermal tempering: AAAAAAAAAAACCCCCCCCCC
Patenting: AAAAAABBABABBCCCCCCCCCC

流動床を常温に維持する具体的方法は、単位流動床槽を水冷壁で構成し、望ましくは該壁上にフィンを配置し、流動砂と壁面との接触面積を増加させて積極的に砂を冷却する。
棒と流動床間の熱伝達率の値は流動床と水冷壁間とのそれに近い。従って1単位槽における水冷壁の実効表面積を該槽内の棒の表面積の10倍以上にすると、流動床の温度は棒温度(900〜500℃)から水冷壁温度(約30℃)側へ1:10以上偏り、100℃以下に容易に維持される。側壁面積が不足するなら直角方向にも水冷壁を設ける。
A specific method for maintaining the fluidized bed at room temperature is to construct the unit fluidized bed tank with a water-cooled wall, desirably arrange fins on the wall, and increase the contact area between the fluidized sand and the wall to positively sand. Cool down.
The value of the heat transfer coefficient between the bar and the fluidized bed is close to that between the fluidized bed and the water cooling wall. Therefore, when the effective surface area of the water cooling wall in one unit tank is made 10 times or more the surface area of the rod in the tank, the temperature of the fluidized bed is 1 from the rod temperature (900 to 500 ° C.) to the water cooling wall temperature (about 30 ° C.) side. : 10 or more biased and easily maintained at 100 ° C. or less. If the side wall area is insufficient, water-cooled walls are also provided in the perpendicular direction.

流動床の熱伝達率αの値は設計条件が決まるとほぼ一定で自在に調節することはできない。従って冷却強さの調節は既述の如く棒と流動床との間欠接触によって行う。間欠幅即ち単位槽の幅は仕切り爪のピッチ程度がよい。大きくても該ピッチの4倍以下とすべきである。大きいほど本発明のデジタル的制御が粗雑になる。 The value of the heat transfer coefficient α of the fluidized bed is almost constant and cannot be freely adjusted when the design conditions are determined. Accordingly, the cooling strength is adjusted by intermittent contact between the rod and the fluidized bed as described above. The intermittent width, that is, the width of the unit tank is preferably about the pitch of the partition claws. Even if it is large, it should be 4 times or less of the pitch. The larger the value, the rougher the digital control of the present invention.

流動床による冷却の進行について解析する。熱伝達率αの値は先行実験で材料直径の影響が大きく800〜1200W/mKと判明した。多くの文献で800〜1500程度と示されている。α=1160として20,32,50mm径の棒鋼の冷却速度を解析した。棒径が大きいこと、α値が大きいことから断面内温度分布に不均一が生ずるのでベッセル関数を使用した解析解により算出した。図4に結果を示す。棒径による冷却速度と内外温度差が判明し、所望の冷却パターンに対して単位流動床槽をどのタイミングで閉鎖すべきかの指針を読みとることができる。 The progress of cooling by the fluidized bed is analyzed. The value of the heat transfer coefficient α was found to be 800 to 1200 W / m 2 K due to the large influence of the material diameter in the previous experiment. In many literatures, it is shown as about 800-1500. α = 1160 was used to analyze the cooling rate of steel bars with diameters of 20, 32, and 50 mm. Since the rod diameter is large and the α value is large, the temperature distribution in the cross section is non-uniform, so the calculation was performed by an analytical solution using a Bessel function. The results are shown in FIG. The cooling rate and the internal / external temperature difference depending on the rod diameter are found, and it is possible to read a guideline at which timing the unit fluidized bed tank should be closed with respect to a desired cooling pattern.

特許文献2に開示された高強度PC鋼棒の製造方法が本発明の常温流動床の間欠冷却(状態AとBの切替)によって代替ないし改良されるかという問題に対して実験室的試作により検証した。供試材の鋼種は、0.7%C−0.8%Si−1.2%Mn−0.7%Cr−0.03%Moである。以下成分の%表示はすべて質量%とする。
供試材の形状・寸法は32mm径×800mm長の圧延棒鋼で、これを950℃に加熱、ASTM粒度No.は6、幅100mm×長さ1mの常温流動床に間欠浸漬して冷却した。3秒浸漬3秒空冷を反復して600℃まで冷却し、放置空冷し、変態発熱昇温の開始を確認し、2秒浸漬4秒空冷を6回継続して昇温温度を630℃以下としその後空冷した。極小温度は570〜600℃となった。棒を単に上下するだけでは曲がりが認められ、火箸で絶えず回転させた。比較的作業が上手くできたサンプル5本の抗張力は1270〜1370MPa、絞りは33〜37%で開示されたデータより多少よい性能が得られた。本実験により本発明の方法はパテンティングを容易になし得ることが確認された。また、同製品に対して通常使用されている鋼種は0.6〜0.8%C,0.5%〜1.5%Si,0.5〜1.5%Mn,0.1〜0.8%Crを基に適当にマイクロアロイングされており、本発明を適用するに当たり特に障害は無い。文献2にも示されたように成分と冷却強さと得られる強度の関係は周知である。
Verification by laboratory prototyping of whether the manufacturing method of high-strength PC steel rod disclosed in Patent Document 2 can be replaced or improved by intermittent cooling (switching between states A and B) of the room temperature fluidized bed of the present invention. did. The steel type of the test material is 0.7% C-0.8% Si-1.2% Mn-0.7% Cr-0.03% Mo. In the following, all the% indications of ingredients are mass%.
The shape and size of the test material is a rolled steel bar having a diameter of 32 mm and a length of 800 mm, which is heated to 950 ° C. 6 was intermittently immersed in a normal temperature fluidized bed of width 100 mm × length 1 m and cooled. 3 seconds immersion 3 seconds air cooling is repeated to cool to 600 ° C, left to cool, and the start of transformation exothermic temperature rise is confirmed, 2 seconds immersion 4 seconds air cooling is continued 6 times, and the temperature rise temperature is 630 ° C or less. Then it was air cooled. The minimum temperature was 570 to 600 ° C. Simply bending the bar up and down allowed bending and was constantly rotated with fire chopsticks. The five samples, which were relatively well worked, had a tensile strength of 1270-1370 MPa and a squeezing of 33-37%, which gave somewhat better performance than the disclosed data. This experiment confirmed that the method of the present invention can be easily patented. Moreover, the steel grade normally used for the product is 0.6 to 0.8% C, 0.5 to 1.5% Si, 0.5 to 1.5% Mn, 0.1 to 0. It is appropriately microalloyed based on .8% Cr, and there is no particular obstacle in applying the present invention. As shown in Document 2, the relationship between components, cooling strength and obtained strength is well known.

上記と同様の実験方法で高強度鉄筋を試作した。目標強度は降伏応力で800MPa以上、抗張力で950MPa以上、目標伸びは8%以上である。本製品は現在13mm径の細径では線材圧延・制御冷却法で製造・市販されている。当該製品を22〜51mm径まで拡張することが目的である。   A high-strength reinforcing bar was manufactured by the same experimental method as above. The target strength is 800 MPa or more in yield stress, 950 MPa or more in tensile strength, and the target elongation is 8% or more. This product is currently manufactured and marketed with a wire rolling / controlled cooling method with a small diameter of 13 mm. The purpose is to expand the product to a diameter of 22-51 mm.

供試材の鋼種は、現行の線材製品と同一の0.18%C−0.8%Si−1.5%Mn−0.9%Cr−0.03%Moであり、36mm径×800mm長のねじ節圧延棒鋼を900℃に加熱、幅100mm×長さ1mの常温流動床に20〜50秒浸漬して以後空冷した。浸漬時間20秒までは強度不足、30秒で降伏強度は860MPa、抗張力970MPaで目標値を得た。浸漬時間40秒以上では強度は一層向上したが伸びが5%以下で延靭性が不足した。金属組織は、浸漬時間が少ないとフェライトとパーライトの混合、適正時間では焼戻しマルテンサイトが主で、フェライト、ベイナイトの混合、浸漬過剰では、マルテンサイト、焼戻しマルテンサイトが主で、フェライト以下他の組織を少量含む。本発明の方法により圧延工程で焼入焼戻し主体の混合組織を持つ高強度鉄筋用異形棒鋼が製造可能と証明された。50mm径に対しては上記成分に合金を多少増加させればよいことは容易に解る。なお成分と焼入焼戻し条件と強度との関係は当業者にとっては自明である。 The steel type of the test material is 0.18% C-0.8% Si-1.5% Mn-0.9% Cr-0.03% Mo which is the same as the current wire product, 36 mm diameter x 800 mm A long threaded steel bar was heated to 900 ° C., immersed in a room temperature fluidized bed having a width of 100 mm × a length of 1 m for 20 to 50 seconds, and then air-cooled. Strength was insufficient until the immersion time was 20 seconds, and the target values were obtained with a yield strength of 860 MPa and a tensile strength of 970 MPa after 30 seconds. When the immersion time was 40 seconds or more, the strength was further improved, but the elongation was 5% or less and the ductility was insufficient. The metal structure is mainly composed of ferrite and pearlite when the immersion time is short, and tempered martensite is mainly used at the appropriate time. Contains a small amount. By the method of the present invention, it was proved that a deformed steel bar for high-strength reinforcing bars having a mixed structure mainly composed of quenching and tempering can be produced in the rolling process. It can be easily understood that for the 50 mm diameter, the alloy may be increased to some extent. The relationship between the ingredients, quenching and tempering conditions, and strength is obvious to those skilled in the art.

上記と同様の実験方法でばね用の棒鋼の疑似焼鈍材を試作した。目標強度は抗張力が1000MPa以下で金属組織はパーライトであることである。目的は皮剥性の改善であり、そのため低強度であることとパーライト組織であることが必要である。球状化焼鈍材はねばくて却って皮剥性に良くない。供試材の鋼種は、0.6%C−1.5%Si−0.8%Mn−0.7%Cr−0.10%Vであり、26mm径×800mm長の圧延棒鋼を870℃に加熱、幅100mm×長さ1mの常温流動床に3秒間隔で浸漬と空冷を反復し、表面温度が680℃になった以後は空冷した。得られた強度は950〜990MPaで一応合格だが20mm径では限界と予測された。保温が必要と推測される。   A spring steel pseudo-annealing material was manufactured by the same experimental method as above. The target strength is that the tensile strength is 1000 MPa or less and the metal structure is pearlite. The purpose is to improve the peelability, and therefore it is necessary to have a low strength and a pearlite structure. The spheroidized annealed material is sticky and is not good for peeling. The steel type of the test material is 0.6% C-1.5% Si-0.8% Mn-0.7% Cr-0.10% V, and a rolled bar steel of 26 mm diameter × 800 mm length is 870 ° C. Then, immersion and air cooling were repeated at intervals of 3 seconds in a room temperature fluidized bed of width 100 mm × length 1 m, and after the surface temperature reached 680 ° C., air cooling was performed. The strength obtained was 950 to 990 MPa, but it was predicted to be a limit at a diameter of 20 mm. Presumed to be warm.

実施予測の例を記す。結晶粒の超細粒化による高強度化に関し、微細化元素の添加だけでなく、850℃以下の低温圧延によるオーステナイト粒の微細化、そこから誘導されるフェライト粒の微細化が条件であり、そのため再結晶粒の成長を抑止する制御冷却が必要である。いわゆるTMCP鋼である。その冷却速度として5℃/秒以上あれば十分である。以上は周知事項である。該冷却速度は本発明の方法により容易に得られる。即ち図4の解析結果から50mm径の棒においても状態A(流動床冷却)の継続により中心部においても9℃/sの冷却速度が得られている。
尚成分と圧延温度とオーステナイト粒度・フェライト粒度・フェライト面積率と強度との関係は非特許文献2のほか周知であり、フェライト粒径が3μm以下になると強化が鮮明になる。又フェライト面積率は伸びに強く関係し、該率が50%以上有れば10%以上の伸びが得られる。
An example of implementation prediction will be described. Regarding the increase in strength by ultrafine grain refinement, not only the addition of refinement elements, but also refinement of austenite grains by low-temperature rolling at 850 ° C. or lower, refinement of ferrite grains derived therefrom, Therefore, controlled cooling that suppresses the growth of recrystallized grains is necessary. This is so-called TMCP steel. A cooling rate of 5 ° C./second or more is sufficient. The above is a well-known matter. The cooling rate is easily obtained by the method of the present invention. That is, from the analysis result of FIG. 4, the cooling rate of 9 ° C./s is obtained even in the central portion of the 50 mm diameter rod by continuing the state A (fluidized bed cooling).
The relationship among ingredients, rolling temperature, austenite grain size, ferrite grain size, ferrite area ratio, and strength is well known in addition to Non-Patent Document 2, and strengthening becomes clear when the ferrite grain size is 3 μm or less. The ferrite area ratio is strongly related to the elongation. If the ratio is 50% or more, an elongation of 10% or more can be obtained.

本発明の方法による設備の設計例を表1に示す。22,32,51mm径の棒鋼を実生産規模で制御冷却する設備の全体構成が明らかになり、比較的簡素・コンパクトで実施困難でないことが読みとれる。   Table 1 shows an example of equipment design according to the method of the present invention. The overall configuration of the equipment for controlling and cooling steel bars with diameters of 22, 32, and 51 mm on an actual production scale becomes clear, and it can be read that it is relatively simple and compact and is not difficult to implement.

Figure 0004106412
Figure 0004106412

本発明の棒鋼の制御冷却方法では、個々の棒鋼を全長均一冷却することができ、且つタイミングと冷却強さを自在に調節することができる。疑似焼鈍から焼入まで各種の熱処理を実生産規模で適用することができる。
既存の棒鋼ミルの冷却台を部分改造することにより実施することができる。
In the steel bar controlled cooling method of the present invention, each steel bar can be uniformly cooled over its entire length, and the timing and cooling strength can be freely adjusted. Various heat treatments from pseudo annealing to quenching can be applied on an actual production scale.
This can be implemented by partially modifying the existing steel bar cooling table.

本発明の棒鋼の制御冷却方法を実施する設備の説明図(平面図)である。It is explanatory drawing (plan view) of the equipment which implements the control cooling method of the steel bar of this invention. 棒鋼を斜行並進させる機構の説明図(側面図)である。It is explanatory drawing (side view) of the mechanism which carries out skew translation of a steel bar. 流動床槽の要部を説明する図(縦断面図)である。It is a figure (longitudinal sectional view) explaining the principal part of a fluidized bed tank. 棒鋼の冷却速度の解析図である。It is an analysis figure of the cooling rate of a steel bar.

符号の説明Explanation of symbols

1:棒鋼
3:流動床槽
4:棒列
5:ループ・コンベア
6:斜行ベルト
7:仕切り爪
9:単位流動床槽
11:側壁
12:開口
13:送風孔列
14:ジルコン砂
15:流動床
16:天井
1: Steel bar 3: Fluidized bed tank 4: Rod row 5: Loop conveyor 6: Skew belt 7: Partition claw 9: Unit fluidized bed tank 11: Side wall 12: Opening 13: Blow hole array 14: Zircon sand 15: Fluid Floor 16: Ceiling

Claims (6)

熱間圧延直後の棒鋼の制御冷却方法であって、最終圧延通過後の直進する棒鋼を所定長さで切断し、順次棒軸直交方向に移動させ、所定間隔で水平平行に並列させて棒列を形成し、個々の棒を棒軸回りに自転させつつ且つ棒軸に対して斜めに並進させつつ冷却帯を通過させて強制冷却する方法において、1)該冷却帯を常温流動床槽によって構成し、2)該流動床槽は棒軸と平行の多数の単位流動床槽を密接並列した構造とし、3)該単位槽は、主としてa)棒軸と平行であり棒列が並進通過し得る開口を持つ水冷側壁と、b)底面中央に設けられ棒軸と平行な送風孔列と、c)流動砂とから成り、4)該送風孔列の送風状態では通過する棒鋼を包囲する流動床を形成して冷却し、閉鎖状態では流動砂は沈積して棒鋼を空冷し、5)該単位槽の送風の開閉を個々に設定することにより、通過する棒鋼に対して多様な熱処理内容に対応して全長同一条件で所定の冷却速度に調節することを特徴とする棒鋼の制御冷却方法。 This is a method for controlling cooling of steel bars immediately after hot rolling, in which straight steel bars after passing through the final rolling are cut at a predetermined length, sequentially moved in the direction perpendicular to the bar axis, and arranged in parallel in parallel at predetermined intervals. And forcibly cooling by passing through a cooling zone while rotating the individual rods around the rod axis and translating obliquely with respect to the rod axis, and 1) the cooling zone is constituted by a normal temperature fluidized bed tank 2) The fluidized bed tank has a structure in which a large number of unit fluidized bed tanks parallel to the rod axis are closely paralleled. 3) The unit tank is mainly a) parallel to the rod axis so that the row of bars can be translated. A water-cooled side wall having an opening; b) a row of air holes provided in the center of the bottom surface and parallel to the rod axis; and c) fluidized sand. 4) a fluidized bed that surrounds a bar steel that passes through the air hole in the air hole state. In the closed state, the fluidized sand is deposited and the steel bar is cooled by air. By setting the opening and closing of the air individually controlled cooling method steel bars and adjusting to a predetermined cooling rate in the overall length the same conditions in response to a variety of heat treatment content to bars passing. 各単位槽上方に開閉可能な天井を設け、送風停止の状態において該天井を閉鎖して保温とすることを特徴とする請求項1に記載の棒鋼の制御冷却方法。   The steel bar controlled cooling method according to claim 1, wherein a ceiling that can be opened and closed is provided above each unit tank, and the ceiling is closed to keep warm in a state where air blowing is stopped. 低中炭素低合金鋼の公称22〜51mm径の熱間の棒鋼を請求項1又は請求項2に記載された方法によってパーライト変態の発生を回避しつつ表面温度が当該鋼種のMs点より低い温度に急冷して焼き入れし、その後空冷又は保温を行って自己熱焼戻しを行うことを特徴とする棒鋼の制御冷却方法。   A hot steel bar having a nominal diameter of 22 to 51 mm of low-medium-carbon low-alloy steel is a temperature whose surface temperature is lower than the Ms point of the steel type while avoiding the occurrence of pearlite transformation by the method described in claim 1 or 2. A method for controlled cooling of bar steel, characterized by quenching and quenching, followed by air cooling or heat insulation to perform self-thermal tempering. 低中炭素低合金鋼の公称22〜51mm径の熱間の棒鋼を850℃以下で仕上げ圧延し、請求項1又は請求項2に記載された方法によって表面温度が700℃まで5℃/s以上の速度で冷却することにより、再結晶粒の成長を抑制し、金属組織が3μm径以下の微細フェライトを維持することを特徴とする棒鋼の制御冷却方法。   A hot steel bar having a nominal diameter of 22 to 51 mm of low-medium-carbon low-alloy steel is finish-rolled at 850 ° C. or lower, and a surface temperature of 5 ° C./s or higher up to 700 ° C. by the method according to claim 1 or 2. A controlled cooling method for steel bars, characterized in that the growth of recrystallized grains is suppressed by cooling at a rate of 5 mm, and the microstructure is maintained as fine ferrite having a diameter of 3 μm or less. 高炭素低合金鋼の22〜51mm径の熱間の棒鋼を請求項1又は請求項2に記載された方法によって冷却し、パーライト変態の極小温度を570℃以上、極大温度を640℃以下に誘導してパテンティング処理を行うことを特徴とする棒鋼の制御冷却方法。   A hot steel bar having a diameter of 22 to 51 mm of high carbon low alloy steel is cooled by the method described in claim 1 or 2 to induce a minimum temperature of pearlite transformation to 570 ° C or higher and a maximum temperature to 640 ° C or lower. And then performing a patenting process. 中高炭素低合金鋼の公称22〜51mm径の熱間の棒鋼を850℃以下で仕上げ圧延し、請求項1又は請求項2に記載された方法によって640〜680℃まで冷却し、以後保温してパーライト変態を誘導し、疑似焼鈍処理を行うことを特徴とする棒鋼の制御冷却方法。   A hot steel bar having a nominal diameter of 22 to 51 mm of medium and high carbon low alloy steel is finish-rolled at 850 ° C. or lower, cooled to 640 to 680 ° C. by the method described in claim 1 or claim 2, and then kept warm. A steel bar controlled cooling method characterized by inducing pearlite transformation and performing pseudo annealing.
JP2007214301A 2007-08-21 2007-08-21 Controlled cooling method for steel bars Expired - Fee Related JP4106412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214301A JP4106412B1 (en) 2007-08-21 2007-08-21 Controlled cooling method for steel bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214301A JP4106412B1 (en) 2007-08-21 2007-08-21 Controlled cooling method for steel bars

Publications (2)

Publication Number Publication Date
JP4106412B1 true JP4106412B1 (en) 2008-06-25
JP2009045652A JP2009045652A (en) 2009-03-05

Family

ID=39608136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214301A Expired - Fee Related JP4106412B1 (en) 2007-08-21 2007-08-21 Controlled cooling method for steel bars

Country Status (1)

Country Link
JP (1) JP4106412B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787287B1 (en) * 2016-10-21 2017-10-19 현대제철 주식회사 High strength steel deformed bar and method of manufacturing the same

Also Published As

Publication number Publication date
JP2009045652A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5130221B2 (en) Manufacturing method of multi-phase structure hot strip
CN107922988B (en) Method for non-contact cooling of steel sheet and apparatus therefor
US10125405B2 (en) Method and system for thermal treatments of rails
EP2732058B1 (en) Apparatus for producing annealed steels and process for producing said steels
CN106555042A (en) A kind of seamless steel pipe On-line Control cooling technique and manufacture method of effective crystal grain thinning
JP2721861B2 (en) Direct quenching method for hot rolled steel wire
US4146411A (en) Hot bar cooling
JP2017514996A (en) Method and apparatus for making steel strip
JP2009000711A (en) Method for carrying-out controlled cooling of steel bar
JP4106412B1 (en) Controlled cooling method for steel bars
JP4066387B1 (en) Steel bar controlled cooling system
EP2951327B1 (en) Forced water cooling of thick steel wires
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
KR102492108B1 (en) Lead-free patterning method and apparatus
JP2017066435A (en) Method of producing high strength steel wire
JP3101980B2 (en) Direct quenching method for hot rolled steel wire
JP2006022390A (en) High strength cold rolled steel sheet and production method therefor
Yoshie et al. New Wire Rods Produced by Inline Heat Treatment
JPH06346146A (en) Production of wire rod for cold forming coil spring and device therefor
RU2353671C2 (en) Method for production of thermomechanically treated hot rolled pipes
JPH0387312A (en) Steel hardening using liquid cooling medium
Reis et al. EFFECT OF PLATE SURFACE CONDITIONS ON ACCELERATED COOLING PERFORMANCE
Magadoux Process and technologies to anneal current and future AHSS strips
JPH0587566B2 (en)
JPS60125323A (en) Production of high-strength high-toughness steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees