JP4106239B2 - Non-condensable gas risk assessment system and risk assessment method thereof - Google Patents

Non-condensable gas risk assessment system and risk assessment method thereof

Info

Publication number
JP4106239B2
JP4106239B2 JP2002161923A JP2002161923A JP4106239B2 JP 4106239 B2 JP4106239 B2 JP 4106239B2 JP 2002161923 A JP2002161923 A JP 2002161923A JP 2002161923 A JP2002161923 A JP 2002161923A JP 4106239 B2 JP4106239 B2 JP 4106239B2
Authority
JP
Japan
Prior art keywords
gas
condensable gas
location
temperature
condensable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002161923A
Other languages
Japanese (ja)
Other versions
JP2004012146A (en
Inventor
潔 岩田
彰 志田
長佳 市川
隆生 笹山
浩 平山
耕太郎 中田
一男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002161923A priority Critical patent/JP4106239B2/en
Publication of JP2004012146A publication Critical patent/JP2004012146A/en
Application granted granted Critical
Publication of JP4106239B2 publication Critical patent/JP4106239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所における可燃性非凝縮性ガスのガス蓄積を監視し、評価する技術に係り、特に、蒸気配管における非凝縮性ガスのリスク評価システムおよびそのリスク評価方法に関する。
【0002】
【従来の技術】
一般に、沸騰水型原子力プラント(以下、BWRプラントという。)は、図11に示すように、原子炉格納容器(以下、PCVという。)1内に原子炉圧力容器(以下、RPVという。)2が格納され、このRPV2の頂部廻りに気体処理設備として原子炉圧力容器ベント系3が設けられる。
【0003】
BWRプラントでは、RPV2内で発生した蒸気を主蒸気系4を通して蒸気タービン5に導き、この蒸気タービン5により図示しない発電機を駆動させるようになっている。蒸気タービン5で仕事をした蒸気は復水器で凝縮され、復水となった後、図示しない復水・給水系を経てRPV2に還流されるようになっている。なお、符号6は原子炉圧力容器ヘッドスプレイ系である。
【0004】
一方、RPV2内に炉心7が収容され、この炉心7は原子炉冷却水8で浸漬されている。RPV2内は原子炉冷却水(炉水)が貯溜された液相部とこの液相部上方の気相部9とに区画される。
【0005】
RPV2内の原子炉冷却水8中には、炉心7での核反応に伴う中性子照射により、冷却水8から分解生成される水素ガスおよび酸素ガス、あるいは場合によっては燃料棒より微量に漏洩するKr,Xe等の放射性希ガス等の非凝縮性ガスが存在する。このため、BWRプラントには非凝縮性ガスを処理する気体廃棄物処理系(図示せず)が設けられる。
【0006】
BWRプラントの通常運転時、RPV2内で発生する非凝縮性ガスは、RPV2から主蒸気系4を経て主蒸気とともに蒸気タービン5に案内され、蒸気タービン5に流入せしめられる。主蒸気とともに流入した非凝縮性ガスは、蒸気タービンを通り、その後蒸気タービン5から復水器に導かれ、この復水器に設けられた気体廃棄物処理系で処理される。主蒸気系4の配管4aには、PCV(原子炉格納容器)1の上流側および下流側に主蒸気隔離弁10a,10bがそれぞれ設けられる。
【0007】
【発明が解決しようとする課題】
沸騰水型原子炉の通常運転時に、RPV2内で発生する非凝縮性ガスは、基本的には主蒸気管4a、蒸気タービン5を経て復水器から気体廃棄物処理系に移送され、この気体廃棄物処理系で処理されるが、その途中の分岐管立上り部に溜まった場合のガス処理設備は備えられていない。
【0008】
一方、沸騰水型原子炉の通常運転時に、RPV2内で発生する非凝縮性ガスの主成分である水素ガスや酸素ガスは、蒸気とともに流動するため、配管立上り部に徐々に蓄積される、との知見がある。
【0009】
また、主蒸気管4aから分岐される配管で流れがない行止まり配管10は1つのBWRプラント当り何百ラインもある。これらの行止まり配管10は分岐ルート等の条件が全て異なることから、非凝縮性ガスの水素蓄積による燃焼等の発生条件やその可能性がそれぞれ異なる。また、弁リーク等の不確定な事象も加わり、非凝縮性ガス蓄積を監視し、ガス蓄積による問題を恒久的に評価することは困難である。
【0010】
原子力発電所の蒸気配管で非凝縮性ガスが多少でも蓄積する可能性のある箇所のガス蓄積を正確に監視し、評価し、適切な処置を施すことで、燃焼等を未然にかつ確実に防止できることを本発明者は知見した。
【0011】
また、BWRプラントの信頼性を一層向上させるために、非凝縮性ガスが溜まる可能性が想定される箇所を判定し、ガス蓄積可能箇所の温度等を監視し、ガス蓄積状態を評価することは、燃焼等を未然にかつ確実に防止する上で重要である。
【0012】
しかしながら、ガス蓄積可能箇所における非凝縮性ガスのガス蓄積を監視したり、ガス蓄積データの評価手法が確立していない。このため、原子力発電所において、蒸気配管等のガス蓄積可能箇所における非凝縮性ガスのガス蓄積を監視し、評価する技術の確立が強く望まれている。
【0013】
本発明は、上述した事情を考慮してなされたもので、ガス蓄積可能箇所における非凝縮性ガスのガス蓄積を迅速かつ正確に監視し、リスク評価して被害を未然にしかも確実に防止することができる非凝縮性ガスのリスク評価システムおよびそのリスク評価方法を提供することを目的とする。
【0014】
本発明の他の目的は、非凝縮性ガスのガス蓄積可能箇所のガス蓄積を監視し、評価することで水素ガス燃焼に対する損傷リスク管理、予防保全を確実に行ない、信頼性の高い非凝縮性ガスのリスク評価システムおよびそのリスク評価方法を提供するにある。
【0015】
本発明のさらに他の目的は、ガス蓄積可能箇所における非凝縮性ガスのガス蓄積を迅速かつ効率よく監視でき、リスク評価して被害を未然にしかも確実に防止することができる非凝縮性ガスのリスク評価システムおよびそのリスク評価方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明に係る非凝縮性ガスのリスク評価システムは、上述した課題を解決するために、請求項1に記載したように、非凝縮性ガスが蓄積する可能性のある配管、部位におけるガス蓄積可能箇所に設けられた温度センサと、この温度センサで計測された温度データからガス蓄積可能箇所の配管内温度を求め、求めた配管内温度から非凝縮性ガスのガス分圧を算出する演算手段と、求められた非凝縮性ガスのガス分圧から、非凝縮性ガスを構成する水素・酸素のモル比を初期条件として燃焼解析を行ない、予測される燃焼圧力を予め設定された判定条件と比較し、非凝縮性ガスのガス蓄積可能箇所の応力またはひずみを算出する判定評価手段と、判定評価手段で算出されたガス蓄積可能箇所の応力またはひずみによりガス蓄積可能箇所の損傷リスクを評価するリスク評価手段とを備えたものである。
【0017】
また、上述した課題を解決するために、本発明に係る非凝縮性ガスのリスク評価システムは、請求項2に記載したように、前記演算手段は、温度センサからの計測データにより、ガス蓄積可能箇所の温度履歴を求める一方、前記判定評価手段は、ガス蓄積可能箇所の温度履歴を評価し、温度低下傾向がある場合、ガス蓄積可能箇所の今後の非凝縮性ガス蓄積量を予測するようにしたり、さらに、請求項3に記載したように、前記判定評価手段は、ガス蓄積可能箇所に温度低下傾向がある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を予測・評価し、評価された燃焼圧力によるガス蓄積可能箇所の応力またはひずみを算出し、前記リスク評価手段は、算出された応力またはひずみに基づいてガス蓄積可能箇所の損傷リスクを判定し、評価するようにしたり、また、請求項4に記載したように、前記判定評価手段は、ガス蓄積可能箇所に温度低下傾向がある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を評価し、この燃焼圧力を予め設定された判定条件と比較判定する一方、前記リスク評価手段は、燃焼圧力と予め設定された判定条件の比較により、ガス蓄積可能箇所の損傷リスクを判定・評価するようにしたものである。
【0018】
他方、本発明に係る非凝縮性ガスのリスク評価方法は、上述した課題を解決するために、請求項5に記載したように、非凝縮性ガスの蓄積が想定される非凝縮性ガス蓄積箇所の流体配管の温度を計測し、測定した配管温度から配管内温度と非凝縮性ガスのガス分圧を求め、求められた非凝縮性ガスのガス分圧から、非凝縮性ガスを構成する水素・酸素のモル比を初期条件として燃焼解析を行なって非凝縮性ガスによる燃焼圧力を算出して評価し、評価された燃焼圧力による非凝縮性ガス蓄積箇所の応力またはひずみを算出し、算出された応力またはひずみから非凝縮性ガス蓄積箇所の損傷リスクを判定し、評価する方法である。
【0019】
また、上述した課題を解決するために、本発明に係る非凝縮性ガスのリスク評価方法は、請求項6に記載したように、流体配管の温度計測により、温度低下傾向がある場合、ガス蓄積可能箇所における今後の非凝縮性ガス蓄積量を予測する方法であったり、さらに、請求項7に記載したように、ガス蓄積可能箇所が温度低下傾向にある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を算出して評価し、評価された燃焼圧力によるガス蓄積可能箇所の流体配管の応力またはひずみを算出し、算出された応力またはひずみからガス蓄積可能箇所の損傷リスクを判定し、評価する方法であったり、また、請求項8に記載したように、ガス蓄積可能箇所が温度低下傾向にある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を算出して、評価し、評価された燃焼圧力を予め設定した判定条件と比較判断し、この比較判断により、ガス蓄積可能箇所の損傷リスクを判定・評価する方法である。
【0020】
【発明の実施の形態】
本発明に係る非凝縮性ガスのリスク評価システムの実施の形態について添付図面を参照して説明する。
【0021】
図1は、本発明に係る非凝縮性ガスのリスク評価システムを備えた沸騰水型原子力プラント(BWRプラント)20の概略的な系統図を示す。
【0022】
BWRプラント20は、原子炉格納容器(PCV)21内に原子炉圧力容器(RPV)22を格納しており、原子炉圧力容器22周りの原子炉格納容器21内はドライウェル23として画成される。原子炉圧力容器22内には炉心24が格納されており、この炉心24は原子炉冷却水25に浸漬される。原子炉圧力容器22の下部には原子炉冷却水25を貯えた液相部が成形される一方、この液相部の上方には気相部26が形成される。
【0023】
原子炉圧力容器22内の原子炉冷却水25は、炉心24を通る際に、核反応による中性子照射を受けて加熱され、蒸気化される。発生した蒸気は原子炉圧力容器22内で気水分離され、乾燥された後、主蒸気系27を通って蒸気タービン28に送られ、蒸気タービン28で仕事をし、発電機(図示せず)を駆動させる。主蒸気系27を構成する主蒸気管27aにはPCV21の上流側および下流側に主蒸気隔離弁29a,29bがそれぞれ設けられる。蒸気タービン28で仕事をし、膨張した蒸気は復水器(図示せず)で凝縮された後、原子炉復水・給水系を通ってRPV22内に再び還流される。
【0024】
主蒸気系27の主蒸気管27aから原子炉隔離時冷却系30、タービンバイパス系31や主蒸気ドレン系(図示せず)等を含め、多数の分岐ラインが分岐されており、各分岐ラインの中には行き止まり配管も多く存在する。
【0025】
また、BWRプラント20の原子炉圧力容器(RPV)22には原子炉圧力容器頂部ベント設備35が設けられており、このベント設備35は原子炉圧力容器(RPV)ベント系36と、原子炉圧力容器ヘッドスプレイ系(以下、RPVヘッドスプレイ系という。)37から分岐された分岐ベント系38とを備える。
【0026】
RPVベント系36は、原子炉圧力容器(RPV)22の頂部に接続される原子炉圧力容器(RPV)ベント配管40を有する。このRPVベント配管40はRPV22の頂部に形成されたRPVヘッドベントノズル41に接続される一方、途中に開閉弁として遠隔操作される電動弁43が設けられる。電動弁43の下流側は主蒸気管27aに原子炉格納容器21内の主蒸気隔離弁29aの上流側で接続される。
【0027】
また、分岐ベント系38は、原子炉圧力容器(RPV)ヘッドスプレイ配管45の逆止弁46下流側から分岐されたベント分岐配管47を備える。このベント分岐配管47には遠隔操作弁としての電動弁48が設けられ、電動弁48の下流側がRPVベント系36のRPVベント配管40に、電動弁43の上流側で接続される。ベント分岐配管47の分岐部は、逆止弁あるいは注入弁46下流側で立ち上がるように、RPVヘッドスプレイ配管45の頂部位置に設けられる。ベント分岐配管47の分岐部は逆止弁46にできるだけ近い位置に設けられる。
【0028】
さらに、RPVヘッドスプレイ系37は、RPVヘッドスプレイ配管45がRPV22の頂部に設けられた原子炉圧力容器ヘッドスプレイノズル(以下、RPVヘッドスプレイノズルという。)49に接続される。RPVヘッドスプレイ系37のRPVヘッドスプレイ配管45は原子炉隔離時冷却設備(以下、RCICという。)50の冷却水注入配管を兼ねるようにしてもよい。RCIC50は沸騰水型原子炉の停止時にRPV22の上部ドームの残圧を下げるために停止時冷却系の冷却水を利用してRPV22の気相部26を冷却する設備である。
【0029】
一方、RPVヘッドスプレイ系37のRPVヘッドスプレイ配管45には、逆止弁46および原子炉格納容器隔離弁(PCV隔離弁)51a,51bが途中に設けられる。PCV隔離弁51a,51bは原子炉格納容器21を介してその内側と外側にそれぞれ設置され、原子炉運転時には通常閉塞されている。
【0030】
ところで、原子炉圧力容器頂部ベント設備35を構成するRPVベント系36とRPVヘッドスプレイ系37を利用した分岐ベント系38とは協働作用して原子炉圧力容器22廻りで非凝縮性ガスのガス蓄積可能箇所54から非凝縮性ガスを導出し、主蒸気管27に排出するようになっている。
【0031】
原子炉圧力容器(RPV)22の頂部にRPVベント系36とRPVヘッドスプレイ系37を利用した分岐ベント系38とを設け、協働作用をさせることで、原子力発電所の通常運転時に、RPV22内の頂部付近に蓄積する可能性のあるガス蓄積可能箇所54の酸素ガス、水素ガスおよびKr,Xeの放射性希ガス等の非凝縮性ガスを主蒸気管27a側に円滑かつスムーズに排出することができ、RPV22の頂部付近廻りに非凝縮性ガスが蓄積するのを未然にかつ確実に防止している。
【0032】
また、BWRプラント20においては、可燃性の非凝縮性ガスが蓄積する可能性のある配管、部位等のガス蓄積可能箇所54に図2に示す非凝縮性ガスの蓄積監視および評価システム53を構成する温度センサ55および圧力センサ56が設けられる。ガス蓄積可能箇所54は、分岐ベント系38のベント分岐配管47であったり、また、主蒸気系27の主蒸気管27aから分岐して立ち上がる分岐配管や枝管である。
【0033】
温度センサ55および圧力センサ56は、図2および図3に示すように、可燃性非凝縮性ガスの蓄積が予想される蒸気配管のガス蓄積可能箇所54、例えば流体配管の配管表面に取り付けられる。流体配管やその保温材に使用される材料は既知であり、流体配管内を流れる流体も予め知られているので、流体配管やその保温材の熱伝導率や流体の熱伝達係数を予め知ることができる。温度センサ55で測定された温度データや圧力センサ56で測定された圧力データは計測手段としての計測装置57を経てパソコンや中央演算装置等のコンピュータ58に入力される。計測装置57は、アナログ信号をディジタル化処理する機能を備えるが、この計測装置57をコンピュータ58内に組み込むようにしてもよい。
【0034】
ところで、コンピュータ58は、温度センサ55からの温度データや圧力センサ56からの圧力データに基づいて、ガス蓄積可能箇所54の蒸気分圧や非凝縮性ガスのガス分圧を換算して求める演算手段60と、ガス蓄積可能箇所54の蒸気分圧や非凝縮性ガス分圧の算出結果から予め設定した判定条件と比較演算し、燃焼領域、爆轟領域およびそれらの近傍領域であるか否かを判定し、評価する判定評価手段61と、この判定評価手段61でガス蓄積可能箇所54が燃焼領域、爆轟領域およびそれらの近傍領域であると判定したとき、警報を発する警報手段62とを備え、警報手段62から出力される警報信号を警報発生装置63に出力したり、あるいはコンピュータ58の表示手段64に出力し、表示手段64や警報発生装置63により視覚や聴覚を通じて警報を発するようになっている。符号65はコンピュータ58の操作ボードである。
【0035】
コンピュータ58の演算手段60は、温度センサ55で測定された温度データから、蒸気表データ等を用いて演算処理して蒸気分圧を算出したり、圧力センサ56で測定された圧力データから非凝縮性ガスのガス分圧を算出して求めるものである。圧力センサ56を設置しない場合には、温度センサ55からの温度データで求められたガス蓄積可能箇所54の蒸気分圧から非凝縮性ガスのガス分圧を演算により求めるようにしてもよい。
【0036】
さらに、コンピュータ58には、蒸気表データ、配管部品構成に対する燃焼圧力−発生応力/相当塑性ひずみの関係データ等を記憶させた評価判定テーブル66が内蔵される。また、コンピュータ58の判定評価手段61には非凝縮性ガス蓄積量評価や、非凝縮性ガス蓄積量の予測評価、着火燃焼圧力評価および流体配管強度評価が行なえるように、評価プログラム67が組み込まれている。
【0037】
コンピュータ58の評価プログラム67は、図2に示すように、非凝縮性ガス蓄積量評価システム70、将来を予測する非凝縮性ガス蓄積量予測システム71、着火燃焼圧力評価システム72および配管強度評価システム73を備えるだけでなく、リスク評価手段としてリスク評価システム74を設けてもよい。
【0038】
このリスク評価システム74は、コンピュータ58に内蔵された評価プログラム67により、ガス蓄積可能箇所54の非凝縮性ガス蓄積量評価、非凝縮性ガス蓄積量の予測評価、着火燃焼圧力評価および配管強度評価の各評価結果を用いて、ガス蓄積可能箇所54の現状でのガス蓄積状況評価、定検まで運転した場合のリスク評価およびどの時期にどのような損傷リスクが生じるか、現状および将来の損傷リスク情報の提示を行なうようになっている。損傷リスク評価の中には、非凝縮性ガスの着火の可能性、ガス蓄積可能箇所54、ひいては流体配管の変形可能性、損傷可能性等がある。
【0039】
ところで、コンピュータ58の判定評価手段61には、水素−酸素−水蒸気系の可燃限界曲線や爆轟限界曲線を表わしたデータが予め設定された判定条件として内蔵されている。
【0040】
BWRプラント20において、原子炉から発生する非凝縮性ガスは、水の放射線分解に由来するものであるから、水素:酸素のモル比は2:1であり、通常は非凝縮性ガスが存在する温度で飽和蒸気が存在するため、可燃領域(燃焼領域)にはならない。しかし、ガス蓄積可能箇所54が非凝縮性ガスのガス蓄積により温度低下すると、蒸気の一部凝縮により、蒸気に対する非凝縮性ガスのガス分圧が相対的に上昇し、可燃領域に至る可能性がある。BWRプラント20において、蒸気配管等の流体配管からの分岐立上り部に形成されるガス蓄積可能箇所54は、蒸気と可燃性の非凝縮性ガスが混在する系、すなわち、水素−酸素−水蒸気系を構成している。
【0041】
ところで、一般に、水素−空気−水蒸気系の可燃限界曲線Aは図4に表わされるように知られている。水素−空気−水蒸気系では、水蒸気および空気中の窒素成分は、共に燃焼を抑制するガスとして作用する。窒素成分が存在しない原子炉系の配管では、窒素成分を蒸気に置き換えることで、評価することができる。
【0042】
図5は、図4に示された水素−空気−水蒸気系を換算して水素−酸素−水蒸気系の可燃限界曲線Bを得たものである。この可燃限界曲線Bで囲まれる領域が可燃領域(燃焼領域)Cとなるので、ガス蓄積可能箇所54での燃焼を確実に防止するためには、ガス蓄積可能箇所54が可燃領域C外に位置させることが条件となる。
【0043】
一方、非凝縮性ガスは水の放射線分解により発生した水素および酸素であるので、それらの存在比(モル比)は水素:酸素=2:1であり、一点鎖線Dで表わされる。この水素:酸素のモル比割合で、存在可能性のある水素、酸素、蒸気(水蒸気)の比率を、図6から求めると、水素・酸素のモル比曲線である一点鎖線Dと可燃限界曲線Bとの交点により、蒸気の割合が求められる。この蒸気の割合(モル比)は85%となる。蒸気の割合が85%以下では、可燃領域Cとなる。
【0044】
BWRプラント20の運転状態を例に採ると、原子炉圧力容器(RPV)22内の圧力は7MPa、蒸気温度は286℃である。放射線分解で生成される水素、酸素は蒸気に比較して重量比でppmオーダとなり、微量である。原子炉圧力7MPaは蒸気により決定される飽和圧力である。
【0045】
ここで、図6に示された可燃限界である85%の蒸気分圧を算出すると、蒸気分圧値は、5.95MPaである。蒸気圧力5.95MPaの飽和蒸気圧におけるときの蒸気温度は、日本機械学会編の蒸気表データを参照すれば、275℃となる。
【0046】
すなわち、BWRプラント20の定格出力時における蒸気温度286℃より11℃低下した場合に、ガス蓄積可能箇所54が可燃領域Cに到達する可能性があると判断でき、警報が発生されるようになっている。
【0047】
ところで、実際に警報手段62から発生せしめられる警報信号の設定値は、可燃領域近傍を知らせることも主な目的の1つであるので、例えば、定格出力時の蒸気温度286℃から、数度、例えば5℃低下したときに発生させることができる。可燃領域近傍に到達したことを知らせることにより、水素ガス燃焼に対する予防保全を確実にかつ安定的に行なうことができる。
【0048】
また、図2および図3に示された非凝縮性ガスの蓄積監視および評価システムでは、圧力センサ56が設置されている。この圧力センサ56の設置により、原子炉圧力と異なる圧力系統であっても、その圧力センサ56の検出値により、その圧力値に相当する飽和蒸気の温度を求めて初期値とし、この初期値の85%の蒸気分圧に相当する蒸気温度を求めてもよい。これらの基礎データは、日本機械学会編の蒸気表に基づくものであり、予めコンピュータ58にインプットされている。
【0049】
また、水−空気−水蒸気系の爆轟限界については、図4に示されたように爆轟限界曲線Eで表わされることが知られている。図4に示された水−空気−水蒸気系においては、水蒸気および空気中の窒素成分は共に燃焼を抑制するガスとして作用するので、窒素成分が存在しない原子炉系の流体配管では窒素を蒸気に置き換えて評価することができる。
【0050】
図4に示された水−空気−水蒸気系の爆轟限界曲線Eを水素−酸素−水蒸気系に換算させると、爆轟限界曲線Fは、図7に示すように表わされる。
【0051】
一方、非凝縮性ガスである水素および酸素は、放射線分解により発生した水素、酸素であるのでその存在比(モル比)は水素:酸素=2:1であり、図7に一点鎖線Gで表わされる。爆轟限界曲線Fと水素、酸素のモル比を考慮した一点鎖線Gとの交点から、蒸気の割合(モル比)を求めると70%となり、蒸気割合が70%以下のとき、爆轟領域Hとなる。
【0052】
非凝縮性ガス蓄積監視および評価システム53は、ガス蓄積可能箇所54に図3に示すように温度センサ55および圧力センサ56が取り付けられている。温度センサ55および圧力センサ56からのセンサ信号は計測手段を経て監視用あるいは判定評価用コンピュータ58に取り込まれ、爆轟領域Hに到達したか否かの評価が行なわれる。
【0053】
BWRプラント20の運転状態を例に採ると、例えば、原子炉圧力は7MPaであり、蒸気温度は286℃である。放射線分解で生成する水素、酸素は蒸気に比較し、重量比でppmオーダとなり、微量である。原子炉圧力7MPaは原子炉蒸気により決定されている飽和圧力である。ここで原子炉圧力7MPaの70%の蒸気分圧が示す圧力値は4.9MPaであり、その飽和蒸気圧力における蒸気温度は263℃となる。
【0054】
このことから、非凝縮性ガス蓄積監視および評価システム53では、定格運転時の蒸気温度286℃より23℃低下した場合には、爆轟領域Hに達したと判断でき、警報が発せられる。
【0055】
なお、警報の設定値については、爆轟領域近傍を知らせることも主な目的の1つであるので、例えば20℃程度の低下により発するように、設定してもよい。
【0056】
また、非凝縮性ガスの蓄積監視および評価システム53においては、ガス蓄積可能箇所54に圧力センサ56が設置されているので、原子炉圧力と異なる配管圧力系統であっても、圧力センサ56の検出値により、検出圧力に相当する飽和蒸気の温度を求めて初期値とし、この初期値から70%の蒸気圧に相当する飽和蒸気の温度を求めてもよい。
【0057】
次に、非凝縮性ガスのリスク評価システムの作用を説明する。
【0058】
BWRプラント20の蒸気配管の分岐管立上り部のように、非凝縮性ガスのガス蓄積可能箇所54に温度センサ55および圧力センサ56を取り付ける。
【0059】
温度センサ55にて得られた温度データからガス蓄積可能箇所56の蒸気分圧を演算手段60で求め、圧力センサ56にて得られた圧力データからガス蓄積可能箇所54の非凝縮性ガス分圧を求める。
【0060】
求められた蒸気分圧と非凝縮性ガス分圧の結果から非凝縮性ガスのガス蓄積やガス蓄積の履歴が監視される一方、蒸気分圧と非凝縮性ガス分圧の結果から、予め設定された判定条件で燃焼領域、爆轟領域あるいはそれらの近傍に到達したか否かを判定することができ、評価することができる。
【0061】
すなわち、この非凝縮性ガスの蓄積監視および評価システム53は、非凝縮性ガスのガス蓄積可能箇所54の温度あるいは圧力を測定し、ガス蓄積可能箇所54の温度等の経時変化を監視してガス蓄積状態やその履歴を監視する一方、この監視データを予め設定された判定条件を比較し、燃焼領域あるいは爆轟領域またはそれらの近傍に到達したか否かを判定し、評価することで、ガス蓄積可能箇所54に蓄積された非凝縮性ガスに対する燃焼の危険性を未然にかつ確実に評価できる評価手法を提供できる。
【0062】
具体的には、圧力発電プラントにおける非凝縮性ガスの蓄積監視および評価システム53は非凝縮性ガスのガス蓄積可能箇所54に設けられた温度センサ55による温度検出と、流体配管内を流れる流体の熱伝達係数や流体配管およびその保温材の熱伝導率から流体配管内側の温度を求める。求められた配管内温度から流体配管内の飽和蒸気圧を求め、流体配管内の圧力と飽和蒸気圧の差から流体配管内の非凝縮性ガスのガス分圧を求める。
【0063】
その後、流体配管内の飽和蒸気圧と非凝縮性ガスのガス分圧と予め求めておいた非凝縮性ガス中における水素、酸素の分圧比(モル比)から、流体配管内の水素、酸素、蒸気のモル比を求め、このモル比を初期条件して燃焼解析を行なうことで、非凝縮性ガスの燃焼圧力を予測でき、この燃焼圧力からガス蓄積可能箇所の応力またはひずみを算出でき、流体配管の損傷リスクの程度を評価できる。すなわち、弾性・変形や塑性ひずみの程度を評価できる。
【0064】
また、流動圧力(動圧)に対する直管部、直管部にエルボの代表的部位の評価結果から弾性変形、塑性ひずみの程度を判定できる標準テーブルを評価判定テーブル66の機能の1つとして予め作成しておき、非凝縮性ガスの蓄積監視および評価システム53で判定・評価された圧力を標準テーブル(燃焼圧力−発生応力/塑性ひずみ等の関係)を用いて比較判断することで、流体配管の損傷リスクの程度を評価することができる。
【0065】
さらに、原子力発電プラントにおける非凝縮性ガスの蓄積監視および評価システム53において、流体配管のガス蓄積可能箇所54における非凝縮性ガスのガス蓄積の監視および評価を効率的に行なうことができるように、予め配管の形状、ガス蓄積可能箇所54である分岐管口径dと分岐長さLの比(L/d)、母管である流体配管の口径Dと分岐管口径dの比(d/D)、Re数等の物理量を、理論解析や実験データ等から標準化した整理テーブルを評価判定テーブル66の機能の1つとして作成する。例えば、分岐管の口径dと分岐長さLの比L/d=3,5,10,15,20…に対してガス蓄積無し、ガス蓄積有り、ガス蓄積の可能性有りの関係をRe数とd/D値で整理した評価判定テーブルを作成する。この評価判定テーブルを用いて非凝縮性ガスのガス蓄積可能箇所54の計測値(物理量)と比較し、ガス蓄積可能箇所54の分岐管について、蓄積無し、蓄積有り、蓄積可能性を否定できない旨の判定を迅速に行ない、評価することができる。評価判定テーブルに代えて、評価判定式(例えば、A=a・(d/D)・(Re)/(L/d)、但し、a,b,c,dは定数)を作成し、この評価判定式にガス蓄積可能箇所54で測定された数値(物理量)を代入してガス蓄積状態を迅速に判定し、評価するようにしてもよい。
【0066】
いずれにしても、原子力発電プラントにおける非凝縮性ガスの蓄積監視および評価システム53は、温度センサ55および圧力センサ56を備えた計測装置57と評価システムをリンクさせて、ガス蓄積監視および評価システムを構成したものである。
【0067】
図8は、本発明に係る非凝縮性ガスのリスク評価システムの第2実施形態を示すものである。
【0068】
図8に示された非凝縮性ガス蓄積監視および評価システム53Aは、BWRプラントのRPVヘッドスプレイ配管47等の蒸気配管75から分岐される分岐管立上り部をガス蓄積可能箇所54とし、このガス蓄積可能箇所54に温度センサ55を取り付けたものである。圧力センサが設けられていない点が、図2および図3の第1実施形態に示されたシステム53と相違する。他の構成および作用は、図2および図3に示された非凝縮性ガス蓄積監視および評価システム53と異ならないので、同じ符号を付して説明を省略する。
【0069】
図8に示された非凝縮性ガス蓄積監視および評価システム53Aは、蒸気配管からの分岐管立上り部に設けられた温度センサ55を備え、この温度センサ55で測定された温度データを処理することにより、ガス蓄積可能箇所54の非凝縮性ガスのガス蓄積を監視し、ガス蓄積可能箇所54に非凝縮性ガスが蓄積されて可燃領域(燃焼領域)、爆轟領域、またはこれらの近傍に到達したか否かを警報にて正確にかつ確実に知らせ得るようになっている。
【0070】
BWRプラント20では、原子炉起動とともに蒸気配管75に蒸気が流れ、ガス蓄積可能箇所54にも蒸気が流入し、温度が上昇していく。原子炉が定格運転状態となり、ガス蓄積可能箇所54が蒸気で満たされると温度は一定となる。
【0071】
その後、蒸気配管75からの分岐立上り部であるガス蓄積可能箇所54に蒸気中に含まれる可燃性の非凝縮性ガスが蓄積していくことで、ガス蓄積可能箇所54の温度は徐々に低下していく。この温度の経時変化を温度センサ55で測定することにより、非凝縮性ガスのガス蓄積を観測することができる。
【0072】
温度センサ55で測定された最高温度における飽和蒸気圧力を求め、可燃領域の評価の場合には、その飽和蒸気圧力の85%における飽和蒸気温度を、爆轟領域の評価の場合には、飽和蒸気圧力の70%における飽和蒸気温度で警報を発する温度とする。可燃領域や爆轟領域のそれぞれ近傍領域で警報を発生させる場合には、警報を発生させる温度設定を上昇させればよい。
【0073】
図8に示された原子力発電プラントにおける非凝縮性ガス蓄積監視および評価システム53Aにおいても、ガス蓄積可能箇所54への非凝縮性ガスのガス蓄積を監視することができ、ガス蓄積の監視によりガス蓄積可能箇所54が可燃領域、爆轟領域あるいはその近傍領域に到達したときには、警報を発し、注意を喚起させることができる。
【0074】
図9は、本発明に係る非凝縮性ガスのリスク評価システムの第3実施形態を示すものである。
【0075】
図9に示された非凝縮性ガス蓄積監視および評価システム53Bは、BWRプラント20の蒸気配管75から分岐される分岐管立上り部をガス蓄積可能箇所54とする一方、このガス蓄積可能箇所54とこのガス蓄積可能箇所54の分岐部に温度センサ55a,55bをそれぞれ取り付けたものである。圧力センサは設けられていない。温度センサ55a,55bをガス蓄積可能箇所54のガス蓄積可能部位と分岐部にそれぞれ取り付けた以外の構成は、図2および図3に示された非凝縮性ガス蓄積監視および評価システム53と異ならないので、同じ符号を付して説明を省略する。分岐部は蒸気配管75内を流れる蒸気が常に流れている部位あるいはその部位近傍の場所である。
【0076】
BWRプラント20の原子炉の駆動とともに蒸気配管75に蒸気が流れ、ガス蓄積可能箇所54内にも蒸気が流入し、温度上昇していく。原子炉が定格運転状態となり、ガス蓄積可能箇所54が蒸気で満たされると温度は一定となる。
【0077】
その後、原子炉の運転が続けられると、蒸気配管75の蒸気中に含まれる非凝縮性ガスがガス蓄積可能箇所54に蓄積していくことで、ガス蓄積可能箇所54の温度は徐々に低下していく。非凝縮性ガスが蓄積してくると、それぞれの温度センサ55a,55bで測定された温度に差が生じてくる。分岐部の温度センサ55bで測定された温度は蒸気の温度となるのでほぼ一定であるが、非凝縮性ガスの蓄積部の温度は、ガス蓄積に伴い徐々に低下してくる。
【0078】
この温度差を両温度センサ55a,55bで測定することにより、非凝縮性ガスのガス蓄積を観測し、監視することができる。
【0079】
温度センサ55bで測定された分岐部の温度における飽和蒸気圧を求め、この飽和蒸気圧に対し、可燃領域評価の場合には、その飽和蒸気圧力の85%における飽和蒸気の温度を、爆轟領域の評価の場合にはその飽和蒸気圧力の70%における飽和蒸気温度を警報を発生させる温度とする。可燃領域、爆轟領域ま近傍領域で警報を発生させる場合には、警報を発生させる温度設定を上昇させればよい。
【0080】
図9に示された非凝縮性ガス蓄積監視および評価システム53Bにおいては、蒸気配管75からの分岐部に温度センサ55bを設けた例を説明したが、温度センサは必ずしも分岐部に設置させる必要がなく、蒸気配管75内の温度測定用の既存の温度計測センサを用いてもよい。
【0081】
なお、図1に示したBWRプラント20の系統図においては、分岐ベント系38のベント分岐配管47に電動弁48を遠隔操作弁として用いた例を示したが、この場合にはベント分岐配管47を主蒸気管27aに直接接続してもよく、また、図10に示すように、電動弁48の上流側に絞り機構としてのオリフィス77を設けてもよい。さらに、電動弁48はベント分岐配管47に必ずしも設ける必要はなく、電動弁やオリフィスを備えないベント分岐配管をRPVベント系36の電動弁43上流側に接続してもよい。
【0082】
【発明の効果】
本発明に係る非凝縮性ガスのリスク評価システムおよびそのリスク評価方法においては、原子力発電所のガス蓄積可能箇所における非凝縮性ガスのガス蓄積を迅速にかつ正確に測定して監視でき、ガス蓄積可能箇所の損傷リスクを判定し、評価して被害を未然にしかも確実に防止することができ、効率的でかつ迅速な対応を行なうことができ、信頼性の高い安定運転が維持できる。
【0083】
また、可燃性非凝縮性ガスのガス蓄積可能箇所のガス蓄積を監視し、予測して評価することで水素ガス燃焼に対する損傷リスク管理、予防保全を確実に行なうことができ、信頼性の高い非凝縮性ガスのリスク評価システムおよびそのリスク評価方法を提供できる。
【図面の簡単な説明】
【図1】 本発明に係る非凝縮性ガスのリスク評価システムを備えた沸騰水型原子力プラントを部分的かつ概略的に示す系統図。
【図2】 本発明に係る非凝縮性ガスのリスク評価システムの第1実施形態を示すシステム図。
【図3】 本発明に係る非凝縮性ガスのリスク評価システムの第1実施形態を示す概略図。
【図4】 水素−空気−水蒸気系における可燃領域および爆轟領域を示す図。
【図5】 水素−空気−水蒸気系を水素−酸素−水蒸気系に置換して得られる可燃領域を示す図。
【図6】 水素−酸素−水蒸気系における可燃領域と蒸気量の関係を示す図。
【図7】 水素−酸素−水蒸気系における爆轟領域と蒸気量の関係を示す図。
【図8】 本発明に係る非凝縮性ガスのリスク評価システムの第2実施形態を示す概略図。
【図9】 本発明に係る非凝縮性ガスのリスク評価システムの第3実施形態を示す概略図。
【図10】 図1に示された沸騰水型原子力プラントの変形例を示す概略的な系統図。
【図11】 従来の沸騰水型原子力プラントを示す概略的な系統図。
【符号の説明】
20 BWRプラント
21 原子炉格納容器(PCV)
22 原子炉圧力容器(RPV)
23 ドライウェル
24 炉心
25 原子炉冷却水(液相部)
26 気相部(蒸気相部)
27 主蒸気管
27a 主蒸気管
28 蒸気タービン
29a,29b 主蒸気隔離弁
30 原子炉隔離時冷却系
31 タービンバイパス系
36 原子炉圧力容器ベント系(RPVベント系)
37 原子炉圧力容器ヘッドスプレイ系(RPVヘッドスプレイ系)
38 分岐ベント系
40 原子炉圧力容器ベント配管(RPVベント配管)
41 原子炉圧力容器ヘッドベントノズル(RPVヘッドベントノズル)
43 電動弁(遠隔操作弁)
45 原子炉圧力容器ヘッドスプレイ配管(RPVヘッドスプレイ配管)
46 逆止弁
47 ベント分岐配管
48 電動弁(遠隔操作弁)
49 原子炉圧力容器ヘッドスプレイノズル(RPVヘッドスプレイノズル)
50 原子炉隔離時冷却設備(RCIC)
51a,51b 原子炉格納容器隔離弁(PCV隔離弁)
53,53A,53B 非凝縮性ガス蓄積監視および評価システム
54 ガス蓄積可能箇所
55 温度センサ
56 圧力センサ
57 計測装置(計測手段)
58 コンピュータ
60 演算手段
61 判定評価手段
62 警報手段
63 警報発生装置
64 表示手段
65 操作ボード
66 評価判定テーブル
67 評価プログラム
70 非凝縮性ガス蓄積量評価システム
71 非凝縮性ガス蓄積量予測システム
72 着火燃焼圧力評価システム
73 配管強度評価システム
74 リスク評価システム
75 蒸気配管
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a technique for monitoring and evaluating the accumulation of flammable non-condensable gas in a nuclear power plant, and more particularly to non-condensable gas in a steam pipe.Risk assessment system and risk assessment method thereofAbout.
[0002]
[Prior art]
  Generally, a boiling water nuclear power plant (hereinafter referred to as a BWR plant) has a reactor pressure vessel (hereinafter referred to as RPV) 2 in a reactor containment vessel (hereinafter referred to as PCV) 1 as shown in FIG. Is stored, and a reactor pressure vessel vent system 3 is provided as a gas processing facility around the top of the RPV 2.
[0003]
  In the BWR plant, steam generated in the RPV 2 is guided to the steam turbine 5 through the main steam system 4, and a generator (not shown) is driven by the steam turbine 5. The steam that has worked in the steam turbine 5 is condensed in the condenser, becomes condensed water, and then returns to the RPV 2 through a condensate / water supply system (not shown). Reference numeral 6 denotes a reactor pressure vessel head spray system.
[0004]
  On the other hand, the core 7 is accommodated in the RPV 2 and the core 7 is immersed in the reactor cooling water 8. The RPV 2 is partitioned into a liquid phase part in which reactor cooling water (reactor water) is stored and a gas phase part 9 above the liquid phase part.
[0005]
  In the reactor cooling water 8 in the RPV 2, hydrogen gas and oxygen gas decomposed and generated from the cooling water 8 due to neutron irradiation accompanying the nuclear reaction in the core 7 or, in some cases, a small amount of Kr leaks from the fuel rod. , Xe, and other non-condensable gases such as radioactive noble gases. For this reason, the BWR plant is provided with a gaseous waste treatment system (not shown) for treating non-condensable gas.
[0006]
  During normal operation of the BWR plant, non-condensable gas generated in the RPV 2 is guided from the RPV 2 through the main steam system 4 to the steam turbine 5 together with the main steam, and flows into the steam turbine 5. The non-condensable gas that flows in with the main steamThrough the steam turbine,After that, the steam turbine 5 leads to a condenser and is processed by a gas waste treatment system provided in the condenser. Main steam isolation valves 10 a and 10 b are respectively provided on the upstream side and the downstream side of the PCV (reactor containment vessel) 1 in the pipe 4 a of the main steam system 4.
[0007]
[Problems to be solved by the invention]
  During normal operation of the boiling water reactor, the non-condensable gas generated in the RPV 2 is basically transferred from the condenser to the gas waste treatment system via the main steam pipe 4a and the steam turbine 5, and this gas Although it is processed in the waste processing system, there is no gas processing facility provided when it collects at the rising portion of the branch pipe.
[0008]
  On the other hand, during normal operation of the boiling water reactor, hydrogen gas and oxygen gas, which are the main components of the non-condensable gas generated in the RPV2, flow together with the steam, so that they gradually accumulate at the rising part of the pipe. There is knowledge of.
[0009]
  In addition, there are hundreds of dead-end pipes 10 that do not flow in the pipe branched from the main steam pipe 4a per BWR plant. Since these dead-end pipes 10 are all different in conditions such as branch routes, the generation conditions such as combustion due to hydrogen accumulation of non-condensable gas and the possibility thereof are different. In addition, uncertain events such as valve leaks are added, and it is difficult to monitor non-condensable gas accumulation and permanently evaluate problems due to gas accumulation.
[0010]
  Accurately monitor and evaluate gas accumulation at locations where non-condensable gas may accumulate in nuclear power plant steam piping, and prevent and prevent combustion, etc. in advance. The inventor has found that this is possible.
[0011]
  In addition, in order to further improve the reliability of the BWR plant, it is possible to determine a place where the possibility of accumulation of non-condensable gas is determined, monitor the temperature of the place where gas can be accumulated, and evaluate the gas accumulation state. It is important to prevent combustion and the like in advance.
[0012]
  However, the gas accumulation of the non-condensable gas in the gas accumulation possible place is not monitored, and the evaluation method of the gas accumulation data has not been established. For this reason, in a nuclear power plant, establishment of the technique which monitors and evaluates the gas accumulation of non-condensable gas in gas accumulation possible places, such as steam piping, is strongly desired.
[0013]
  The present invention has been made in consideration of the above-mentioned circumstances, and quickly and accurately monitors the gas accumulation of non-condensable gas at a gas accumulation possible place, and performs risk assessment to prevent damage in advance. Of non-condensable gasRisk assessment system and risk assessment method thereofThe purpose is to provide.
[0014]
  Another object of the present invention is to monitor and evaluate the gas accumulation of the non-condensable gas accumulation area, thereby reliably performing damage risk management and preventive maintenance for hydrogen gas combustion, and highly reliable non-condensable. GasRisk assessment system and risk assessment method thereofTo provide.
[0015]
  Still another object of the present invention is to provide a non-condensable gas that can quickly and efficiently monitor gas accumulation of non-condensable gas at a gas accumulable location, and that can be risk-predicted to prevent damage in advance.Risk assessment system and risk assessment method thereofThe purpose is to provide.
[0016]
[Means for Solving the Problems]
  The present inventionIn order to solve the above-mentioned problem, the risk assessment system for non-condensable gas according toClaim 1As described in 1., the piping in which non-condensable gas may accumulate, the temperature sensor provided at the location where gas can be accumulated in the site, and the piping where the gas can be accumulated from the temperature data measured by this temperature sensor Calculation means for calculating the temperature and calculating the gas partial pressure of the non-condensable gas from the calculated temperature in the pipe, and the moles of hydrogen and oxygen constituting the non-condensable gas from the obtained gas partial pressure of the non-condensable gas A determination evaluation means for performing a combustion analysis using the ratio as an initial condition, comparing a predicted combustion pressure with a predetermined determination condition, and calculating a stress or a strain of a non-condensable gas accumulation location; and a determination evaluation means And a risk evaluation unit that evaluates the damage risk of the gas accumulable location based on the stress or strain of the gas accumulable location calculated in (1).
[0017]
  In order to solve the above-described problem, the risk assessment system for non-condensable gas according to the present invention is:Claim 2As described above, the calculation means obtains the temperature history of the gas accumulation possible location from the measurement data from the temperature sensor, while the determination evaluation means evaluates the temperature history of the gas accumulation possible location and tends to decrease in temperature. If there is, you can predict the amount of non-condensable gas accumulation in the future where gas accumulation is possible,Claim 3As described above, when the temperature accumulation tendency is present at the location where gas accumulation is possible, the determination / evaluation means predicts / evaluates the combustion pressure generated at the time of ignition from the predicted non-condensable gas accumulation amount, and evaluates the combustion Calculate the stress or strain of the gas accumulable location due to pressure, and the risk evaluation means determines and evaluates the damage risk of the gas accumulable location based on the calculated stress or strain, orClaim 4As described above, when there is a tendency for the temperature to decrease in a portion where gas can be accumulated, the determination / evaluation means evaluates the combustion pressure generated at the time of ignition from the predicted non-condensable gas accumulation amount, and sets this combustion pressure in advance. On the other hand, the risk evaluation means determines and evaluates the damage risk of the gas accumulable portion by comparing the combustion pressure with a predetermined determination condition.
[0018]
  On the other hand, the risk assessment method for non-condensable gas according to the present invention is to solve the above-described problems.Claim 5As described in, measure the temperature of the fluid piping at the non-condensable gas accumulation location where non-condensable gas accumulation is expected, and calculate the temperature in the piping and the gas partial pressure of the non-condensable gas from the measured piping temperature. From the obtained gas partial pressure of the non-condensable gas, a combustion analysis is performed with the molar ratio of hydrogen and oxygen constituting the non-condensable gas as an initial condition, and the combustion pressure due to the non-condensable gas is calculated and evaluated. In this method, the stress or strain at the non-condensable gas accumulation location due to the evaluated combustion pressure is calculated, and the risk of damage to the non-condensable gas accumulation location is determined from the calculated stress or strain.
[0019]
  In addition, in order to solve the above-described problem, the risk evaluation method for non-condensable gas according to the present invention includes:Claim 6As described in, when there is a tendency to decrease the temperature by measuring the temperature of the fluid piping, it is a method for predicting the future non-condensable gas accumulation amount in the gas accumulation possible place,Claim 7As described in, when the location where gas can be accumulated tends to decrease in temperature, the combustion pressure generated at ignition is calculated from the estimated non-condensable gas accumulation amount and evaluated, and the gas can be accumulated with the estimated combustion pressure. It is a method of calculating the stress or strain of the fluid piping at the location, determining the damage risk of the location where gas can be accumulated from the calculated stress or strain, and evaluating it,Claim 8If the location where gas accumulation is possible tends to decrease as described in, the combustion pressure generated at ignition is calculated from the predicted non-condensable gas accumulation amount, evaluated, and the estimated combustion pressure is set in advance. This is a method for judging and evaluating the damage risk of the gas accumulable portion based on the comparison judgment.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  Non-condensable gas according to the present inventionRisk assessment systemEmbodiments will be described with reference to the accompanying drawings.
[0021]
  FIG. 1 shows a non-condensable gas according to the present invention.Risk assessment system1 is a schematic system diagram of a boiling water nuclear power plant (BWR plant) 20 equipped with
[0022]
  The BWR plant 20 stores a reactor pressure vessel (RPV) 22 in a reactor containment vessel (PCV) 21, and the reactor containment vessel 21 around the reactor pressure vessel 22 is defined as a dry well 23. The A reactor core 24 is stored in the reactor pressure vessel 22, and the reactor core 24 is immersed in the reactor cooling water 25. A liquid phase part storing the reactor cooling water 25 is formed at the lower part of the reactor pressure vessel 22, while a gas phase part 26 is formed above the liquid phase part.
[0023]
  When passing through the reactor core 24, the reactor coolant 25 in the reactor pressure vessel 22 is heated and vaporized by receiving neutron irradiation by a nuclear reaction. The generated steam is separated into steam and water in the reactor pressure vessel 22, dried, then sent to the steam turbine 28 through the main steam system 27, where the steam turbine 28 performs work, and a generator (not shown). Drive. Main steam isolation valves 29a and 29b are provided on the main steam pipe 27a constituting the main steam system 27 on the upstream side and the downstream side of the PCV 21, respectively. The expanded steam that has worked in the steam turbine 28 is condensed in a condenser (not shown), and then returned to the RPV 22 through the reactor condensate / water supply system.
[0024]
  A number of branch lines are branched from the main steam pipe 27a of the main steam system 27, including the reactor isolation cooling system 30, the turbine bypass system 31 and the main steam drain system (not shown). There are many dead-end pipes inside.
[0025]
  Further, the reactor pressure vessel (RPV) 22 of the BWR plant 20 is provided with a reactor pressure vessel top vent facility 35, and this vent facility 35 includes a reactor pressure vessel (RPV) vent system 36 and a reactor pressure. A branch vent system 38 branched from a container head spray system (hereinafter referred to as an RPV head spray system) 37.
[0026]
  The RPV vent system 36 has a reactor pressure vessel (RPV) vent pipe 40 connected to the top of the reactor pressure vessel (RPV) 22. The RPV vent pipe 40 is connected to an RPV head vent nozzle 41 formed at the top of the RPV 22, and an electric valve 43 that is remotely operated as an on-off valve is provided in the middle. The downstream side of the electric valve 43 is connected to the main steam pipe 27a on the upstream side of the main steam isolation valve 29a in the reactor containment vessel 21.
[0027]
  The branch vent system 38 includes a vent branch pipe 47 branched from the downstream side of the check valve 46 of the reactor pressure vessel (RPV) head spray pipe 45. The vent branch pipe 47 is provided with an electric valve 48 as a remote control valve, and the downstream side of the electric valve 48 is connected to the RPV vent pipe 40 of the RPV vent system 36 on the upstream side of the electric valve 43. A branch portion of the vent branch pipe 47 is provided at a top position of the RPV head spray pipe 45 so as to rise downstream of the check valve or the injection valve 46. The branch portion of the vent branch pipe 47 is provided as close as possible to the check valve 46.
[0028]
  Further, the RPV head spray system 37 is connected to a reactor pressure vessel head spray nozzle (hereinafter referred to as an RPV head spray nozzle) 49 having an RPV head spray pipe 45 provided at the top of the RPV 22. The RPV head spray pipe 45 of the RPV head spray system 37 may also serve as a cooling water injection pipe of a reactor isolation cooling facility (hereinafter referred to as RCIC) 50. The RCIC 50 is a facility that cools the gas phase portion 26 of the RPV 22 by using cooling water of the cooling system at the time of shutdown in order to lower the residual pressure of the upper dome of the RPV 22 when the boiling water reactor is shut down.
[0029]
  On the other hand, the RPV head spray piping 45 of the RPV head spray system 37 is provided with a check valve 46 and a reactor containment isolation valve (PCV isolation valve) 51a, 51b in the middle. The PCV isolation valves 51a and 51b are respectively installed inside and outside through the reactor containment vessel 21, and are normally closed during the operation of the reactor.
[0030]
  By the way, the RPV vent system 36 constituting the reactor pressure vessel top vent facility 35 and the branch vent system 38 using the RPV head spray system 37 cooperate to operate a gas of non-condensable gas around the reactor pressure vessel 22. A non-condensable gas is led out from the accumulable location 54 and discharged to the main steam pipe 27.
[0031]
  An RPV vent system 36 and a branch vent system 38 using an RPV head spray system 37 are provided at the top of the reactor pressure vessel (RPV) 22 to cooperate with each other. May accumulate near the top ofGas accumulation location 54Oxygen gas, hydrogen gas, and non-condensable gases such as Kr and Xe radioactive noble gases can be discharged smoothly and smoothly to the main steam pipe 27a, and non-condensable gas accumulates around the top of the RPV 22 This is surely prevented in advance.
[0032]
  Further, in the BWR plant 20, the non-condensable gas accumulation monitoring and evaluation system 53 shown in FIG. 2 is configured in a gas accumulation-possible portion 54 such as a pipe or a portion where a combustible non-condensable gas may accumulate. A temperature sensor 55 and a pressure sensor 56 are provided. The gas accumulation location 54 is a vent branch pipe 47 of the branch vent system 38, or a branch pipe or branch pipe that branches from the main steam pipe 27a of the main steam system 27 and rises.
[0033]
  As shown in FIGS. 2 and 3, the temperature sensor 55 and the pressure sensor 56 are attached to a gas accumulation possible portion 54 of a steam pipe where accumulation of combustible non-condensable gas is expected, for example, a pipe surface of a fluid pipe. The materials used for the fluid piping and its heat insulating material are known, and the fluid flowing in the fluid piping is also known in advance, so know the heat conductivity and fluid heat transfer coefficient of the fluid piping and its heat insulating material in advance. Can do. The temperature data measured by the temperature sensor 55 and the pressure data measured by the pressure sensor 56 are input to a computer 58 such as a personal computer or a central processing unit via a measuring device 57 as a measuring means. The measuring device 57 has a function of digitizing an analog signal, but the measuring device 57 may be incorporated in the computer 58.
[0034]
  By the way, the computer 58 calculates the vapor partial pressure of the gas accumulable location 54 and the gas partial pressure of the non-condensable gas based on the temperature data from the temperature sensor 55 and the pressure data from the pressure sensor 56. 60 and the calculation result of the vapor partial pressure and the non-condensable gas partial pressure of the gas accumulable portion 54 are compared with a predetermined determination condition to determine whether or not the combustion region, the detonation region, and their neighboring regions. Determination and evaluation means 61 for determining and evaluating, and alarm means 62 for issuing an alarm when the determination and evaluation means 61 determines that the gas storage location 54 is the combustion region, the detonation region, and the vicinity thereof. The alarm signal output from the alarm means 62 is output to the alarm generating device 63 or is output to the display means 64 of the computer 58, and the display means 64 or the alarm generating device 63 outputs the alarm signal. It is adapted to emit an alarm through the sense and hearing. Reference numeral 65 denotes an operation board of the computer 58.
[0035]
  The computing means 60 of the computer 58 calculates the steam partial pressure from the temperature data measured by the temperature sensor 55 using the steam table data or the like, or does not condense from the pressure data measured by the pressure sensor 56. It is obtained by calculating the gas partial pressure of the sex gas. When the pressure sensor 56 is not installed, the gas partial pressure of the non-condensable gas may be obtained by calculation from the vapor partial pressure of the gas accumulable location 54 obtained from the temperature data from the temperature sensor 55.
[0036]
  Further, the computer 58 incorporates an evaluation determination table 66 that stores steam table data, combustion pressure-generated stress / equivalent plastic strain relationship data for the piping component configuration, and the like. The evaluation evaluation means 61 of the computer 58 incorporates an evaluation program 67 so that non-condensable gas accumulation amount evaluation, prediction evaluation of non-condensable gas accumulation amount, ignition combustion pressure evaluation, and fluid pipe strength evaluation can be performed. It is.
[0037]
  As shown in FIG. 2, the evaluation program 67 of the computer 58 includes a non-condensable gas accumulation amount evaluation system 70, a non-condensable gas accumulation amount prediction system 71 that predicts the future, an ignition combustion pressure evaluation system 72, and a pipe strength evaluation system. 73 as well as a risk evaluation system 74 as a risk evaluation means.
[0038]
  This risk evaluation system 74 uses an evaluation program 67 built in the computer 58 to evaluate the non-condensable gas accumulation amount of the gas accumulation potential 54, the prediction evaluation of the non-condensable gas accumulation amount, the ignition combustion pressure evaluation, and the pipe strength evaluation. Are used to evaluate the current gas accumulation status of the gas accumulating location 54, the risk assessment when operating until the regular inspection, and what kind of damage risk will occur, the present situation and the future damage risk Information is presented. The damage risk assessment includes the possibility of non-condensable gas ignition, the gas accumulation location 54, and the possibility of deformation of the fluid piping, and the possibility of damage.
[0039]
  By the way, the data representing the flammability limit curve and detonation limit curve of the hydrogen-oxygen-water vapor system is built in the judgment evaluation means 61 of the computer 58 as preset judgment conditions.
[0040]
  In the BWR plant 20, since the non-condensable gas generated from the nuclear reactor is derived from the radiolysis of water, the molar ratio of hydrogen: oxygen is 2: 1 and usually non-condensable gas exists. Since saturated steam exists at temperature, it does not become a combustible region (combustion region). However, if the temperature of the gas storage location 54 decreases due to the gas storage of the non-condensable gas, the gas partial pressure of the non-condensable gas with respect to the steam may be relatively increased due to partial condensation of the steam, leading to a combustible region. There is. In the BWR plant 20, the gas accumulation location 54 formed at a branch rising portion from a fluid pipe such as a steam pipe is a system in which steam and combustible non-condensable gas coexist, that is, a hydrogen-oxygen-water vapor system. It is composed.
[0041]
  By the way, generally, the flammability limit curve A of the hydrogen-air-water vapor system is known as shown in FIG. In the hydrogen-air-water vapor system, both the water vapor and the nitrogen component in the air act as a gas that suppresses combustion. In the piping of a reactor system in which no nitrogen component exists, evaluation can be performed by replacing the nitrogen component with steam.
[0042]
  FIG. 5 shows the hydrogen-air-steam system flammability limit curve B obtained by converting the hydrogen-air-steam system shown in FIG. Since the region surrounded by the flammable limit curve B is a flammable region (combustion region) C, the gas storable portion 54 is located outside the flammable region C in order to reliably prevent combustion at the gas storable portion 54. This is a condition.
[0043]
  On the other hand, since the non-condensable gas is hydrogen and oxygen generated by radiolysis of water, their abundance ratio (molar ratio) is hydrogen: oxygen = 2: 1, and is represented by a one-dot chain line D. When the ratio of hydrogen, oxygen, and steam (steam) that may exist at this hydrogen: oxygen molar ratio is determined from FIG. 6, a one-dot chain line D that is a hydrogen / oxygen molar ratio curve and a flammability limit curve B The ratio of steam is determined by the intersection with. The ratio (molar ratio) of this steam is 85%. When the proportion of steam is 85% or less, it becomes the combustible region C.
[0044]
  Taking the operation state of the BWR plant 20 as an example, the pressure in the reactor pressure vessel (RPV) 22 is 7 MPa, and the steam temperature is 286 ° C. Hydrogen and oxygen produced by radiolysis are on the order of ppm by weight compared to steam and are in trace amounts. The reactor pressure of 7 MPa is a saturation pressure determined by steam.
[0045]
  Here, when the vapor partial pressure of 85% which is the flammability limit shown in FIG. 6 is calculated, the vapor partial pressure value is 5.95 MPa. The steam temperature at a saturated steam pressure of 5.95 MPa is 275 ° C. when referring to the steam table data edited by the Japan Society of Mechanical Engineers.
[0046]
  That is, when the steam temperature is reduced by 11 ° C. from the steam temperature of 286 ° C. at the rated output of the BWR plant 20, it can be determined that there is a possibility that the gas storage location 54 may reach the combustible region C, and an alarm is generated. ing.
[0047]
  By the way, since the set value of the alarm signal actually generated from the alarm means 62 is one of the main purposes to notify the vicinity of the combustible region, for example, from the steam temperature of 286 ° C. at the rated output, For example, it can be generated when the temperature drops by 5 ° C. By notifying that the vicinity of the combustible region has been reached, preventive maintenance against hydrogen gas combustion can be performed reliably and stably.
[0048]
  In the non-condensable gas accumulation monitoring and evaluation system shown in FIGS. 2 and 3, a pressure sensor 56 is installed. By installing this pressure sensor 56, even in a pressure system different from the reactor pressure, the temperature of the saturated steam corresponding to the pressure value is obtained from the detected value of the pressure sensor 56 as an initial value. A steam temperature corresponding to a steam partial pressure of 85% may be obtained. These basic data are based on the steam table edited by the Japan Society of Mechanical Engineers, and are input to the computer 58 in advance.
[0049]
  Further, it is known that the detonation limit of the water-air-steam system is represented by a detonation limit curve E as shown in FIG. In the water-air-steam system shown in FIG. 4, both the steam and the nitrogen component in the air act as a gas that suppresses combustion. Therefore, in the reactor system fluid piping in which no nitrogen component exists, nitrogen is converted into steam. It can be replaced and evaluated.
[0050]
  When the detonation limit curve E of the water-air-steam system shown in FIG. 4 is converted into a hydrogen-oxygen-steam system, the detonation limit curve F is represented as shown in FIG.
[0051]
  On the other hand, hydrogen and oxygen, which are non-condensable gases, are hydrogen and oxygen generated by radiolysis, so the abundance ratio (molar ratio) is hydrogen: oxygen = 2: 1, and is represented by a one-dot chain line G in FIG. It is. Determining the vapor ratio (molar ratio) from the intersection of the detonation limit curve F and the one-dot chain line G considering the molar ratio of hydrogen and oxygen gives 70%, and when the vapor ratio is 70% or less, the detonation region H It becomes.
[0052]
  As shown in FIG. 3, the non-condensable gas accumulation monitoring and evaluation system 53 has a temperature sensor 55 and a pressure sensor 56 attached to a gas accumulation capable position 54. Sensor signals from the temperature sensor 55 and the pressure sensor 56 are taken into a monitoring or judgment / evaluation computer 58 via a measuring means, and an evaluation is made as to whether or not the detonation region H has been reached.
[0053]
  Taking the operating state of the BWR plant 20 as an example, for example, the reactor pressure is 7 MPa and the steam temperature is 286 ° C. Hydrogen and oxygen produced by radiolysis are on the order of ppm by weight compared to steam and are in trace amounts. The reactor pressure of 7 MPa is a saturation pressure determined by the reactor steam. Here, the pressure value indicated by the steam partial pressure of 70% of the reactor pressure of 7 MPa is 4.9 MPa, and the steam temperature at the saturated steam pressure is 263 ° C.
[0054]
  From this, the non-condensable gas accumulation monitoring and evaluation system 53 can determine that the detonation region H has been reached when the steam temperature has decreased by 23 ° C. from the steam temperature of 286 ° C. during rated operation, and an alarm is issued.
[0055]
  In addition, about the set value of an alarm, since it is also one of the main purposes to notify the vicinity of a detonation area | region, you may set so that it may generate | occur | produce, for example by about 20 degreeC fall.
[0056]
  In addition, in the non-condensable gas accumulation monitoring and evaluation system 53, since the pressure sensor 56 is installed at the gas accumulation possible position 54, even if the piping pressure system is different from the reactor pressure, the detection of the pressure sensor 56 is performed. The value of the saturated steam corresponding to the detected pressure may be obtained from the value as an initial value, and the temperature of the saturated steam corresponding to the vapor pressure of 70% may be obtained from this initial value.
[0057]
  Next, the non-condensable gasRisk assessment systemThe operation of will be described.
[0058]
  A temperature sensor 55 and a pressure sensor 56 are attached to a portion 54 where the non-condensable gas can be accumulated like a branch pipe rising portion of the steam pipe of the BWR plant 20.
[0059]
  The vapor partial pressure of the gas accumulable location 56 is obtained from the temperature data obtained by the temperature sensor 55 by the calculating means 60, and the non-condensable gas partial pressure of the gas accumulable location 54 is obtained from the pressure data obtained by the pressure sensor 56 Ask for.
[0060]
  While the gas accumulation and gas accumulation history of the non-condensable gas are monitored from the obtained vapor partial pressure and non-condensable gas partial pressure, it is preset from the vapor partial pressure and non-condensable gas partial pressure results. It is possible to determine whether or not the combustion region, the detonation region, or the vicinity thereof has been reached under the determined determination conditions, and can be evaluated.
[0061]
  That is, the non-condensable gas accumulation monitoring and evaluation system 53 measures the temperature or pressure of the non-condensable gas accumulation location 54 and monitors changes in the temperature, etc. of the gas accumulation location 54 over time. While monitoring the accumulation status and its history, this monitoring data is compared with the judgment criteria set in advance, and it is judged and evaluated whether or not it has reached the combustion region or detonation region or the vicinity thereof. It is possible to provide an evaluation method capable of evaluating the risk of combustion of the non-condensable gas accumulated in the accumulable location 54 in advance and reliably.
[0062]
  Specifically, the non-condensable gas accumulation monitoring and evaluation system 53 in the pressure power plant detects the temperature by the temperature sensor 55 provided in the gas accumulation location 54 of the non-condensable gas and the fluid flowing in the fluid piping. The temperature inside the fluid piping is obtained from the heat transfer coefficient and the thermal conductivity of the fluid piping and its heat insulating material. The saturated vapor pressure in the fluid pipe is obtained from the obtained pipe temperature, and the gas partial pressure of the noncondensable gas in the fluid pipe is obtained from the difference between the pressure in the fluid pipe and the saturated vapor pressure.
[0063]
  Then, from the saturated vapor pressure in the fluid piping, the gas partial pressure of the non-condensable gas, and the partial pressure ratio (molar ratio) of hydrogen and oxygen in the non-condensable gas determined in advance, hydrogen, oxygen in the fluid piping, By calculating the vapor molar ratio and performing combustion analysis with this molar ratio as the initial condition, the combustion pressure of the non-condensable gas can be predicted, and the stress or strain at the location where gas can accumulate can be calculated from this combustion pressure. The degree of risk of pipe damage can be evaluated. That is, the degree of elasticity / deformation and plastic strain can be evaluated.
[0064]
  In addition, as a function of the evaluation determination table 66, a standard table that can determine the degree of elastic deformation and plastic strain from the evaluation result of the representative part of the elbow in the straight pipe portion and the straight pipe portion with respect to the flow pressure (dynamic pressure) By creating and comparing the non-condensable gas accumulation and pressure determined and evaluated by the evaluation system 53 using a standard table (combustion pressure-generated stress / plastic strain relationship, etc.), fluid piping The degree of risk of damage can be assessed.
[0065]
  Further, in the non-condensable gas accumulation monitoring and evaluation system 53 in the nuclear power plant, the non-condensable gas accumulation and monitoring at the gas accumulation possible portion 54 of the fluid piping can be efficiently monitored and evaluated. The shape of the piping, the ratio of the branch pipe diameter d which is the gas storage location 54 and the branch length L (L / d), the ratio of the diameter D of the fluid pipe which is the mother pipe and the branch pipe diameter d (d / D) Then, an arrangement table in which physical quantities such as the Re number are standardized from theoretical analysis and experimental data is created as one of the functions of the evaluation determination table 66. For example, the relationship between the diameter d of the branch pipe and the branch length L L / d = 3, 5, 10, 15, 20,... And an evaluation judgment table organized by d / D values. Using this evaluation judgment table, the measured value (physical quantity) of the non-condensable gas gas accumulation location 54 is compared, and the branch pipe of the gas accumulation location 54 has no accumulation, has accumulation, and cannot be denied. Can be quickly evaluated and evaluated. Instead of the evaluation determination table, an evaluation determination formula (for example, A = a · (d / D))b・ (Re)c/ (L / d)eHowever, a, b, c, and d are constants), and a numerical value (physical quantity) measured at the gas accumulating location 54 is substituted into this evaluation judgment formula to quickly judge and evaluate the gas accumulation state. You may do it.
[0066]
  In any case, the non-condensable gas accumulation monitoring and evaluation system 53 in the nuclear power plant links the measuring device 57 including the temperature sensor 55 and the pressure sensor 56 with the evaluation system, thereby providing a gas accumulation monitoring and evaluation system. It is composed.
[0067]
  FIG. 8 relates to the present invention.Risk assessment system for noncondensable gasesThis shows a second embodiment of the present invention.
[0068]
  FIG.The non-condensable gas accumulation monitoring and evaluation system 53A shown in FIG. 5 is a gas accumulation location where the rising portion of the branch pipe branched from the steam piping 75 such as the RPV head spray piping 47 of the BWR plant is a gas accumulation location 54. A temperature sensor 55 is attached to 54. The point that the pressure sensor is not provided is different from the system 53 shown in the first embodiment of FIGS. 2 and 3. Other configurations and operations are the same as those of the non-condensable gas accumulation monitoring and evaluation system 53 shown in FIGS.
[0069]
  The non-condensable gas accumulation monitoring and evaluation system 53A shown in FIG. 8 includes a temperature sensor 55 provided at a rising portion of the branch pipe from the steam pipe, and processes temperature data measured by the temperature sensor 55. By monitoring the gas accumulation of the non-condensable gas at the gas accumulating location 54, the non-condensable gas is accumulated at the gas accumulating location 54 and reaches the combustible region (combustion region), detonation region, or the vicinity thereof. Whether or not it has been done can be notified accurately and reliably by an alarm.
[0070]
  In the BWR plant 20, the steam flows into the steam pipe 75 at the start of the nuclear reactor, and the steam also flows into the gas storage location 54, and the temperature rises. The temperature becomes constant when the nuclear reactor is in a rated operation state and the gas storage location 54 is filled with steam.
[0071]
  After that, the combustible non-condensable gas contained in the steam accumulates in the gas accumulable portion 54 that is a branch rising portion from the steam pipe 75, so that the temperature of the gas accumulable portion 54 gradually decreases. To go. By measuring this temperature change with the temperature sensor 55, gas accumulation of non-condensable gas can be observed.
[0072]
  The saturated vapor pressure at the maximum temperature measured by the temperature sensor 55 is obtained, and in the case of evaluation of the flammable region, the saturated vapor temperature at 85% of the saturated vapor pressure, and in the case of the detonation region, saturated steam is obtained. The temperature at which the alarm is issued at the saturated steam temperature at 70% of the pressure. When an alarm is generated in the vicinity of each of the combustible region and the detonation region, the temperature setting for generating the alarm may be increased.
[0073]
  Also in the non-condensable gas accumulation monitoring and evaluation system 53A in the nuclear power plant shown in FIG. 8, the gas accumulation of the non-condensable gas in the gas accumulating location 54 can be monitored. When the accumulable location 54 reaches the combustible area, the detonation area, or the vicinity thereof, an alarm can be issued to call attention.
[0074]
  FIG. 9 relates to the present invention.Risk assessment system for noncondensable gasesThe 3rd Embodiment of is shown.
[0075]
  FIG.The non-condensable gas accumulation monitoring and evaluation system 53B shown in FIG. 1 sets the branch pipe rising portion branched from the steam pipe 75 of the BWR plant 20 as a gas accumulation possible position 54, while the gas accumulation possible position 54 and this gas Temperature sensors 55a and 55b are respectively attached to the branch portions of the accumulable location 54. No pressure sensor is provided. The configuration other than the temperature sensors 55a and 55b attached to the gas accumulating portion and the branching portion of the gas accumulating portion 54 is the same as the non-condensable gas accumulation monitoring and evaluation system 53 shown in FIGS. Therefore, the same reference numerals are given and description thereof is omitted. The branch portion is a portion where the steam flowing in the steam pipe 75 is always flowing or a location near the portion.
[0076]
  As the reactor of the BWR plant 20 is driven, the steam flows into the steam pipe 75, and the steam also flows into the gas accumulating location 54, and the temperature rises. The temperature becomes constant when the nuclear reactor is in a rated operation state and the gas storage location 54 is filled with steam.
[0077]
  Thereafter, when the operation of the nuclear reactor is continued, the non-condensable gas contained in the steam of the steam pipe 75 accumulates in the gas accumulating location 54, so that the temperature of the gas accumulating location 54 gradually decreases. To go. As non-condensable gas accumulates, a difference occurs in the temperatures measured by the temperature sensors 55a and 55b. The temperature measured by the temperature sensor 55b at the branching portion is almost constant because it is the temperature of the steam, but the temperature of the non-condensable gas accumulating portion gradually decreases as the gas accumulates.
[0078]
  By measuring this temperature difference with both temperature sensors 55a and 55b, gas accumulation of non-condensable gas can be observed and monitored.
[0079]
  The saturated vapor pressure at the temperature of the branch portion measured by the temperature sensor 55b is obtained, and in the case of flammable region evaluation with respect to this saturated vapor pressure, the saturated vapor temperature at 85% of the saturated vapor pressure is calculated as the detonation region. In the case of the evaluation, the saturated steam temperature at 70% of the saturated steam pressure is set as a temperature for generating an alarm. When an alarm is generated in the combustible region or detonation region, the temperature setting for generating the alarm may be increased.
[0080]
  In the non-condensable gas accumulation monitoring and evaluation system 53B shown in FIG. 9, the example in which the temperature sensor 55b is provided at the branch portion from the steam pipe 75 has been described. However, the temperature sensor is not necessarily installed at the branch portion. Alternatively, an existing temperature measurement sensor for measuring the temperature in the steam pipe 75 may be used.
[0081]
  In the system diagram of the BWR plant 20 shown in FIG. 1, an example in which the electric valve 48 is used as the remote control valve for the vent branch pipe 47 of the branch vent system 38 is shown. In this case, the vent branch pipe 47 is used. May be directly connected to the main steam pipe 27a, and as shown in FIG. 10, an orifice 77 as a throttle mechanism may be provided upstream of the motor-operated valve 48. Furthermore, the motor-operated valve 48 is not necessarily provided in the vent branch pipe 47, and a vent branch pipe that does not include an electric valve or an orifice may be connected to the upstream side of the motor valve 43 of the RPV vent system 36.
[0082]
【The invention's effect】
  According to the present inventionNoncondensable gas risk assessment system and risk assessment method thereofCan quickly and accurately measure and monitor the accumulation of non-condensable gas at locations where nuclear power plants can store gas, and determine and evaluate the risk of damage to locations where gas can be stored. It can be surely prevented, an efficient and quick response can be performed, and a reliable and stable operation can be maintained.
[0083]
  In addition, by monitoring, predicting and evaluating the gas accumulation of flammable and non-condensable gases where gas accumulation is possible, damage risk management and preventive maintenance for hydrogen gas combustion can be performed reliably and highly reliable.Noncondensable gas risk assessment system and risk assessment method thereofCan provide.
[Brief description of the drawings]
FIG. 1 relates to the present invention.Risk assessment system for noncondensable gasesFIG. 1 is a system diagram partially and schematically showing a boiling water nuclear power plant including
FIG. 2 relates to the present invention.Risk assessment system for noncondensable gasesThe system diagram which shows 1st Embodiment.
FIG. 3 relates to the present invention.Risk assessment system for noncondensable gasesSchematic which shows 1st Embodiment of this.
FIG. 4 is a diagram showing a combustible region and a detonation region in a hydrogen-air-water vapor system.
FIG. 5 is a diagram showing a combustible region obtained by replacing a hydrogen-air-water vapor system with a hydrogen-oxygen-water vapor system.
FIG. 6 is a diagram showing a relationship between a combustible region and a vapor amount in a hydrogen-oxygen-water vapor system.
FIG. 7 is a diagram showing a relationship between a detonation region and a vapor amount in a hydrogen-oxygen-water vapor system.
FIG. 8 relates to the present invention.Risk assessment system for noncondensable gasesSchematic which shows 2nd Embodiment of this.
FIG. 9 relates to the present invention.Risk assessment system for noncondensable gasesSchematic which shows 3rd Embodiment of this.
10 is a schematic system diagram showing a modification of the boiling water nuclear power plant shown in FIG.
FIG. 11 is a schematic system diagram showing a conventional boiling water nuclear power plant.
[Explanation of symbols]
20 BWR plant
21 Reactor containment vessel (PCV)
22 Reactor pressure vessel (RPV)
23 Drywell
24 core
25 Reactor cooling water (liquid phase part)
26 Gas phase part (vapor phase part)
27 Main steam pipe
27a Main steam pipe
28 Steam turbine
29a, 29b Main steam isolation valve
30 Cooling system for reactor isolation
31 Turbine bypass system
36 Reactor pressure vessel vent system (RPV vent system)
37 Reactor pressure vessel head spray system (RPV head spray system)
38 Branch vent system
40 Reactor pressure vessel vent piping (RPV vent piping)
41 Reactor pressure vessel head vent nozzle (RPV head vent nozzle)
43 Electric valve (remote control valve)
45 Reactor pressure vessel head spray piping (RPV head spray piping)
46 Check valve
47 Vent branch piping
48 Electric valve (remote control valve)
49 Reactor pressure vessel head spray nozzle (RPV head spray nozzle)
50 Cooling equipment for reactor isolation (RCIC)
51a, 51b Primary containment isolation valve (PCV isolation valve)
53, 53A, 53B Non-condensable gas accumulation monitoring and evaluation system
54 Gas accumulation points
55 Temperature sensor
56 Pressure sensor
57 Measuring device (measuring means)
58 computer
60 Calculation means
61 Judgment evaluation means
62 Alarm means
63 Alarm generator
64 display means
65 Operation board
66 Evaluation judgment table
67 Evaluation program
70 Non-condensable gas accumulation evaluation system
71 Noncondensable gas accumulation amount prediction system
72 Ignition Combustion Pressure Evaluation System
73 Pipe strength evaluation system
74 Risk assessment system
75 Steam piping

Claims (8)

非凝縮性ガスが蓄積する可能性のある配管、部位におけるガス蓄積可能箇所に設けられた温度センサと、
この温度センサで計測された温度データからガス蓄積可能箇所の配管内温度を求め、求めた配管内温度から非凝縮性ガスのガス分圧を算出する演算手段と、
求められた非凝縮性ガスのガス分圧から、非凝縮性ガスを構成する水素・酸素のモル比を初期条件として燃焼解析を行ない、予測される燃焼圧力を予め設定された判定条件と比較し、非凝縮性ガスのガス蓄積可能箇所の応力またはひずみを算出する判定評価手段と、
判定評価手段で算出されたガス蓄積可能箇所の応力またはひずみによりガス蓄積可能箇所の損傷リスクを評価するリスク評価手段とを備えたことを特徴とする非凝縮性ガスのリスク評価システム。
A temperature sensor provided at a location where non-condensable gas can accumulate, a location where gas can accumulate in the site, and
Calculating means for calculating the temperature in the pipe at the location where gas can be accumulated from the temperature data measured by the temperature sensor, and calculating the gas partial pressure of the non-condensable gas from the calculated temperature in the pipe;
From the obtained gas partial pressure of the non-condensable gas, combustion analysis is performed with the molar ratio of hydrogen and oxygen constituting the non-condensable gas as the initial condition, and the predicted combustion pressure is compared with preset judgment conditions. Determination and evaluation means for calculating the stress or strain of the non-condensable gas accumulation location;
A risk assessment system for non-condensable gas, comprising: a risk assessment unit for assessing a damage risk of a gas accumulable location based on a stress or strain of the gas accumulable location calculated by the judgment evaluation unit.
前記演算手段は、温度センサからの計測データにより、ガス蓄積可能箇所の温度履歴を求める一方、
前記判定評価手段は、ガス蓄積可能箇所の温度履歴を評価し、温度低下傾向がある場合、ガス蓄積可能箇所の今後の非凝縮性ガス蓄積量を予測するようにした請求項1記載の非凝縮性ガスのリスク評価システム。
While the calculation means obtains the temperature history of the gas accumulating location from the measurement data from the temperature sensor,
The non-condensation according to claim 1 , wherein the determination and evaluation means evaluates the temperature history of the gas accumulable location, and predicts the future non-condensable gas accumulation amount of the gas accumulable location when the temperature tends to decrease. Sex gas risk assessment system.
前記判定評価手段は、ガス蓄積可能箇所に温度低下傾向がある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を予測・評価し、評価された燃焼圧力によるガス蓄積可能箇所の応力またはひずみを算出し、
前記リスク評価手段は、算出された応力またはひずみに基づいてガス蓄積可能箇所の損傷リスクを判定し、評価するようにした請求項1または2記載の非凝縮性ガスのリスク評価システム。
The judgment and evaluation means predicts and evaluates the combustion pressure generated at the time of ignition from the predicted non-condensable gas accumulation amount when there is a temperature decrease tendency in the gas accumulation possible location, and the gas accumulation location by the evaluated combustion pressure Calculate the stress or strain of
The non-condensable gas risk evaluation system according to claim 1 , wherein the risk evaluation unit determines and evaluates a damage risk of a gas accumulable portion based on the calculated stress or strain.
前記判定評価手段は、ガス蓄積可能箇所に温度低下傾向がある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を評価し、この燃焼圧力を予め設定された判定条件と比較判定する一方、
前記リスク評価手段は、燃焼圧力と予め設定された判定条件の比較により、ガス蓄積可能箇所の損傷リスクを判定・評価するようにした請求項1または2記載の非凝縮性ガスのリスク評価システム。
The determination evaluation means evaluates the combustion pressure generated at the time of ignition from the predicted non-condensable gas accumulation amount when there is a temperature decrease tendency in the gas accumulation possible place, and compares this combustion pressure with a predetermined determination condition. While judging
The non-condensable gas risk evaluation system according to claim 1 , wherein the risk evaluation means determines and evaluates a risk of damage to a gas accumulable portion by comparing a combustion pressure with a predetermined determination condition.
非凝縮性ガスの蓄積が想定される非凝縮性ガス蓄積箇所の流体配管の温度を計測し、
測定した配管温度から配管内温度と非凝縮性ガスのガス分圧を求め、
求められた非凝縮性ガスのガス分圧から、非凝縮性ガスを構成する水素・酸素のモル比を初期条件として燃焼解析を行なって非凝縮性ガスによる燃焼圧力を算出して評価し、
評価された燃焼圧力による非凝縮性ガス蓄積箇所の応力またはひずみを算出し、
算出された応力またはひずみから非凝縮性ガス蓄積箇所の損傷リスクを判定し、評価することを特徴とする非凝縮性ガスのリスク評価方法。
Measure the temperature of the fluid piping at the non-condensable gas accumulation location where non-condensable gas accumulation is assumed,
From the measured pipe temperature, calculate the pipe internal temperature and the gas partial pressure of the non-condensable gas,
From the calculated partial pressure of the non-condensable gas, combustion analysis is performed with the molar ratio of hydrogen and oxygen constituting the non-condensable gas as an initial condition, and the combustion pressure due to the non-condensable gas is calculated and evaluated.
Calculate the stress or strain of the non-condensable gas accumulation location due to the evaluated combustion pressure,
A risk evaluation method for non-condensable gas, characterized by determining and evaluating a risk of damage to a non-condensable gas accumulation location from the calculated stress or strain.
流体配管の温度計測により、温度低下傾向がある場合、ガス蓄積可能箇所における今後の非凝縮性ガス蓄積量を予測する請求項5記載の非凝縮性ガスのリスク評価方法。The risk evaluation method for non-condensable gas according to claim 5 , wherein when the temperature tends to decrease by measuring the temperature of the fluid piping, a future non-condensable gas accumulation amount at a location where gas can be accumulated is predicted. ガス蓄積可能箇所が温度低下傾向にある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を算出して評価し、
評価された燃焼圧力によるガス蓄積可能箇所の流体配管の応力またはひずみを算出し、
算出された応力またはひずみからガス蓄積可能箇所の損傷リスクを判定し、評価する請求項5または6記載の非凝縮性ガスのリスク評価方法。
If the location where gas accumulation is possible tends to decrease in temperature, calculate and evaluate the combustion pressure generated during ignition from the predicted non-condensable gas accumulation amount,
Calculate the stress or strain of the fluid piping at the location where gas accumulation is possible due to the evaluated combustion pressure,
The risk evaluation method for a non-condensable gas according to claim 5 or 6 , wherein the risk of damage of a gas accumulable portion is determined and evaluated from the calculated stress or strain.
ガス蓄積可能箇所が温度低下傾向にある場合、予測される非凝縮性ガス蓄積量から着火時に発生する燃焼圧力を算出して、評価し、
評価された燃焼圧力を予め設定した判定条件と比較判断し、
この比較判断により、ガス蓄積可能箇所の損傷リスクを判定・評価する請求項5または 6記載の非凝縮性ガスのリスク評価方法。
If the location where gas accumulation is possible tends to decrease in temperature, calculate and evaluate the combustion pressure generated during ignition from the predicted non-condensable gas accumulation amount,
The judged combustion pressure is compared with a preset judgment condition,
The risk evaluation method for non-condensable gas according to claim 5 or 6 , wherein the risk of damage to a gas accumulable portion is determined and evaluated based on the comparison determination.
JP2002161923A 2002-06-03 2002-06-03 Non-condensable gas risk assessment system and risk assessment method thereof Expired - Fee Related JP4106239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161923A JP4106239B2 (en) 2002-06-03 2002-06-03 Non-condensable gas risk assessment system and risk assessment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161923A JP4106239B2 (en) 2002-06-03 2002-06-03 Non-condensable gas risk assessment system and risk assessment method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008034967A Division JP4568799B2 (en) 2008-02-15 2008-02-15 Non-condensable gas accumulation monitoring and evaluation method

Publications (2)

Publication Number Publication Date
JP2004012146A JP2004012146A (en) 2004-01-15
JP4106239B2 true JP4106239B2 (en) 2008-06-25

Family

ID=30430853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161923A Expired - Fee Related JP4106239B2 (en) 2002-06-03 2002-06-03 Non-condensable gas risk assessment system and risk assessment method thereof

Country Status (1)

Country Link
JP (1) JP4106239B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777051B2 (en) * 2011-04-21 2015-09-09 清水建設株式会社 Method and equipment for preventing hydrogen explosion in nuclear power generation facilities
JP6057696B2 (en) * 2012-12-20 2017-01-11 三菱重工業株式会社 Vent device
CN105788682B (en) * 2016-03-22 2017-07-18 上海交通大学 Nuclear reactor safety shell cooling s imulation system and method based on external spray

Also Published As

Publication number Publication date
JP2004012146A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US8046191B2 (en) Method for monitoring performance of a heat transfer device
Hashemian On-line monitoring applications in nuclear power plants
JP3230923B2 (en) Reactor water level measurement device
Ayodeji et al. PWR heat exchanger tube defects: trends, signatures and diagnostic techniques
Trevin Flow accelerated corrosion (FAC) in nuclear power plant components
Mukhopadhyay et al. On-line fatigue–creep monitoring system for high-temperature components of power plants
Peng et al. Real-time simulations to enhance distributed on-line monitoring and fault detection in Pressurized Water Reactors
JP4106239B2 (en) Non-condensable gas risk assessment system and risk assessment method thereof
JP2011060012A (en) Plant monitoring apparatus and plant monitoring method
Lewandowski et al. Implementation of condition-dependent probabilistic risk assessment using surveillance data on passive components
JP4568799B2 (en) Non-condensable gas accumulation monitoring and evaluation method
WO2024061196A1 (en) Intelligent monitoring method and system for nuclear power station steam generator
JP2010191494A (en) System and method for diagnosing remaining life of high temperature plant equipment
Samal et al. A finite element program for on-line life assessment of critical plant components
Lee et al. Thinned pipe management program of Korean NPPs
Morozov et al. Studying the operation of a VVER steam generator in the condensing mode at different parameters of emergency processes
Bae Study on Early Leak Detection of PCS Coolant Using Integrated System by means of Multi-Sensors Technique
JP2003248081A (en) Method for predicting operating state of plant and system for predicting operating state of nuclear power plant
Hashemian Integrated online condition monitoring system for nuclear power plants
EP1770716A2 (en) Improved on-line steam flow measurement device and method
Boyes Sensitivity analysis of the secondary heat balance at Koeberg Nuclear Power Station
Yegoshina et al. Operational assessment of cycle chemistry based on automatic chemical control data at thermal power plants
Voronov et al. Improvement of water chemistries and chemical monitoring at thermal power stations
Tina et al. Failure Analysis of Once-Through Steam Generator (OTSG) Tube
DeVaal et al. Preliminary results of the BTF-105A test: an in-reactor instrument development and fuel behaviour test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees