JP4104961B2 - Stress sensor - Google Patents

Stress sensor Download PDF

Info

Publication number
JP4104961B2
JP4104961B2 JP2002336712A JP2002336712A JP4104961B2 JP 4104961 B2 JP4104961 B2 JP 4104961B2 JP 2002336712 A JP2002336712 A JP 2002336712A JP 2002336712 A JP2002336712 A JP 2002336712A JP 4104961 B2 JP4104961 B2 JP 4104961B2
Authority
JP
Japan
Prior art keywords
interface
resistor
stress sensor
substrate
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002336712A
Other languages
Japanese (ja)
Other versions
JP2004170259A (en
Inventor
文明 唐澤
厚臣 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2002336712A priority Critical patent/JP4104961B2/en
Publication of JP2004170259A publication Critical patent/JP2004170259A/en
Application granted granted Critical
Publication of JP4104961B2 publication Critical patent/JP4104961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、応力センサに関し、特にパーソナルコンピュータ用ポインティングディバイスや、各種電子機器用多機能スイッチ等に用いることができる応力センサに関するものである。
【0002】
【従来の技術】
付与された応力が、対となる電極及び当該電極に接続される抵抗体を有する抵抗素子を変形することにより、当該抵抗素子の抵抗値を変化させ、当該抵抗値変化により当該応力の方向と大きさとを把握する応力センサについては、国際公開WO02/065487号公報にその開示がある。
【0003】
かかる開示事項には、対となる電極をプレス加工などで低くする技術が含まれている。当該技術の採用により、例えばスクリーン印刷法により抵抗体を、対となる電極の双方に跨るよう形成した場合に、当該抵抗体の形状ばらつきを低く抑えることができる利点がある。
【0004】
【発明が解決しようとする課題】
しかしながら本発明者ら(発明者以外を含む。以下同じ。)の検討によれば、上記技術の採用により確かに抵抗体形状ばらつき、それに伴う抵抗素子抵抗値ばらつきを低く抑えることができるが、抵抗値変化率を大きくできないことが判明した。ここで抵抗値変化率を大きくできないと、応力センサの出力を大きくできない。応力センサの出力が大きくなることによりS/N比が向上し、ノイズマージンを大きくすることができる。
【0005】
そこで本発明が解決しようとする課題は、極端に抵抗素子を構成する電極高さを高めることなく、当該抵抗素子の抵抗値変化率を大きくすることである。
【0006】
【課題を解決するための手段】
上記課題を解決するため本発明の第1の応力センサは、付与された応力が、対となる電極及び当該電極の双方に接続される抵抗体を有する抵抗素子を変形することにより、当該抵抗素子の抵抗値を変化させ、当該抵抗値変化により出力を得る応力センサにおいて、対となる電極間には、当該電極とは離隔する一方、抵抗体と接触し、当該抵抗体との界面を形成する1以上の導電性の界面形成部材が配置されていることを特徴とする。また、第2の応力センサは、付与された応力が、対となる電極及び当該電極の双方に接続される抵抗体を有する抵抗素子を変形することにより、当該抵抗素子の抵抗値を変化させ、当該抵抗値変化により出力を得る応力センサにおいて、抵抗素子が基板面に形成され、当該抵抗素子の変形が、当該基板の撓みによる伸張を含み、対となる電極間の抵抗体と接触し、当該抵抗体との界面を形成する1以上の導電性の界面形成部材を有し、界面形成部材の界面形成面が、実質的に基板面に対して垂直な面で構成される部分を有することを特徴とする。
【0007】
一般に応力センサは、上記電気信号を検知、演算等する制御部があってはじめて応力センサとして機能する。しかし本明細書では前記制御部を除いた部分について便宜上「応力センサ」と称することとする。
【0008】
上記「界面」とは、互いに接触している二つの相の境界面を言い、この場合は主として抵抗体3と導電部材となる界面形成部材が、互いに溶融する等して、新たな相を形成しないものを言う。仮に新たな相を形成し、その結果当該新たな相と抵抗体との界面が電気的に接触しているような場合も本発明を構成することは言うまでもない。
【0009】
上記界面形成部材1の導電性の程度は特に限定しない。但し、応力センサ動作時の抵抗素子5への通電状態での抵抗素子5変形により、その界面における導電状態が変化し、応力センサ特性等に影響を与えることを条件とする。従ってかかる影響を全く与えない程度に界面形成部材1の導電性が低い場合は、本発明にかかる界面形成部材1に該当しない。
【0010】
本発明は、抵抗素子5の変形が界面形成部材1と抵抗体3との界面における導電性に与える影響に着目してなされたものである。抵抗素子5の変形により界面形成部材1と抵抗体3との密着性が低下すると、当該界面における電子の授受を阻害し、それにより検出される抵抗素子5の抵抗値が高くなると発明者らは考えた。従ってかかる阻害要因を大とすることで、当該抵抗素子5の抵抗値変化率を大きくできるとの結論に帰着した。
【0011】
かかる考えによれば、従来対となる電極2を低くすることで、当該抵抗素子5の抵抗値変化率が小となった理由が説明できる。当該電極2高さを低くし、当該電極2と抵抗体3が形成する界面の面積を小とすることで、上記阻害要因が小となったためである。
【0012】
上記本発明の構成は、本発明にかかる抵抗素子5の抵抗値変化率を大きくする効果を有する。界面形成部材1の存在により、当該界面における電子授受の阻害要因を大とすることができるためである。また前記効果を得るためには、抵抗素子5を構成する電極2高さを極端に高めることを要しない。界面形成部材1が、電極2高さを高めた場合に得られた効果、即ち界面における電子授受を阻害する役割を担うためである。
【0013】
本発明の具体例について、図面を参照しながら説明する。図1(a)には、上記本発明の応力センサを構成する抵抗素子5の平面図を、図1(b)には前記平面図のA−A’断面図を示している。同図では抵抗素子5が基板4面に形成されている。また対となる電極2間の抵抗体3と接触する、当該抵抗体3との界面を形成する1つの界面形成部材1が基板4面上に配されている。
【0014】
図1に示す基板4面に応力受け部材としてのポスト7を固着又は一体化し、基板4の他方の面におけるポスト7底面の輪郭と対応する位置に抵抗素子5が配される構成とし、基板4の端部を固定するなどした後で、ポスト7に応力を付与した状態を示したのが図2である。図2(a)では、ポスト7に対し任意の横方向、即ちx軸、y軸方向に応力を付与した場合を示し、図2(b)ではポスト7頂面を押下した場合、即ちz軸方向に応力を付与した場合を示している。いずれの場合も、応力の付与によって抵抗素子5が変形していることがわかる。その抵抗素子5の変形は、基板4の撓みによる伸張・収縮を伴うものであることもわかる。
【0015】
第1の応力センサの構成を備え、且つ抵抗素子5が基板4面に形成され、当該抵抗素子5の変形が、当該基板4の撓みによる伸張を含む本発明の第2の応力センサ、及び当該本発明の応力センサを基本とした好ましい構成の応力センサにおいて、界面が、主として抵抗素子5の伸張・収縮方向に対して斜め又は垂直方向に形成されることが好ましい。当該界面における電子の授受を阻害するには効率的であるためである。具体的には、例えば図1における抵抗素子5の通電方向を当該伸張・収縮方向とすることである。
【0016】
また、本発明の第2の応力センサの構成及びそれを基本とした好ましい構成において、界面形成部材1の界面形成面が、実質的に基板4面に対して垂直な面で構成される部分を有することが好ましい。抵抗素子5の伸張等の変形により、界面形成部材1と抵抗体3との密着性低下を最も伴い易いためである。その理由は当該垂直な面はその面積が小さく、抵抗素子5の伸張に変換された応力が集中し易いためである。
【0017】
また、本発明の第2の応力センサの構成及びそれを基本とした好ましい構成において、図2にその概要を示すように、付与された応力を受けるポスト7を有し、当該ポスト7底面が基板4の一方の面と固着又は一体化し、基板4の他方の面におけるポスト7底面の輪郭と対応する位置に抵抗素子5が配されることが好ましい。ポスト7に応力を付与した場合には、ポスト7底面の輪郭に位置する基板4部分に最も大きな応力が伝達される。そのため抵抗素子5への応力伝達も高効率となり大きな出力を得ることができる。またこの場合において、ポスト7底面の輪郭と対応する位置又はその付近に界面が位置することが更に好ましい。上記のように、ポスト7底面の輪郭に位置する基板4部分に最も大きな応力が伝達されることから、当該位置に界面が位置することにより、更に大きな出力を得ることが期待できるためである。
【0018】
本発明の第2の応力センサの構成及びそれを基本とした好ましい構成において、電極2及び界面形成部材1が、基板4表面の導体層の一部を除去処理し、その残部として得られるか、若しくはアディティブ法により得られることが好ましい。電極2及び界面形成部材1を同時に形成することができ、製造を簡略化できる点で有利だからである。また界面形成部材1を、基板4表面の導体層の一部を除去処理し、その残部として得るか、若しくはアディティブ法により得ることにより、前述した界面形成面を、実質的に基板4面に対して垂直な面で構成することが容易になるためである。
【0019】
本発明の第2の応力センサの構成及びそれを基本とした好ましい構成において、界面形成部材1が、対となる電極2間に点在して配される基板4面上の複数の導電性突起であってもよい。かかる突起を例えば多数用いることにより、抵抗体3と界面形成部材1との界面の総面積を大きくできる点で有利である。
【0020】
本発明の第2の応力センサの構成及びそれを基本とした好ましい構成において、界面が、抵抗素子5の伸張方向に対して異なる角度の複数の斜め成分及び/又は垂直成分及び/又は曲線成分を有することが好ましい。例えば図1における界面形成部材1を蛇行させる、階段状とする等である。このようにすることによっても、抵抗体3と界面形成部材1との界面の総面積を大きくでき、その点で有利となる。
【0021】
本発明の第2の応力センサの構成及びそれを基本とした好ましい構成において、基板4面上に抵抗体3が厚膜形成され、当該抵抗体3が界面形成部材1の一部又は全部を覆うことが好ましい。これは抵抗体3と界面形成部材1との界面形成の一形態である。ここで例えば厚膜技術としてスクリーン印刷を採用して、抵抗体3ペーストを界面形成部材1の上に印刷する手法は、抵抗体3と界面形成部材1との界面形成を容易にする利点がある。またこのとき、電極2と抵抗体3との接触をも同時に実現することが容易にできる。そのため製造を簡略化できる点で非常に有利である。
【0022】
本発明の第1及び第2の応力センサの構成及びそれを基本とした好ましい構成において、抵抗体3が、導電性物質と非導電性物質とからなり、両者が融合しない状態にあることが好ましい。これに該当する抵抗体3は例えば、アモルファスカーボンや黒鉛等の炭素材粉末を導電性物質とし、エポキシ系樹脂材料を主な非導電性物質とするものである。また前記炭素材粉末に代えて、銀などの金属粉末とするものも該当し得る。炭素材や金属と、樹脂材料とは融合しないためである。他方これに該当しないのは、ガラスフリット中に酸化ルテニウムが溶解(融合)し、抵抗体3の略全体が導電性を有している、いわゆるメタルグレーズ系のようなものである。
【0023】
導電性物質と非導電性物質とからなり、両者が融合しない状態にある抵抗体3は、非導電性物質と導電性物質とが各々独立して存在する。その界面における抵抗体3と界面形成部材1との導通は、界面付近の導電性物質が実際に界面に接触することを条件にしてなされる。従ってかかる抵抗体3を用いた抵抗素子5は、前記接触の有無で抵抗値が大きく異なることがわかる。かかる抵抗素子5に対し、界面形成部材1や電極2と、抵抗体3との密着性低下を伴う抵抗素子5の変形がなされたとき、当該抵抗素子5の抵抗値変化は大きくなる。
【0024】
それに対し抵抗体3の略全体が導電性を有している、上記メタルグレーズ系のような抵抗体3を用いた抵抗素子5は、上記接触の有無という概念はない。従って、かかる抵抗素子5に対し、界面形成部材1や電極2と、抵抗体3との密着性低下を伴う抵抗素子5の変形がなされたとき、当該抵抗素子5の抵抗値変化は比較的穏やかであると考えられる。
【0025】
もちろん上記メタルグレーズ系のような抵抗体3であっても、界面形成部材1との密着性低下があれば抵抗値変化はするため、本発明を構成する抵抗体3から除外するものではないことは言うまでもない。
【0026】
【発明の実施の形態】
まず、プリプレグを複数枚積層して加熱・加圧成型したガラス繊維混入エポキシ系樹脂板を用意する。当該板が基板4となる。そして基板4両面に厚み18μmの銅箔を貼付した後に当該銅箔の必要部分を除いて公知のエッチング処理(除去処理)を施すことにより、配線6、電極2及び界面形成部材1が図1に示すように形成される。
【0027】
次いで基板に予め穴あけ加工によって設けられているスルーホールの内壁に無電解めっき法にて導電性物質を配することにより、基板表裏面の配線6同士を導通させる。このとき、無電解めっきにより析出する導電性物質(銅)は配線6、電極2及び界面形成部材1表面にも析出する。その結果配線6、電極2及び界面形成部材1のそれぞれの高さは、30〜50μmの略一定値になる。この程度の電極2高さであれば、抵抗素子5を構成する電極2高さが極端に高いわけではないため、後述するスクリーン印刷によって配される抵抗体3形状のばらつきに起因する抵抗素子5の抵抗値ばらつきは抑制できる。
【0028】
次いで基板4の電極2が形成された面に、スクリーン印刷技術により抵抗体3を配し、加熱硬化する。これで図1に示すような抵抗素子5が、応力センサ一つあたり四つ形成された。ここで抵抗体3は、アモルファスカーボン粉末を導電性物質とし、エポキシ系樹脂材料を非導電性物質とするものである。四つの抵抗素子5は、それらの抵抗値を略同等とするため、公知のレーザトリミング工程に供される。
【0029】
その後図3に示す形状に基板4を裁断し、また固定用穴8を設ける。そして基板4の略中央であって抵抗素子5が形成された基板4面とは逆側の面に、アルミナセラミック製ポスト7を固定する(図3(a))。かかる固定にはエポキシ系接着剤を用いた。また固定位置は、図3(b)に示すようにポスト7底面の輪郭が基板4を介して全ての抵抗素子5と対応位置にあるようにする。
【0030】
以上の工程を経て、本発明の応力センサを得ることができる。この応力センサは、固定用穴8にネジを挿入する等して電子機器等に取り付けられる。そしてポスト7に応力を付与することにより、上述した図2の説明にあるように抵抗素子5を伸張させる。このとき、全ての抵抗素子5の伸張方向に対し略垂直方向に界面形成部材1が位置するよう、前述したエッチング処理の際にパターニングする。また配線6は、当該パターニングにより図3では示していないが、基板4表裏に亘り形成され、結果として図4に示すブリッジ回路を四つの抵抗素子5で構成するようパターニングされる。
【0031】
かかる応力センサは、これ単体では動作することができず、信号制御部を介して電子機器の制御が可能となる。図4には本発明の応力センサにおける、上記ブリッジ回路の電気信号入出力の状態の概要を示した。このブリッジ回路の電圧印加端子(Vcc)−(GND)間には所定の電圧が印加されている。また同図左側の抵抗素子5及びY端子(Yout)によりY軸方向の応力センサが構成され、更に同図右側の抵抗素子5及びX端子(Xout)によりX軸方向の応力センサが構成される。これで図2(a)に示すように任意のx、y方向に応力を付与した旨、及びそのときの応力の方向と大きさとを把握することができる。また図2(b)に示したようにポスト7頂面を押下したとき、即ちz軸方向へ応力付与した旨、及びそのときの応力の大きさを把握することができる。z軸方向に応力付与することにより、四つの抵抗素子5全てを伸張させ、各々の抵抗値を略同程度にまで大きくする。このような電気特性は、任意の横方向(x、y方向)に応力を付与した場合と異なる電気的特性であり、それらとは区別できる。
【0032】
上記z軸方向への応力の付与を感知する場合は、例えばコンピュータのポインティングディバイスとして本発明の応力センサを使用し、いわゆるマウスをクリックする信号に上記z軸方向への応力の付与を割り当てる場合である。また、例えばいわゆる携帯電話等の小型携帯機器用の多機能・多方向スイッチとして本発明の応力センサを使用した場合である。この場合は、所定時間下向きへの応力付与をしたときに当該携帯機器の電源のオン・オフの命令に対応させる等が可能となる。これら2つの場合では、付与された応力の大小を精度良く感知する必要性は乏しい。一定レベルの応力が付与されたことを感知できればよい。しかしこれらの場合であっても付与された応力の大きさを把握することには変わりはない。また後者の場合は任意の横方向(x、y方向)に応力を付与した場合についても、一定レベルの応力が付与されたことを感知できればよいことになる。
【0033】
本例では基板4材料をガラス繊維混入エポキシ系樹脂とし、ポスト7をアルミナセラミックとしたが、この組み合わせに限定されないことは言うまでもない。例えばポスト7と基板4の双方をセラミック材料とすることもできる。但し本例のように基板4材料よりもポスト7材料の剛性を高くすることが好ましい。基板4の変形を容易にし、抵抗素子5の抵抗値変化率を大きくできるためである。しかしあまりにも基板4の変形を容易にし過ぎると、変形に可逆性が失われる塑性変形にまで至るおそれがあるため、その点注意を要する。本例で用いた基板4材料であるガラス繊維混入エポキシ系樹脂は、主成分の樹脂材料よりも張力が大きい繊維を混入した材料からなり、可塑変形に至るのを有効に防止し得る。基板4に繊維混入樹脂系材料を用いる場合に好適な繊維には、ガラス繊維の他にアラミド樹脂系繊維、ナイロン繊維、ポリオレフィン系樹脂等の1種以上である。
【0034】
また本例では界面形成部材1を銅からなる材料とし、その数量を1とし、またその形状を図1に示す棒状としているが、これに限定されないことは言うまでもない。本例の界面形成部材1に代えて、別の界面形成部材1を用いて抵抗素子5を構成した例を図5に示した。
【0035】
図5(a)は、抵抗素子5の伸張方向(図5の配線6と平行な方向)に対し斜め成分の直線と、垂直方向の直線から界面が形成されるよう、界面形成部材1が蛇行している場合を示している。蛇行させることにより、界面の面積を大きくすることができている。
【0036】
図5(b)は、図1に示した本例の界面形成部材1(図1)を2つ用いた場合を示している。この場合も界面の面積を大きくすることができている。
【0037】
図5(c)は、本例で用いたものよりも長さの短い界面形成部材1を、多数千鳥状に配置した場合を示している。この場合も界面の面積を大きくすることができている。
【0038】
【発明の効果】
本発明により、極端に抵抗素子を構成する電極高さを高めることなく、当該抵抗素子の抵抗値変化率を大きくすることができた。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態の一例の応力センサを構成する抵抗素子の平面図であり、(b)は(a)のA−A’断面図である。
【図2】(a)は本発明の実施の形態の一例の応力センサに対し、任意のx、y方向に応力付与した様子であり、(b)は(a)に示した応力センサに対し、z方向に応力付与した様子である。
【図3】(a)は本発明の実施の形態の一例の応力センサの平面図であり、(b)は(a)の底面図である。
【図4】本発明の応力センサの信号入出力の様子の一例を示す図である。
【図5】本発明の応力センサを構成する界面形成部材の種々の形状を示す図である。
【符号の説明】
1.界面形成部材
2.電極
3.抵抗体
4.基板
5.抵抗素子
6.配線
7.ポスト
8.固定用穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stress sensor, and more particularly to a stress sensor that can be used for a pointing device for a personal computer, a multifunction switch for various electronic devices, and the like.
[0002]
[Prior art]
The applied stress deforms a resistance element having a pair of electrodes and a resistor connected to the electrode, thereby changing the resistance value of the resistance element, and the direction and magnitude of the stress by the resistance value change. The stress sensor for grasping the above is disclosed in International Publication No. WO 02/064487.
[0003]
Such disclosure includes a technique for lowering a pair of electrodes by press working or the like. By adopting this technique, for example, when a resistor is formed so as to straddle both electrodes by a screen printing method, there is an advantage that variation in the shape of the resistor can be kept low.
[0004]
[Problems to be solved by the invention]
However, according to the study by the present inventors (including those other than the inventor, the same applies hereinafter), the adoption of the above technique can surely suppress the variation in the resistor shape and the resulting variation in the resistance value of the resistance element. It was found that the rate of change in value could not be increased. If the resistance value change rate cannot be increased, the output of the stress sensor cannot be increased. By increasing the output of the stress sensor, the S / N ratio can be improved and the noise margin can be increased.
[0005]
Therefore, the problem to be solved by the present invention is to increase the resistance value change rate of the resistance element without extremely increasing the height of the electrode constituting the resistance element.
[0006]
[Means for Solving the Problems]
First stress sensor of the present invention for solving the above problems, granted stress, by modifying resistance element having a resistor connected to both of the paired conductive Goku及 beauty the electrodes , changing the resistance value of the resistor element, the stress sensor to obtain an output by the change in resistance value, the paired electric machining gap, while apart from that of the electrode in contact with the resistor, the resistor wherein the one or more electrically conductive surface forming member for forming a Tonokai surface is disposed. In addition, the second stress sensor changes the resistance value of the resistance element by deforming the resistance element having the applied stress and the resistor connected to both the electrode and the electrode, In the stress sensor that obtains an output by the change in the resistance value, the resistance element is formed on the substrate surface, and the deformation of the resistance element includes the extension due to the bending of the substrate, and contacts the resistor between the pair of electrodes, And having at least one conductive interface forming member that forms an interface with the resistor, and the interface forming surface of the interface forming member has a portion that is substantially perpendicular to the substrate surface. Features.
[0007]
Generally, a stress sensor functions as a stress sensor only when there is a control unit that detects and calculates the electrical signal. However, in this specification, the part excluding the control unit is referred to as a “stress sensor” for convenience.
[0008]
The "interface" refers to the interface of the two phases in contact with each other, the interfacial forming member composed mainly resistor 3 and the conductive member when the, by example, by melting together, a new phase Say what does not form. Needless to say, the present invention is configured even when a new phase is formed and as a result, the interface between the new phase and the resistor is in electrical contact.
[0009]
The degree of conductivity of the interface forming member 1 is not particularly limited. However, the condition is that the conductive state at the interface changes due to the deformation of the resistive element 5 in the energized state of the resistive element 5 during the stress sensor operation and affects the stress sensor characteristics and the like. Therefore, when the conductivity of the interface forming member 1 is low enough to prevent such influence, it does not correspond to the interface forming member 1 according to the present invention.
[0010]
The present invention has been made paying attention to the influence of the deformation of the resistance element 5 on the conductivity at the interface between the interface forming member 1 and the resistor 3. When the adhesion between the interface forming member 1 and the resistor 3 decreases due to the deformation of the resistance element 5, the transfer of electrons at the interface is hindered, and the inventors increase the resistance value of the resistance element 5 detected thereby. Thought. Therefore, it was concluded that increasing the inhibition factor can increase the rate of change in resistance value of the resistance element 5.
[0011]
According to this idea, the reason why the resistance value change rate of the resistance element 5 is reduced by lowering the conventional pair of electrodes 2 can be explained. This is because the inhibition factor is reduced by reducing the height of the electrode 2 and reducing the area of the interface formed by the electrode 2 and the resistor 3.
[0012]
The configuration of the present invention has an effect of increasing the rate of change in resistance value of the resistance element 5 according to the present invention. This is because the presence / absence of the interface forming member 1 can increase the factors that inhibit the electron transfer at the interface. In order to obtain the effect, it is not necessary to extremely increase the height of the electrode 2 constituting the resistance element 5. This is because the interface forming member 1 plays the role of hindering the effect obtained when the height of the electrode 2 is increased, that is, the electron transfer at the interface.
[0013]
Specific examples of the present invention will be described with reference to the drawings. FIG. 1A is a plan view of the resistance element 5 constituting the stress sensor of the present invention, and FIG. 1B is a cross-sectional view taken along line AA ′ of the plan view. In the figure, the resistance element 5 is formed on the surface of the substrate 4. In addition, one interface forming member 1 that contacts the resistor 3 between the paired electrodes 2 and forms an interface with the resistor 3 is disposed on the surface of the substrate 4.
[0014]
A post 7 as a stress receiving member is fixed or integrated on the surface of the substrate 4 shown in FIG. 1, and the resistance element 5 is arranged at a position corresponding to the contour of the bottom surface of the post 7 on the other surface of the substrate 4. FIG. 2 shows a state in which stress is applied to the post 7 after fixing the end of the post. 2A shows the case where stress is applied to the post 7 in an arbitrary lateral direction, that is, the x-axis and y-axis directions, and FIG. 2B shows the case where the top surface of the post 7 is pressed, ie, the z-axis. The case where stress is applied in the direction is shown. In either case, it can be seen that the resistive element 5 is deformed by the application of stress. It can also be seen that the deformation of the resistance element 5 is accompanied by expansion / contraction due to the bending of the substrate 4.
[0015]
A second stress sensor according to the present invention, comprising a configuration of a first stress sensor, wherein the resistance element 5 is formed on the surface of the substrate 4, and the deformation of the resistance element 5 includes expansion due to bending of the substrate 4; In the stress sensor having a preferable configuration based on the stress sensor of the present invention, the interface is preferably formed obliquely or perpendicularly with respect to the expansion / contraction direction of the resistance element 5. This is because it is efficient to inhibit the exchange of electrons at the interface. Specifically, for example, the energizing direction of the resistance element 5 in FIG.
[0016]
Further, in the configuration of the second stress sensor according to the present invention and a preferable configuration based on the second stress sensor, a portion in which the interface forming surface of the interface forming member 1 is substantially perpendicular to the surface of the substrate 4 It is preferable to have. This is because the adhesion between the interface forming member 1 and the resistor 3 is most likely to decrease due to deformation such as expansion of the resistance element 5. The reason is that the area of the vertical surface is small, and the stress converted into the extension of the resistance element 5 tends to concentrate.
[0017]
Further, in the configuration of the second stress sensor of the present invention and a preferable configuration based on the configuration, as shown in FIG. 2, the post 7 receives the applied stress, and the bottom surface of the post 7 is a substrate. It is preferable that the resistance element 5 is arranged at a position corresponding to the outline of the bottom surface of the post 7 on the other surface of the substrate 4. When stress is applied to the post 7, the largest stress is transmitted to the portion of the substrate 4 located at the contour of the bottom surface of the post 7. Therefore, the stress transmission to the resistance element 5 is also highly efficient and a large output can be obtained. In this case, it is further preferable that the interface is located at or near the position corresponding to the contour of the bottom surface of the post 7. As described above, since the largest stress is transmitted to the portion of the substrate 4 located at the contour of the bottom surface of the post 7, it is possible to expect a larger output when the interface is located at the position.
[0018]
In the configuration of the second stress sensor of the present invention and a preferable configuration based on the second sensor, the electrode 2 and the interface forming member 1 are obtained by removing a part of the conductor layer on the surface of the substrate 4 and obtaining the remainder thereof. Or it is preferable to obtain by an additive method. This is because the electrode 2 and the interface forming member 1 can be formed at the same time, which is advantageous in that the production can be simplified. Further, the interface forming member 1 is obtained by removing a part of the conductor layer on the surface of the substrate 4 and obtaining it as a remaining part or by an additive method. This is because it is easy to form a vertical surface.
[0019]
In the configuration of the second stress sensor of the present invention and a preferable configuration based on the second stress sensor, the plurality of conductive protrusions on the surface of the substrate 4 in which the interface forming member 1 is interspersed between the paired electrodes 2 It may be. For example, the use of a large number of such protrusions is advantageous in that the total area of the interface between the resistor 3 and the interface forming member 1 can be increased.
[0020]
In the configuration of the second stress sensor of the present invention and the preferable configuration based on the second stress sensor, the interface includes a plurality of oblique components and / or vertical components and / or curved components having different angles with respect to the extending direction of the resistance element 5. It is preferable to have. For example, the interface forming member 1 in FIG. Also by doing this, the total area of the interface between the resistor 3 and the interface forming member 1 can be increased, which is advantageous in that respect.
[0021]
In the configuration of the second stress sensor of the present invention and a preferable configuration based on the second stress sensor, the resistor 3 is formed on the surface of the substrate 4 in a thick film, and the resistor 3 covers part or all of the interface forming member 1. It is preferable. This is one form of interface formation between the resistor 3 and the interface forming member 1. Here, for example, the screen printing is employed as a thick film technique, and the technique of printing the resistor 3 paste on the interface forming member 1 has an advantage of facilitating the interface formation between the resistor 3 and the interface forming member 1. . At this time, the contact between the electrode 2 and the resistor 3 can be easily realized at the same time. Therefore, it is very advantageous in that the production can be simplified.
[0022]
In the configurations of the first and second stress sensors according to the present invention and the preferable configurations based on them, it is preferable that the resistor 3 is composed of a conductive material and a non-conductive material, and the two are not fused. . The resistor 3 corresponding to this is, for example, a material made of carbon material such as amorphous carbon or graphite as a conductive material, and an epoxy resin material as a main non-conductive material. Further, instead of the carbon material powder, a metal powder such as silver may be applicable. This is because the carbon material or metal does not fuse with the resin material. On the other hand, what does not correspond to this is a so-called metal glaze type in which ruthenium oxide is dissolved (fused) in the glass frit and almost the entire resistor 3 has conductivity.
[0023]
In the resistor 3 made of a conductive substance and a non-conductive substance and in a state where the two do not merge, the non-conductive substance and the conductive substance exist independently. The electrical connection between the resistor 3 and the interface forming member 1 at the interface is made on condition that the conductive material near the interface actually contacts the interface. Therefore, it can be seen that the resistance value of the resistance element 5 using the resistor 3 varies greatly depending on the presence or absence of the contact. When the resistance element 5 is deformed with a decrease in adhesion between the interface forming member 1 and the electrode 2 and the resistor 3 with respect to the resistance element 5, the resistance value change of the resistance element 5 increases.
[0024]
On the other hand, the resistance element 5 using the resistor 3 such as the metal glaze system in which almost the entire resistor 3 has conductivity has no concept of the presence or absence of the contact. Therefore, when the resistance element 5 is deformed with a decrease in adhesion between the interface forming member 1 and the electrode 2 and the resistor 3 with respect to the resistance element 5, the resistance value change of the resistance element 5 is relatively moderate. It is thought that.
[0025]
Of course, even the resistor 3 such as the above metal glaze type is not excluded from the resistor 3 constituting the present invention because the resistance value changes if there is a decrease in adhesion with the interface forming member 1. Needless to say.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
First, a glass fiber-mixed epoxy resin plate is prepared by laminating a plurality of prepregs and heating and pressing them. The plate becomes the substrate 4. Then, after applying a copper foil having a thickness of 18 μm on both surfaces of the substrate 4 and performing a known etching process (removal process) except for the necessary part of the copper foil, the wiring 6, the electrode 2 and the interface forming member 1 are shown in FIG. Formed as shown.
[0027]
Next, a conductive material is disposed on the inner wall of a through hole provided in advance in the substrate 4 by drilling, thereby electrically connecting the wirings 6 on the front and back surfaces of the substrate 4 . At this time, the conductive substance (copper) deposited by electroless plating is also deposited on the surfaces of the wiring 6, the electrode 2 and the interface forming member 1. As a result, the height of each of the wiring 6, the electrode 2, and the interface forming member 1 becomes a substantially constant value of 30 to 50 μm. If the height of the electrode 2 is about this level, the height of the electrode 2 constituting the resistance element 5 is not extremely high. Therefore, the resistance element 5 is caused by variations in the shape of the resistor 3 arranged by screen printing described later. Variation in resistance value can be suppressed.
[0028]
Next, the resistor 3 is disposed on the surface of the substrate 4 on which the electrode 2 is formed by screen printing technology, and is cured by heating. Thus, four resistance elements 5 as shown in FIG. 1 were formed per stress sensor. Here, the resistor 3 is made of amorphous carbon powder as a conductive material and epoxy resin material as a non-conductive material. The four resistance elements 5 are subjected to a known laser trimming process in order to make their resistance values substantially equal.
[0029]
Thereafter, the substrate 4 is cut into the shape shown in FIG. 3 and a fixing hole 8 is provided. Then, an alumina ceramic post 7 is fixed to the surface opposite to the surface of the substrate 4 on which the resistance element 5 is formed, which is substantially the center of the substrate 4 (FIG. 3A). An epoxy adhesive was used for such fixing. Further, as shown in FIG. 3B, the fixing position is such that the contour of the bottom surface of the post 7 is in a corresponding position with all the resistance elements 5 through the substrate 4.
[0030]
Through the above steps, the stress sensor of the present invention can be obtained. This stress sensor is attached to an electronic device or the like by inserting a screw into the fixing hole 8 or the like. Then, by applying stress to the post 7, the resistance element 5 is extended as described in FIG. At this time, patterning is performed during the above-described etching process so that the interface forming member 1 is positioned in a direction substantially perpendicular to the extending direction of all the resistance elements 5. Further, although not shown in FIG. 3 by the patterning, the wiring 6 is formed across the front and back of the substrate 4 and, as a result, is patterned so as to configure the bridge circuit shown in FIG.
[0031]
Such a stress sensor cannot operate alone, and can control an electronic device via a signal control unit. FIG. 4 shows an outline of the state of electric signal input / output of the bridge circuit in the stress sensor of the present invention. A predetermined voltage is applied between the voltage application terminals (Vcc) and (GND) of the bridge circuit. Further, a stress sensor in the Y-axis direction is constituted by the resistance element 5 and the Y terminal (Yout) on the left side of the figure, and a stress sensor in the X-axis direction is constituted by the resistance element 5 and the X terminal (Xout) on the right side of the figure. . Thus, as shown in FIG. 2A, it is possible to grasp that the stress is applied in arbitrary x and y directions and the direction and magnitude of the stress at that time. Further, as shown in FIG. 2B, when the top surface of the post 7 is pressed, that is, the stress is applied in the z-axis direction, and the magnitude of the stress at that time can be grasped. By applying stress in the z-axis direction, all four resistance elements 5 are stretched, and each resistance value is increased to substantially the same level. Such electrical characteristics are different from those when stress is applied in an arbitrary lateral direction (x, y direction), and can be distinguished from those.
[0032]
When sensing the application of stress in the z-axis direction, for example, when using the stress sensor of the present invention as a pointing device of a computer and assigning the application of stress in the z-axis direction to a so-called mouse click signal. is there. In addition, for example, the stress sensor of the present invention is used as a multi-function / multi-directional switch for small portable devices such as so-called mobile phones. In this case, when a downward stress is applied for a predetermined time, it is possible to respond to a command to turn on / off the power of the portable device. In these two cases, there is little need to accurately detect the magnitude of applied stress. It is only necessary to be able to sense that a certain level of stress has been applied. However, even in these cases, there is no change in grasping the magnitude of the applied stress. In the latter case, even when stress is applied in an arbitrary lateral direction (x, y direction), it is only necessary to detect that a certain level of stress is applied.
[0033]
In this example, the substrate 4 material is glass fiber mixed epoxy resin, and the post 7 is alumina ceramic. However, it goes without saying that the combination is not limited to this. For example, both the post 7 and the substrate 4 can be made of a ceramic material. However, it is preferable to make the post 7 material more rigid than the substrate 4 material as in this example. This is because the substrate 4 can be easily deformed and the resistance value change rate of the resistance element 5 can be increased. However, when the deformation of the substrate 4 is made too easy, there is a possibility that the deformation may be plastic deformation that loses reversibility. The glass fiber-mixed epoxy resin, which is the substrate 4 material used in this example, is made of a material mixed with fibers having a higher tension than the main resin material, and can effectively prevent plastic deformation. In the case of using a fiber-mixed resin material for the substrate 4, one or more fibers such as an aramid resin fiber, a nylon fiber, and a polyolefin resin are available in addition to the glass fiber.
[0034]
Further, in this example, the interface forming member 1 is made of a material made of copper, the number thereof is 1, and the shape thereof is a rod shape shown in FIG. 1, but it goes without saying that the present invention is not limited to this. FIG. 5 shows an example in which the resistance element 5 is configured using another interface forming member 1 instead of the interface forming member 1 of this example.
[0035]
5A shows that the interface forming member 1 meanders so that an interface is formed from a straight line having an oblique component and a straight line in a vertical direction with respect to the extending direction of the resistance element 5 (a direction parallel to the wiring 6 in FIG. 5). It shows the case. By meandering, the area of the interface can be increased.
[0036]
FIG. 5B shows a case where two interface forming members 1 (FIG. 1) of this example shown in FIG. 1 are used. Also in this case, the area of the interface can be increased.
[0037]
FIG.5 (c) has shown the case where many interface formation members 1 shorter than what was used in this example are arrange | positioned in zigzag form. Also in this case, the area of the interface can be increased.
[0038]
【The invention's effect】
According to the present invention, it is possible to increase the resistance value change rate of the resistance element without extremely increasing the height of the electrode constituting the resistance element.
[Brief description of the drawings]
FIG. 1A is a plan view of a resistance element constituting a stress sensor according to an example of an embodiment of the present invention, and FIG.
FIG. 2A is a state in which stress is applied in an arbitrary x and y direction to a stress sensor according to an embodiment of the present invention, and FIG. 2B is a diagram illustrating the stress sensor illustrated in FIG. It is a state that stress is applied in the z direction.
FIG. 3A is a plan view of a stress sensor as an example of an embodiment of the present invention, and FIG. 3B is a bottom view of FIG.
FIG. 4 is a diagram showing an example of a signal input / output state of the stress sensor of the present invention.
FIG. 5 is a diagram showing various shapes of an interface forming member constituting the stress sensor of the present invention.
[Explanation of symbols]
1. 1. Interface forming member Electrode 3. Resistor 4. Substrate 5. Resistance element 6. Wiring 7 Post 8. Fixing hole

Claims (11)

付与された応力が、対となる電極及び当該電極の双方に接続される抵抗体を有する抵抗素子を変形することにより、当該抵抗素子の抵抗値を変化させ、当該抵抗値変化により出力を得る応力センサにおいて、
対となる上記電極間には、当該電極とは離隔する一方、上記抵抗体と接触し、当該抵抗体との界面を形成する1以上の導電性の界面形成部材が配置されていることを特徴とする応力センサ。
The applied stress changes the resistance value of the resistance element by deforming the resistance element having a resistor connected to both the pair of electrodes and the electrode, and obtains an output by changing the resistance value. In the sensor
Between the electrodes forming a pair, while away from that of the electrode, characterized in that the resistor and in contact, one or more electrically conductive surface forming member for forming an interface between the resistor is located A stress sensor.
前記抵抗素子が基板面に形成され、当該抵抗素子の変形が、当該基板の撓みによる伸張を含むことを特徴とする請求項1記載の応力センサ。The stress sensor according to claim 1, wherein the resistance element is formed on a substrate surface, and the deformation of the resistance element includes expansion due to bending of the substrate. 付与された応力が、対となる電極及び当該電極の双方に接続される抵抗体を有する抵抗素子を変形することにより、当該抵抗素子の抵抗値を変化させ、当該抵抗値変化により出力を得る応力センサにおいて、
抵抗素子が基板面に形成され、当該抵抗素子の変形が、当該基板の撓みによる伸張を含み、
上記対となる電極間の上記抵抗体と接触し、当該抵抗体との界面を形成する1以上の導電性の界面形成部材を有し、上記界面形成部材の界面形成面が、実質的に上記基板面に対して垂直な面で構成される部分を有することを特徴とする応力センサ。
The applied stress changes the resistance value of the resistance element by deforming the resistance element having a resistor connected to both the pair of electrodes and the electrode, and obtains an output by changing the resistance value. In the sensor
A resistive element is formed on the substrate surface, and the deformation of the resistive element includes stretching due to bending of the substrate;
In contact with the resistor between the electrodes serving as the pair has one or more electrically conductive surface forming member for forming an interface with the resistor, the interface forming surface of the interface member is substantially above stress sensor characterized by having a portion constituted by a plane perpendicular to the substrate surface.
前記界面が、主として前記抵抗素子の伸張方向に対して斜め又は垂直方向に形成されることを特徴とする請求項2または3記載の応力センサ。 The interface is primarily the stress sensor according to claim 2 or 3, wherein the formed obliquely or perpendicularly to the stretching direction of the resistive element. 前記付与された応力を受けるポストを有し、当該ポスト底面が前記基板の一方の面と固着又は一体化し、前記基板の他方の面における前記ポスト底面の輪郭と対応する位置に前記抵抗素子が配されることを特徴とする請求項2〜4のいずれか1項に記載の応力センサ。Has a post for receiving said applied stresses, the post bottom secured or integrated with one surface of the substrate, wherein the resistive element distribution in the contour position corresponding to the post bottom at the other surface of the substrate stress sensor according to any one of claims 2-4, characterized in that the. 前記ポスト底面の輪郭と対応する位置又はその付近に前記界面が位置することを特徴とする請求項5記載の応力センサ。Stress sensor of claim 5 wherein said interface is located at or near corresponding to the contour of the post bottom. 前記電極及び前記界面形成部材が、前記基板表面の導体層の一部を除去処理し、その残部として得られるか、若しくはアディティブ法により得られることを特徴とする請求項2〜6のいずれか1項に記載の応力センサ。 The said electrode and the said interface formation member remove | eliminate a part of conductor layer on the surface of the said board | substrate , and are obtained as the remainder, or are obtained by an additive method, The any one of Claims 2-6 characterized by the above-mentioned. The stress sensor according to item 1 . 前記界面形成部材が、前記対となる電極間に点在して配される複数の導電性突起であることを特徴とする請求項〜7のいずれか1項に記載の応力センサ。Stress sensor according to any one of claims 1-7, wherein the interface forming member is a pair with electrodes interspersed with multiple conductive protrusions Ru disposed between made. 前記界面が、前記抵抗素子の伸張方向に対して異なる角度の複数の斜め成分及び/又は垂直成分及び/又は曲線成分を有することを特徴とする請求項〜8のいずれか1項に記載の応力センサ。 The interface, according to any one of claims 1-8, characterized in that it comprises a plurality of oblique components and / or vertical component and / or curved components of different angles with respect to the extension direction of the resistive element Stress sensor. 前記抵抗体が厚膜形成され、当該抵抗体が前記界面形成部材の一部又は全部を覆うことを特徴とする請求項〜9のいずれか1項に記載の応力センサ。 The resistor is a thick film formed, the stress sensor according to any one of claims 1-9 in which the resistor, characterized in that the covering part or all of the interface member. 前記抵抗体が、導電性物質と非導電性物質とからなり、両者が融合しない状態にあることを特徴とする請求項1〜10のいずれか1項に記載の応力センサ。 The resistor consists of a conductive material and a non-conductive material, the stress sensor according to any one of claims 1 to 10, both are characterized in that a state which is not fused.
JP2002336712A 2002-11-20 2002-11-20 Stress sensor Expired - Fee Related JP4104961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336712A JP4104961B2 (en) 2002-11-20 2002-11-20 Stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336712A JP4104961B2 (en) 2002-11-20 2002-11-20 Stress sensor

Publications (2)

Publication Number Publication Date
JP2004170259A JP2004170259A (en) 2004-06-17
JP4104961B2 true JP4104961B2 (en) 2008-06-18

Family

ID=32700475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336712A Expired - Fee Related JP4104961B2 (en) 2002-11-20 2002-11-20 Stress sensor

Country Status (1)

Country Link
JP (1) JP4104961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847443A (en) * 1994-08-05 1996-02-20 Maruwa Kk Pillow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847443A (en) * 1994-08-05 1996-02-20 Maruwa Kk Pillow

Also Published As

Publication number Publication date
JP2004170259A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US7262682B2 (en) Resistor element, stress sensor, and method for manufacturing them
US20050156906A1 (en) Capacitive touchpad and method for forming the same
KR101760514B1 (en) Flexible wiring substrate
JP4104961B2 (en) Stress sensor
US7040182B2 (en) Stress sensor
JP2011151103A (en) Electronic component interconnecting structure and connecting method
KR100349905B1 (en) The fabrication method of touch panel
JP4271447B2 (en) Stress sensor and manufacturing method thereof
JP2003270067A (en) Stress sensor
JP2003101049A (en) Method for manufacturing photoelectric transducer
JP6899246B2 (en) Electronic components
KR100313108B1 (en) Touch panel device
JP3691842B1 (en) Stress sensor
JP6837897B2 (en) Touch sensor substrate and its manufacturing method
KR100573101B1 (en) Flexible printed cable and touch panel applying such
JP4336757B2 (en) Stress sensor device and manufacturing method thereof
JP2634592B2 (en) Circuit board with low resistance and method of manufacturing the same
JP2004150886A (en) Stress sensor
JPH04338556A (en) Thermal printing head
JP4322016B2 (en) Manufacturing method of stress sensor
JPH0338354A (en) Connecting structure of lead wire of thermal head array
JP2004363528A (en) Manufacturing method of resistance element, and stress sensor using same for operating electronic appliance
JP2005128024A (en) Stress sensor
JP2004079581A (en) Resistance element and method for manufacturing the same, and stress sensor using the same as strain gage
JPH09258882A (en) Coordinate input device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees