JP4104692B2 - Oxyhalide-lithium battery - Google Patents

Oxyhalide-lithium battery Download PDF

Info

Publication number
JP4104692B2
JP4104692B2 JP3893397A JP3893397A JP4104692B2 JP 4104692 B2 JP4104692 B2 JP 4104692B2 JP 3893397 A JP3893397 A JP 3893397A JP 3893397 A JP3893397 A JP 3893397A JP 4104692 B2 JP4104692 B2 JP 4104692B2
Authority
JP
Japan
Prior art keywords
oxyhalide
current collector
lithium battery
metal
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3893397A
Other languages
Japanese (ja)
Other versions
JPH10241694A (en
Inventor
広隆 酒井
浩己 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3893397A priority Critical patent/JP4104692B2/en
Publication of JPH10241694A publication Critical patent/JPH10241694A/en
Application granted granted Critical
Publication of JP4104692B2 publication Critical patent/JP4104692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Description

【0001】
【発明の属する技術分野】
本発明は金属製集電体を改良したオキシハライド−リチウム電池に関する。
【0002】
【従来の技術】
オキシハライド−リチウム電池は、負極活物質にリチウム或いはリチウムと軽金属からなる合金を用い、正極活物質に塩化チオニル、塩化スルフリル等のオキシハライド−リチウム化合物を用いて、正極として機能する多孔質炭素材を備えた電池である。その構造の一例を図1に示す。
【0003】
図1はAAサイズ塩化チオニル−リチウム電池の断面図である。図中の1はステンレス鋼製の有底円筒状の缶体で、電池容器と負極端子を兼ねるものである。この電池容器1の内周面には負極活物質である金属リチウム2が圧着されている。金属リチウム2の内側には、ガラス不織布からなるセパレータ3を介して筒状多孔質炭素材4が設けられている。多孔質炭素材4の内側には金属製集電体5が圧着されている。
【0004】
前記電池容器1の上面開口部には、電池蓋6がレーザー溶接等で接合されている。この電池蓋の中心の穴にはパイプ状正極端子7がガラス製のシール材8によって電池蓋6と電気的に絶縁され固定されている。さらに電池蓋6の下部にはパイプ状正極端子7に支持された中央に穴を有する絶縁紙9が設けられている。絶縁紙9は前記セパレータ3と同様にガラス不織布からなっている。
【0005】
前記パイプ状正極端子7の下部はリード線10を介して前記金属製集電体5に接続されている。このパイプ状正極端子7は注液口を兼ねており、ここから電解液兼正極活物質となる塩化アルミニウム(AlCl3 )と塩化リチウム(LiCl)を溶解した塩化チオニル(SOCl2 )溶液11が注入される。塩化チオニル溶液を注入した後、注液口に例えばステンレス製の封口体12を挿入し、レーザー溶接により封止して完全密閉形としている。
【0006】
また前記電池容器1の底部には薄肉部13が形成されており、温度上昇時に電解液兼正極活物質11が体積膨張して内圧上昇した場合に、この薄肉部13が優先的に破断することによって安全弁としての機能を果たすようになっている。
【0007】
【発明が解決しようとする課題】
ところで、従来オキシハライド−リチウム電池では、金属製集電体としてニッケルが用いられてきた。しかしながら、ニッケルは変形しやすく、放電中に多孔質炭素材中に生成する放電生成物による圧力の影響で変形し、集電効率を低下させ、その結果電池の作動電圧、放電容量が低下するという問題点があった。ニッケルの体積を増加させれば十分な強度が得られるが、電池容器内での活物質の占有する割合が小さくなり、エネルギー密度は低下する。エネルギー密度を低下させずにこれらの問題点を解決するためには、より変形し難いステンレス鋼を用いることが考えられる。
【0008】
しかし電解液と正極活物質を兼ねるオキシハライド化合物は非常に腐食性が強く、特に正極側において通常のステンレス鋼では腐食を受け、内部抵抗の上昇、電池寿命の低下を招く。
【0009】
本発明は上記問題に対処してなされたもので、オキシハライド−リチウム電池において、金属製集電体を改善して変形しにくく、かつ腐食しにくいものとし、その結果、安定した放電特性と高エネルギー密度をもつオキシハライド−リチウム電池を提供するすることを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、オキシハライド−リチウム電池において、筒状の多孔質炭素材の内側に圧着成形される金属製集電体としてクロム15.0〜21.0重量%及びニッケル6.0〜15.0重量%を含有するSUS304オーステナイト系ステンレス鋼からなるエキスパンドメタルを用いたことを特徴とする。
【0011】
さらに本発明は、オキシハライド−リチウム電池において、筒状の多孔質炭素材の内側に圧着成形される金属製集電体としてクロム15.0〜21.0重量%、モリブデン1.0〜2.5重量%を含有し、さらにチタン、タンタル、ニオブ及びジルコニウムの群から選択された元素を総和で0.1〜1.0重量%含有するSUS444フェライト系ステンレス鋼からなるエキスパンドメタルを用いたことを特徴とする。
【0012】
本発明における添加元素の作用について考察すると、クロムを15.0〜21.0重量%含有する鉄基合金において、ニッケルを6.0〜15.0重量%添加すると、表面が不動態化するために必要な電流(不動態化電流)のピークが小さくなり、結果として不動態化し易く、耐食性が向上する。ニッケルの添加量が6.0重量%に満たないと得られる効果は小さい。また15.0重量%を越える大量のニッケルを添加しても効果が劣るものではないが、コスト面で不利となる。
【0013】
またモリブデンはフェライト系ステンレス鋼に添加されると不動態化電流密度を小さくし、不動態を非常に安定化する効果をもつ。ただし添加量が2.5重量%を越えると炭化物となって析出し、衝撃値、耐食性を低下させる。
【0014】
またフェライト系ステンレス鋼ではクロムが炭化物や窒化物となって析出すると粒界腐食の原因となる。これを防止する方法としては安定な固溶型化合物を形成する元素を添加し、炭素及び窒素を固定することが有効である。チタン、タンタル、ニオブ及びジルコニウムは炭化物或いは窒化物の生成元素で、上記のような機構でフェライト系ステンレス鋼の耐食性を著しく向上させる。このような効果が得られるのは添加量が含炭素、窒素量の重量比にして4〜10倍程度の場合で、大量に添加しても大きな効果は得られない。逆にチタンは大量に添加され析出物や介在物の形で存在すると、耐孔食性を著しく劣化させる。
【0015】
このように優れた耐食性を示すオーステナイト系ステンレス鋼またはフェライト系ステンレス鋼により作製した金属製集電体は、オキシハライド化合物中でも腐食を受けることがなく、またニッケルと比較して大きな変形抵抗を有するため放電に伴う変形が生じないので、安定した放電特性と高エネルギー密度を実現することができる。
【0016】
【発明の実施の形態】
以下本発明を塩化チオニル−リチウム電池に適用した例について説明する。
(実施例1)
電池として、前述の図1に示したAAサイズ塩化チオニル−リチウム電池を用いた。この電池において、金属製集電体5はCr18.0重量%、Ni9.0重量%を含有するSUS304のエキスパンドメタルで形成されており、多孔質炭素材4の内側にこの円筒状金属製集電体を圧着して成形した後、160℃空気中で乾燥させた。なお、多孔質炭素材は、アセチレンブラック及びケッチェンブラックに結着剤としてポリテトラフルオロエチレンを混練したものである。
この電池を50個作製した。
【0017】
(実施例2)
金属製集電体5として、クロム19.0重量%、モリブデン2.0重量%、チタン、タンタル、ニオブ及びジルコニウムの群から選択された元素を総和で0.7重量%を含有するSUS444のエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
【0018】
(比較例1)
金属製集電体5として、表1に示すSUS442のエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
【0019】
(比較例2)
金属製集電体5として、表1に示すSUS201のエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
【0020】
(比較例3)
金属製集電体5として、クロムを18.0重量%、モリブデンを3.0重量%含有し、さらにチタン、タンタル、ニオブ及びジルコニウムを総和で1.4重量%含有するフェライト系ステンレス鋼のエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
【0021】
(比較例4)
金属製集電体5として、表1に示すSUS430LXのエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
【0022】
(比較例5)
金属製集電体5として、表1に示すSUS434のエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
【0023】
(比較例6)
金属製集電体5として、Niのエキスパンドメタルを用いた以外は実施例1と同様にして、図1に示す構造の電池を50個作製した。
表1に本発明の実施例及び比較例の電池の金属製集電体の合金組成を示す。
【0024】
【表1】

Figure 0004104692
上記各実施例及び比較例の電池をそれぞれ60℃において20日貯蔵後、周波数1kHzで内部インピーダンス測定した。図2にその結果を示す。図2から明らかなように、耐食性の劣る比較例1〜5の電池は、本発明の実施例1及び2の電池及び比較例6の電池と比較して著しく内部インピーダンスが上昇していることが分かる。
【0025】
次に20℃−1kΩで連続放電させたときの放電特性を調べた。図3にその結果を示す。図3から明らかなように、比較例1〜6の電池と比較して、本発明の実施例1及び2の電池は安定した放電特性と、高い放電容量を示していることが分かる。
なお、上記実施例では金属製集電体5にエキスパンドメタルを用いたが、パンチドメタルまたは金網のようなものでも同様の効果が得られる。
【0026】
【発明の効果】
以上説明したように、本発明はオキシハライド−リチウム電池において、耐腐食性でかつ変形しにくい金属製集電体を用いたことによって、安定した放電特性と高エネルギー密度をもつオキシハライド−リチウム電池を提供することができる。
【図面の簡単な説明】
【図1】AAサイズ塩化チオニル−リチウム電池の断面図。
【図2】実施例及び比較例の電池を60℃において20日貯蔵後、周波数1kHzで測定した内部インピーダンスを示す図。
【図3】実施例及び比較例の電池を20℃−1kΩで連続放電させたときの放電特性を示す図。
【符号の説明】
1…負極端子を兼ねた電池容器、2…金属リチウム、3…セパレータ、4…多孔質炭素材、5…金属製集電体、6…電池蓋、7…パイプ状正極端子、8…ガラス製シール材、9…絶縁紙、10…リード線、11…塩化チオニル溶液、12…封口体、13…薄肉部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxyhalide-lithium battery having an improved metal current collector.
[0002]
[Prior art]
An oxyhalide-lithium battery is a porous carbon material that functions as a positive electrode by using lithium or an alloy composed of lithium and a light metal as a negative electrode active material and an oxyhalide-lithium compound such as thionyl chloride or sulfuryl chloride as a positive electrode active material. It is a battery provided with. An example of the structure is shown in FIG.
[0003]
FIG. 1 is a cross-sectional view of an AA size thionyl chloride-lithium battery. In the figure, reference numeral 1 denotes a bottomed cylindrical can made of stainless steel, which doubles as a battery container and a negative electrode terminal. Metal lithium 2 as a negative electrode active material is pressure-bonded to the inner peripheral surface of the battery container 1. Inside the metallic lithium 2, a cylindrical porous carbon material 4 is provided via a separator 3 made of a glass nonwoven fabric. A metal current collector 5 is pressure-bonded inside the porous carbon material 4.
[0004]
A battery lid 6 is joined to the upper surface opening of the battery container 1 by laser welding or the like. A pipe-like positive electrode terminal 7 is electrically insulated from the battery lid 6 and fixed by a glass sealing material 8 in the central hole of the battery lid. Further, an insulating paper 9 having a hole in the center supported by the pipe-like positive electrode terminal 7 is provided below the battery lid 6. The insulating paper 9 is made of a glass nonwoven fabric, like the separator 3.
[0005]
A lower portion of the pipe-like positive electrode terminal 7 is connected to the metal current collector 5 through a lead wire 10. The pipe-like positive electrode terminal 7 also serves as a liquid injection port, from which a thionyl chloride (SOCl 2 ) solution 11 in which aluminum chloride (AlCl 3 ) and lithium chloride (LiCl) as an electrolyte and positive electrode active material are dissolved is injected. Is done. After injecting the thionyl chloride solution, a sealing body 12 made of, for example, stainless steel is inserted into the liquid inlet and sealed by laser welding to form a completely sealed shape.
[0006]
Also, a thin portion 13 is formed at the bottom of the battery container 1, and the thin portion 13 is preferentially broken when the electrolyte / positive electrode active material 11 expands in volume and the internal pressure rises when the temperature rises. As a result, it functions as a safety valve.
[0007]
[Problems to be solved by the invention]
By the way, in the conventional oxyhalide-lithium battery, nickel has been used as a metal current collector. However, nickel is easily deformed and deforms due to the pressure of the discharge product generated in the porous carbon material during discharge, reducing the current collection efficiency, resulting in a decrease in battery operating voltage and discharge capacity. There was a problem. If the volume of nickel is increased, sufficient strength can be obtained, but the proportion occupied by the active material in the battery container decreases, and the energy density decreases. In order to solve these problems without lowering the energy density, it is conceivable to use stainless steel that is more difficult to deform.
[0008]
However, the oxyhalide compound that serves as the electrolyte and the positive electrode active material is very corrosive, and is particularly corrosive with normal stainless steel on the positive electrode side, leading to an increase in internal resistance and a decrease in battery life.
[0009]
The present invention has been made in response to the above problems, and in an oxyhalide-lithium battery, the metal current collector is improved so that it is not easily deformed and corroded, resulting in stable discharge characteristics and high performance. An object of the present invention is to provide an oxyhalide-lithium battery having an energy density.
[0010]
[Means for Solving the Problems]
In the oxyhalide-lithium battery according to the present invention, 15.0 to 21.0% by weight of chromium and 6.0 to 15.0% of nickel are used as a metal current collector formed by pressure bonding inside a cylindrical porous carbon material. An expanded metal made of SUS304 austenitic stainless steel containing wt% is used.
[0011]
Furthermore, in the oxyhalide-lithium battery according to the present invention, chromium is 15.0 to 21.0% by weight, molybdenum is 1.0 to 2.1.0% as a metal current collector that is pressure-molded inside a cylindrical porous carbon material . An expanded metal made of SUS444 ferritic stainless steel containing 5% by weight and further containing 0.1 to 1.0% by weight in total of elements selected from the group of titanium, tantalum, niobium and zirconium is used. Features.
[0012]
Considering the action of the additive element in the present invention, in the iron-base alloy containing 15.0 to 21.0% by weight of chromium, when 6.0 to 15.0% by weight of nickel is added, the surface is passivated. As a result, the peak of the current (passivation current) required for the process becomes smaller, and as a result, it is easy to passivate and the corrosion resistance is improved. If the amount of nickel added is less than 6.0% by weight, the effect obtained is small. Even if a large amount of nickel exceeding 15.0% by weight is added, the effect is not inferior, but it is disadvantageous in terms of cost.
[0013]
Molybdenum, when added to ferritic stainless steel, has the effect of reducing the passivation current density and greatly stabilizing the passivation. However, if the added amount exceeds 2.5% by weight, it is precipitated as carbides, and the impact value and corrosion resistance are lowered.
[0014]
Ferritic stainless steel causes intergranular corrosion if chromium precipitates as carbides or nitrides. In order to prevent this, it is effective to add an element that forms a stable solid solution type compound and fix carbon and nitrogen. Titanium, tantalum, niobium and zirconium are carbide or nitride-forming elements, and remarkably improve the corrosion resistance of ferritic stainless steel by the mechanism described above. Such an effect can be obtained when the addition amount is about 4 to 10 times the weight ratio of the carbon content and the nitrogen amount, and a large effect is not obtained even if it is added in a large amount. Conversely, if titanium is added in a large amount and exists in the form of precipitates or inclusions, the pitting corrosion resistance is remarkably deteriorated.
[0015]
The current collector made of austenitic stainless steel or ferritic stainless steel showing excellent corrosion resistance is not corroded even in oxyhalide compounds, and has a large deformation resistance compared to nickel. Since there is no deformation associated with discharge, stable discharge characteristics and high energy density can be realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example in which the present invention is applied to a thionyl chloride-lithium battery will be described.
(Example 1)
As the battery, the AA size thionyl chloride-lithium battery shown in FIG. 1 was used. In this battery, the metal current collector 5 is formed of an expanded metal of SUS304 containing 18.0% by weight of Cr and 9.0% by weight of Ni, and this cylindrical metal current collector is disposed inside the porous carbon material 4. The body was pressed and molded, and then dried in air at 160 ° C. The porous carbon material is obtained by kneading polytetrafluoroethylene as a binder with acetylene black and ketjen black.
50 batteries were produced.
[0017]
(Example 2)
As the current collector 5 made of SUS444, which contains 19.0% by weight of chromium, 2.0% by weight of molybdenum, and 0.7% by weight in total of elements selected from the group of titanium, tantalum, niobium and zirconium 50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that metal was used.
[0018]
(Comparative Example 1)
50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that an expanded metal of SUS442 shown in Table 1 was used as the metal current collector 5.
[0019]
(Comparative Example 2)
50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that an expanded metal of SUS201 shown in Table 1 was used as the metal current collector 5.
[0020]
(Comparative Example 3)
Expanded ferritic stainless steel containing 18.0 wt% chromium, 3.0 wt% molybdenum, and 1.4 wt% total titanium, tantalum, niobium and zirconium as metal current collector 5 50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that metal was used.
[0021]
(Comparative Example 4)
50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that an expanded metal of SUS430LX shown in Table 1 was used as the metal current collector 5.
[0022]
(Comparative Example 5)
50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that an expanded metal of SUS434 shown in Table 1 was used as the metal current collector 5.
[0023]
(Comparative Example 6)
50 batteries having the structure shown in FIG. 1 were produced in the same manner as in Example 1 except that Ni expanded metal was used as the metal current collector 5.
Table 1 shows the alloy compositions of the metal current collectors of the batteries of Examples and Comparative Examples of the present invention.
[0024]
[Table 1]
Figure 0004104692
The batteries of the above Examples and Comparative Examples were each stored at 60 ° C. for 20 days, and then the internal impedance was measured at a frequency of 1 kHz. The results are shown in FIG. As is clear from FIG. 2, the batteries of Comparative Examples 1 to 5 having inferior corrosion resistance have remarkably increased internal impedance as compared with the batteries of Examples 1 and 2 and the battery of Comparative Example 6 of the present invention. I understand.
[0025]
Next, the discharge characteristics when continuously discharged at 20 ° C.-1 kΩ were examined. The result is shown in FIG. As is apparent from FIG. 3, it can be seen that the batteries of Examples 1 and 2 of the present invention exhibit stable discharge characteristics and high discharge capacity as compared with the batteries of Comparative Examples 1-6.
Although the expanded metal is used for the metal current collector 5 in the above embodiment, the same effect can be obtained with a punched metal or a wire mesh.
[0026]
【The invention's effect】
As described above, according to the present invention, an oxyhalide-lithium battery having stable discharge characteristics and high energy density is obtained by using a metal current collector that is corrosion resistant and hardly deforms. Can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an AA size thionyl chloride-lithium battery.
FIG. 2 is a diagram showing internal impedance measured at a frequency of 1 kHz after storing batteries of Examples and Comparative Examples at 60 ° C. for 20 days.
FIG. 3 is a graph showing discharge characteristics when batteries of Examples and Comparative Examples are continuously discharged at 20 ° C.-1 kΩ.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery container which served as negative electrode terminal, 2 ... Metal lithium, 3 ... Separator, 4 ... Porous carbon material, 5 ... Metal collector, 6 ... Battery cover, 7 ... Pipe-shaped positive electrode terminal, 8 ... Glass Seal material 9 ... Insulating paper, 10 ... Lead wire, 11 ... Thionyl chloride solution, 12 ... Sealing body, 13 ... Thin part.

Claims (2)

筒状の多孔質炭素材の内側に圧着成形される金属製集電体としてクロム15.0〜21.0重量%及びニッケル6.0〜15.0重量%を含有するSUS304オーステナイト系ステンレス鋼からなるエキスパンドメタルを用いたことを特徴とするオキシハライド−リチウム電池。 A cylindrical porous chromium 15.0 to 21.0 wt% and nickel 6.0 to 15.0 containing wt% SUS304 austenitic stainless steel as a metallic current collector to be crimped molded on the inside of the carbon material An oxyhalide-lithium battery characterized by using an expanded metal . 筒状の多孔質炭素材の内側に圧着成形される金属製集電体としてクロム15.0〜21.0重量%、モリブデン1.0〜2.5重量%を含有し、さらにチタン、タンタル、ニオブ及びジルコニウムの群から選択された元素を総和で0.1〜1.0重量%含有するSUS444フェライト系ステンレス鋼からなるエキスパンドメタルを用いたことを特徴とするオキシハライド−リチウム電池。 As a metal current collector formed by pressure molding inside a cylindrical porous carbon material, it contains chromium 15.0 to 21.0 wt%, molybdenum 1.0 to 2.5 wt%, titanium, tantalum, 1. An oxyhalide-lithium battery comprising an expanded metal made of SUS444 ferritic stainless steel containing a total of 0.1 to 1.0% by weight of elements selected from the group of niobium and zirconium.
JP3893397A 1997-02-24 1997-02-24 Oxyhalide-lithium battery Expired - Fee Related JP4104692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3893397A JP4104692B2 (en) 1997-02-24 1997-02-24 Oxyhalide-lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3893397A JP4104692B2 (en) 1997-02-24 1997-02-24 Oxyhalide-lithium battery

Publications (2)

Publication Number Publication Date
JPH10241694A JPH10241694A (en) 1998-09-11
JP4104692B2 true JP4104692B2 (en) 2008-06-18

Family

ID=12539040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3893397A Expired - Fee Related JP4104692B2 (en) 1997-02-24 1997-02-24 Oxyhalide-lithium battery

Country Status (1)

Country Link
JP (1) JP4104692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT4810U1 (en) * 2001-05-31 2001-11-26 Plansee Ag CURRENT COLLECTOR FOR SOFC FUEL CELLS

Also Published As

Publication number Publication date
JPH10241694A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US20080131763A1 (en) Electrode with Reduced Resistance Grid and Hybrid Energy Storage Device Having Same
JP4104692B2 (en) Oxyhalide-lithium battery
JPH06223872A (en) Negative electrode chamber of sodium-sulfur battery
JPH09161837A (en) Cylindrical battery
JPH11144742A (en) Electrode
JP3902330B2 (en) Cylindrical battery
JPH069140B2 (en) Spiral type non-aqueous electrolyte battery
JPH0631646Y2 (en) Flat type battery
JP4366541B2 (en) Oxyhalide-lithium battery
CN217114441U (en) Battery cathode structure and battery thereof
JP4291915B2 (en) Inside-out cylindrical battery
JPH05242908A (en) Metal hydride storage battery
JP3468538B2 (en) Organic electrolyte battery
JP3449663B2 (en) Battery
JP3395942B2 (en) Battery having wound electrode body
JP2000315490A (en) Storage battery
JP3265941B2 (en) Sodium sulfur battery and battery system using the same
JPH06223873A (en) Negative electrode chamber of sodium-sulfur battery
JPH0562434B2 (en)
JP3098534B2 (en) Cylindrical lithium secondary battery
JP2771580B2 (en) Manufacturing method of lithium alloy plate
JPH0434852A (en) Nonaqueous electrolyte secondary battery
JP2001035457A (en) Sodium-sulfur battery
JP2986945B2 (en) Inorganic non-aqueous electrolyte battery
JPH0329884Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees