JP4104556B2 - Tissue regeneration substrate, transplantation material, and production method thereof - Google Patents

Tissue regeneration substrate, transplantation material, and production method thereof Download PDF

Info

Publication number
JP4104556B2
JP4104556B2 JP2003572612A JP2003572612A JP4104556B2 JP 4104556 B2 JP4104556 B2 JP 4104556B2 JP 2003572612 A JP2003572612 A JP 2003572612A JP 2003572612 A JP2003572612 A JP 2003572612A JP 4104556 B2 JP4104556 B2 JP 4104556B2
Authority
JP
Japan
Prior art keywords
polyrotaxane
group
cells
tissue regeneration
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003572612A
Other languages
Japanese (ja)
Other versions
JPWO2003074099A1 (en
Inventor
伸彦 由井
雅一 加藤
里佳 福島
Original Assignee
伸彦 由井
株式会社 ジャパン・ティッシュ・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸彦 由井, 株式会社 ジャパン・ティッシュ・エンジニアリング filed Critical 伸彦 由井
Publication of JPWO2003074099A1 publication Critical patent/JPWO2003074099A1/en
Application granted granted Critical
Publication of JP4104556B2 publication Critical patent/JP4104556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polyethers (AREA)

Description

技術分野
本発明は、整形外科、口腔外科、形成外科などの医療分野に広く利用可能な組織再生用基材、移植用材料及びその製法に関する。
背景技術
近年、再生医療や組織工学が注目されている。組織工学では、細胞増殖の足場として組織再生用基材が重要な役割を担っている。組織再生用基材に求められる機能としては、生体親和性、分解性、力学的強度などがある。
従来、このような組織再生用基材として、コラーゲンやポリグリコール酸などが知られているが、動物由来のマトリクスでは未知のウイルスなどの感染性が否定できないこと、一方、人工物であっても分解産物が炎症反応を誘起する可能性があること、更に、分解・消失の時間制御が困難であることなどが未だ解決されていない。
これらの問題を解決するために、本発明者らはWO02/02159(国際公開公報)において、複数の環状分子を貫通させた線状分子の両末端に加水分解性結合を介して嵩高い置換基を有する生体親和性基が導入されたポリロタキサン、又は、このポリロタキサンにつき隣接するポリロタキサン1分子中に含まれる環状分子同士、生体親和性基同士もしくは環状分子と生体親和性基とを架橋結合で架橋して網目構造としたポリロタキサンヒドロゲルからなる組織再生用基材を提案している。
しかしながら、前出の公報で提案した組織再生用基材では、細胞接着性が十分でないことがあり、細胞播種において効率よく組織再生用基材に細胞を保持させることが難しいことがあった。
本発明は上記問題点を解決することを課題とするものであり、細胞接着性を向上させた組織再生用基材を提供することを目的の一つとする。また、良好に組織を再建できる移植用材料を提供することを目的の一つとする。更に、そのような移植用材料の製法を提供することを目的の一つとする。
発明の開示
本発明の第1は、複数の環状分子を貫通させた線状分子の両末端に加水分解性結合を介して嵩高い置換基を有する生体親和性基が導入されたポリロタキサン、又は、このポリロタキサンにつき隣合うポリロタキサン1分子中に含まれる環状分子同士、生体親和性基同士もしくは環状分子と生体親和性基とを架橋結合で架橋して網目構造としたポリロタキサンヒドロゲルからなる組織再生用基材において、前記複数の環状分子には細胞接着性を付与する修飾基を有するものがあることを特徴とする。
この組織再生用基材を用いて例えば軟骨細胞を培養すると、細胞は軟骨細胞様の形態を維持しながら増殖する。また、この組織再生用基材を単体で生体内に移植しても細胞形態や増殖を阻害することがほとんどないため組織再生が可能である。特に、環状分子が細胞接着性を付与する修飾基を有しているため、このような修飾基がない場合に比べて細胞を効率よく保持することができる。
本発明の組織再生用基材において、線状分子や環状分子は生体親和性(生体にほとんど害を与えない性質)を有するものであれば特に限定されないが、線状分子としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールとの共重合体、及びポリメチルビニルエーテルからなる群より選ばれる一種又は二種以上であることが好ましい。このように構成する環状分子や線状分子として、生体親和性に優れているものを選ぶことにより、合成されたポリロタキサンやポリロタキサンヒドロゲルは生体親和性に優れ、組織再生用移植材料として適している。また、平均分子量は200〜100000、特に400〜5000であることが好ましい。環状分子としては、α、β又はγ−シクロデキストリンであることが好ましいが、これと類似の環状構造を持つものであってもよく、そのような環状構造としては環状ポリエーテル、環状ポリエステル、環状ポリエーテルアミン、環状ポリアミン等が挙げられる。線状分子と環状分子の組み合わせとしては、α−シクロデキストリンとポリエチレングリコールとの組合せが好ましい。
本発明の組織再生用基材において、加水分解性結合としては、生体内で加水分解する結合であればどのような結合であってもよい。このうち、生体内で速やかに非酵素的に加水分解することを考慮すればエステル結合であることが好ましい。
組織再生用基材がポリロタキサンヒドロゲルの場合、架橋結合はウレタン結合、アミド結合、カルバミド結合、エーテル結合、スルフィド結合又はシッフ塩基型結合が好ましい。また、架橋結合は、環状分子同士を架橋する場合、加水分解性結合よりも水に対して安定であることが好ましい。これは、先に加水分解性結合が分解して線状分子の両末端から嵩高い置換基を有する生体親和性基が外れ、架橋結合された環状分子が一度期に脱離することにより、良好な分解パターンが得られるからである。
本発明の組織再生用基材において、線状分子の両末端の生体親和性基としては、生体に対する親和性が高い基(生体に対して安全性の高い基)であればどのような基であってもよいが、例えばアミノ酸、オリゴペプチド、オリゴ糖類又は糖誘導体であることが好ましい。アミノ酸としては、例えばアラニン、バリン、ロイシン、イソロイシン、メチオニン、プロリン、フェニルアラニン、トリプトファン、アスパラギン酸、グルタミンサン、グリシン、セリン、スレオニン、チロシン、システイン、リジン、アルギニン、ヒスチジン等が挙げられる。また、オリゴペプチドとしては、前出のアミノ酸の複数がペプチド結合して形成されたもの等が挙げられる。また、オリゴ糖類としては、繰り返し単位が1〜5であり、構成多糖としてデキストラン、ヒアルロン酸、キチン、キトサン、アルギン酸、コンドロイチン硫酸、でんぷんからなるもの等が挙げられる。更に、糖誘導体としては、オリゴ糖類、多糖又は単糖をアセチル化やイソプロピル化等の化学修飾した化合物等が挙げられる。このうち、ベンゼン環を有するアミノ酸、例えばL−フェニルアラニン、L−チロシン、L−トリプトファン等が好ましい。
本発明の組織再生用基材において、生体親和性基の嵩高い置換基としては、線状分子から環状分子が抜け落ちるのを防止できればどのような基であってもよいが、例えば1以上のベンゼン環を有する基又は1以上の第三ブチルを有する基が好ましい。1以上のベンゼン環を有する基としては、例えばベンジルオキシカルボニル(Z)基、9−フレオレニルメチルオキシカルボニル(Fmoc)基、ベンジルエステル(OBz)基等が挙げられ、また、1以上の第三ブチルを有する基としては、第三ブチルカルボニル(Boc)基、アミノ酸第三ブチルエステル(OBu基)等が挙げられるが、このうち、ベンジルオキシカルボニル基が好ましい。
本発明の組織再生用基材としては、上記線状分子がポリエチレングリコール、上記環状分子がα−シクロデキストリン、上記加水分解性結合がエステル結合、上記嵩高い置換基を有する生体内分解性基がベンジルオキシカルボニル−L−フェニルアラニンであることが特に好ましい。なお、α−シクロデキストリンをポリエチレングリコールに貫通させる場合、α−シクロデキストリンとポリエチレングリコールの繰り返し単位(エチレンオキシド単位)の比の化学量論数は1:2といわれている。
本発明の組織再生用基材において、前記修飾基は、正に荷電する基であることが好ましい。一般に、細胞はプラス及びマイナスの両電荷を有しているもののマイナスの電荷が多いことが知られており全体的には負電荷を有していることから、修飾基として正に荷電して正電荷を持つ基を導入すれば細胞接着性が向上し、細胞を効率よく保持することができるため好ましい。
本発明の組織再生用基材において、前記修飾基は、窒素原子を含む基であることが好ましい。窒素原子は正に荷電してカチオン化する性質を有していることから、負電荷を有している細胞との接着性が向上し、細胞を効率よく保持することができるため好ましい。窒素原子を含む基としては、例えば以下のアミノ化剤によって環状分子に導入されるアミノ基が挙げられる。即ち、ヒドラジン、1,2−ジアミノエタン(エチレンジアミン)、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノプロパン、1,6−ジアミノヘキサンなどのジアミンアルカン類、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミンなどのジアミノベンゼン類、ポリリジン、ポリビニルアミン、キトサンなどのポリアミン類(複数のアミノ基を有する高分子化合物)などが挙げられる。
前記修飾基がアミノ基の場合において、ポリロタキサンヒドロゲルへのアミノ基の導入割合と、組織再生用基材を用いて所定の細胞を培養したときの細胞増殖状態又はグリコサミノグリカン産生状態との相関関係を予め求めておき、該相関関係に照らして所望の細胞増殖状態又はグリコサミノグリカン産生状態となるようにアミノ基の導入割合を設定してもよい。例えば、採取細胞の量が多いときには細胞増殖能は低くてもグリコサミノグリカンの産生能が高いアミノ基の導入割合を採用し、採取細胞の量が少ないときにはグリコサミノグリカンの産生能が低くても細胞増殖能が高いアミノ基の導入割合を採用してもよい。
その他に、前記修飾基は、ポリカチオンであってもよい。この場合も、負電荷を有している細胞との接着性が向上し、細胞を効率よく保持することができるため好ましい。ポリカチオンは正電荷を多数有する高分子化合物であり、例えば四級アンモニウムを含む高分子化合物などが挙げられる。
本発明の組織再生用基材において、前記修飾基は、疎水性の基であることが好ましい。一般に、修飾基として疎水性基を導入すれば細胞接着性が向上し、細胞を効率よく保持することができるため好ましい。
本発明の組織再生用基材において、前記修飾基は、アシル基、コレステロール、トリグリセリド、リン脂質、グリセロ糖脂質及びスフィンゴ糖脂質からなる群より選ばれた1種又は2種以上であることが好ましい。これらの基は水酸基を保護することにより疎水性になることから細胞接着性が向上し、細胞を効率よく保持することができるため好ましい。このうちアシル基としては、例えば以下のアシル化剤によって環状分子に導入される基が挙げられる。即ち、無水酢酸、無水プロパン酸、無水ブタン酸、無水安息香酸などの酸無水物、酢酸クロリドなどの酸ハライドなどが挙げられるが、このうち酸無水物が好ましい。
本発明の組織再生用基材は、複数のシクロデキストリンを貫通させた線状分子の両末端に加水分解性結合を介して嵩高い置換基を有する生体親和性基が導入されたポリロタキサンとN,N’−カルボニルジイミダゾールとを反応させて得られた反応生成物に、ポリエチレングリコールビスアミンおよびアミノ化剤を反応させることにより得られたものであってもよい。このようにして得られた化合物はポリロタキサンヒドロゲルがアミノ化されたものであるため、ヒドロゲル内に正電荷が導入されて細胞接着性が向上する。なお、線状分子、加水分解性結合、嵩高い置換基及び生体親和性基としては、前述したものを採用してもよい。
本発明の組織再生用基材は、複数のシクロデキストリンを貫通させた線状分子の両末端に加水分解性結合を介して嵩高い置換基を有する生体親和性基が導入されたポリロタキサンとN,N’−カルボニルジイミダゾールとを反応させて得られた反応生成物に、ポリエチレングリコールビスアミンおよびアシル化剤を反応させることにより得られたものであってもよい。このようにして得られた化合物はポリロタキサンヒドロゲルがアシル化されたものが得られるため、疎水性が増して細胞接着性が向上する。なお、線状分子、加水分解性結合、嵩高い置換基及び生体親和性基としては、前述したものを採用してもよい。
本発明の組織再生用基材は、細胞を培養又は組み込み可能な形態であれば特にどのような形態であろうと限定されない。例えばシート状にしてその上に細胞を播種したり、細胞とともにゲル状にして細胞を包埋したり、ゲル状にしてその上に細胞を播種したり、溶媒に溶かしてその溶液に細胞を播種したり、溶媒に懸濁させてその懸濁液に細胞を播種したりしてもよい。特に、細胞を保持・培養しやすくする点を考慮すれば、ポリロタキサン又はポリロタキサンヒドロゲルの多孔体を用いることが好ましい。このときの孔については細胞を保持できる大きさ・密度であれば特に限定されない。また、細胞と組み合わせず組織再生用基材を単体で生体内に移植する場合にも、組織再生用基材の形態が限定されることはない。好ましくは移植周辺組織からの細胞が増殖するのに好適な環境を与えるため、多孔体にすることが好ましい。その際、孔の大きさ、密度は移植周辺組織から細胞が侵入し、細胞増殖や基質産生等の組織再生するのに適当な大きさ、密度とすればよく、特に限定はされない。また、多孔体の製法としては、周知の方法を適用可能であり、例えば、炭酸水素ナトリウム存在下でゲル化する方法や、含水ヒドロゲルを真空凍結乾燥する方法等が適用可能である。
本発明の組織再生用基材は特にどのような細胞の培養又は組み込みに用いてもよいが、例えば、接着依存性細胞であることが好ましく、例えば、軟骨細胞、骨芽細胞、線維芽細胞、表皮細胞、上皮細胞、脂肪細胞、肝細胞、膵細胞、筋細胞又はこれらの前駆細胞や、間葉系幹細胞、胚性幹細胞(ES細胞)等が挙げられる。これらの細胞は移植対象部位に応じて単独で用いてもよいし2種以上を用いてもよい。これらの細胞は、細胞種に応じた公知の採取方法によって生体から採取すればよく、また、採取された細胞をそのまま使用してもよいし、適当な培地で所定期間培養することで増殖または分化させたあとに組織再生用基材に播種してもよい。
本発明の組織再生用基材を用いて組織を再生する方法としては、組織再生用基材を単体で使用する方法や、この組織再生用基材に単に細胞を組み込み使用する方法や、この組織再生用基材で細胞を培養して使用する方法などが挙げられる。また、細胞を固定化する方法としては、例えば、ポリロタキサンヒドロゲルにあっては高濃度の細胞培養液を添加しゲルの膨潤と共に細胞をゲル孔内へ取り込ませることにより固定化する方法、回転培養する方法、細胞を播種したあと細胞に影響を与えない程度に減圧することにより固定化する方法などが挙げられる。
本発明の組織再生用基材に細胞が培養されているか又は細胞が組み込まれた移植用材料を用いれば、組織再生用基材を単体で使用するよりも早期に組織再生が可能となる。この移植用材料を製造する方法としては、特にどのような製造方法でもよいが、前記組織再生用基材を使用目的に応じて適当な大きさ又は形状にしたあと、この組織再生用基材に細胞を培養するか組み込むことにより移植用材料を得ることが好ましい。例えば、耳の軟骨の再建に用いる場合には、耳の適用部位に適合するよう整形・加工した組織再生用基材に細胞懸濁液を注入して、一定期間培養して移植用材料としてもよい。この場合、この移植用材料は耳の適用部位に埋め込まれる。逆に、組織再生用基材に細胞を培養又は組み込んだあと、この移植用材料を利用時又は出荷時に適応部位に応じた適切な大きさ又は形状にしてもよい。
本発明の組織再生用基材に例えば軟骨細胞が培養された移植用材料では、培養細胞は軟骨細胞様の形態を維持しながら増殖し、軟骨基質を豊富に産生している。軟骨組織は、軟骨細胞とその細胞が産生する基質によって主に修復されるため、予めこれらが豊富に含有されていることは、その移植用材料が高い組織再生能力を有することを意味している。このように、培養操作を行った場合には、組織修復に必要な細胞を増殖させること、あるいは、細胞の産生物質(基質や成長因子など)を移植用材料中に担持できる点で好ましいが、何らかの理由によって細胞が死滅した場合でも、細胞が産生した基質や成長因子は移植用材料中に残存するため組織再生には有効である。さらに、前記組織再生用基材に例えば軟骨細胞を播種しただけ、即ち、培養せずに単に組み込んだだけでも、細胞の形態が維持されるために移植直後からこれらの細胞が組織再生に機能し、移植用材料として有効である。
発明を実施するための最良の形態
[実施例1]ポリロタキサンの合成(図1参照)
[1−1]両末端にアミノ基を有するPEGの合成
分子量3300のポリエチレングリコール(PEG)(33g,10mmol)と無水コハク酸(20g,200mmol)をトルエン(220ml)に溶解させ、この溶液を150℃で5時間還流させた。反応終了後、過剰のジエチルエーテルに注ぎ込み、濾別・減圧乾燥して粗生成物を得た。これをジクロロメタンに溶解させ、不溶物を遠心分離により除去し、過剰のジエチルエーテルに注ぎ込んで、濾別・減圧乾燥後に両末端にカルボキシル基を有するPEG(化合物A)を白色粉末として得た。この化合物A(20g,5.7mmol)とN−ヒドロキシスクシンイミド(HOSu)(17.1g,148.2mmol)を1,4−ジオキサンとジクロロメタンの混合溶液(350ml,体積比1:1)に溶解させ、氷冷後ジシクロヘキシルカルボジイミド(DCC)(23.5g,114mmol)を加えた。氷冷したまま1時間攪拌し、その後室温で終夜攪拌した。副生成物のジシクロヘキシルウレアを濾別し、濾液は濃縮してから過剰のジエチルエーテルに注ぎ込んだ。濾別・減圧乾燥後にカルボキシル基が活性化されたPEG(化合物B)を白色粉末として得た。次いで、エチレンジアミン(0.4ml,6mmol)を溶解させたジクロロメタン(75ml)に、化合物B(10g,2.7mmol)を溶解させたジクロロメタン(75ml)を滴下し、滴下終了後から室温で1時間攪拌した。反応終了後、溶液を過剰のジエチルエーテルに注ぎ込み、濾別・減圧乾燥後に両末端にアミノ基を有するPEG(化合物C)を白色粉末として得た。
[1−2]擬ポリロタキサンの調製
α−シクロデキストリン(α−CD)(48g,49.2mmol)の飽和水溶液(311ml)に化合物C(4g,1.12mmol)の水溶液(20ml)を室温で滴下した。1時間超音波を照射しながら攪拌し、その後室温で24時間攪拌した。遠心分離により白色の沈殿物を回収し、50℃で減圧乾燥を行い、白色粉末の擬ポリロタキサンを得た。なお、ポリロタキサンとは、多数の環状分子(例えばシクロデキストリン)に線状分子(例えばPEG)が貫通し、その線状分子の両末端を嵩高い置換基でキャップしたものをいい、擬ポリロタキサンとは、ポリロタキサンの両末端を未だ嵩高い置換基でキャップしていないものをいう。
[1−3]末端キャップ剤の調製
α−CDの脱離を防止する嵩高い置換基としてベンジルオキシカルボニル−L−フェニルアラニン(Z−L−Phe、Zはベンジルオキシカルボニル基を表す)を導入するために、Z−L−Pheのカルボキシル基の活性化を行った。すなわち、Z−L−Phe(100g,334mmol)を1,4−ジオキサン(800ml)に溶解させ、氷冷しながらHOSu(38.42g,334mmol)を加えた。1時間後にDCC(75.7g,367mmol)を溶解させた1,4−ジオキサン溶液(200ml)をゆっくり加え、氷冷したまま1時間攪拌し、その後室温で終夜攪拌した。副生成物のジシクロヘキシルウレアを濾別し、濾液は濃縮してから過剰のジエチルエーテルに注ぎ込み、濾別・減圧乾燥後に粗生成物を得た。室温でできるだけ飽和濃度になるように粗生成物をジクロロメタンに溶解させた後、石油エーテルを適量加え冷蔵し、再結晶を行った。結晶を濾別・減圧乾燥して白色針状結晶のZ−L−Pheのスクシンイミドエステル(Z−L−Phe−OSu)を得た。
[1−4]ポリロタキサンの調製
Z−L−Phe−OSu(80g,200mmol)をジメチルスルフォキシド(DMSO)(60ml)に溶解させ、擬ポリロタキサン(45g、2mmol)を加えた。この不均一溶液を室温で攪拌しながら、均一になるように少しずつDMSOを加えて96時間攪拌した。反応終了後、反応溶液を過剰のジエチルエーテルに注ぎ込み、粗生成物を得た。粗生成物をアセトン、ジメチルホルムアミド(DMF)の順で洗浄して不純物(未反応Z−L−Phe−OSu、α−CD、化合物Cなど)を除去し、濾別・減圧乾燥して生分解性のポリロタキサンを白色粉末として得た。合成の確認は、1H−NMRにより行った。また、このポリロタキサンのα−CD貫通数を1H−NMRでのPEGのプロトンとα−CDの1位のプロトンとの積分比から求めたところ、23であった。
[実施例2]CDI活性化ポリロタキサンの調製(図2参照)
実施例1で得られたポリロタキサン(1g,0.0369mol,CD=0.871mmol,OH=15.6mmol)をDMSO(10ml)に窒素雰囲気下で溶解させ、N,N’−カルボニルジイミダゾール(CDI)2.54g(15.6mmol;ポリロタキサン中の水酸基と等量)を加え、窒素雰囲気下室温で反応を行い、3時間経過後エーテルに滴下して白色沈殿物を生成させ、これをろ過し室温で減圧乾燥して白色粉末のCDI活性化ポリロタキサン(CDI−PR)を得た。このCDI−PRの活性化率を紫外吸光分光計を用いて207nmの吸光度から算出したところ、91.37%であった。
[実施例3]アミノ化ヒドロゲルの調製(図3参照)
実施例2で得られたCDI−PR2.347g(ポリロタキサンとして1g)をDMSO5mlに溶解させ、そこへ融解した両末端にアミノ基を有するポリエチレングリコール(PEG−BA,平均分子量2000)1.7426gを加えて撹拌した。さらに炭酸水素ナトリウム30gを加え、よく撹拌した後に、ポリテトラフルオロエチレン製のスペーサ(直径1.3cm,深さ1cm)に0.8gずつ入れて、35℃で1日ゲル化反応を行い、ポリロタキサンヒドロゲルとした。反応終了後、エチレンジアミン5mlをDMSO500mlに溶解した溶液にこのポリロタキサンヒドロゲルを加えて、25℃で12時間アミノ化反応を行った。ここで、ゲル化反応において未反応の活性化部位に対してエチレンジアミンが付加することでアミノ化されると考えられる。アミノ化反応終了後、反応生成物を20重量%のクエン酸水溶液に浸漬して、炭酸水素ナトリウムの発泡および溶出を9時間行うことにより多孔質化を行った。発泡・溶出終了後に得られた反応生成物を蒸留水で洗浄し、エタノールで脱水和を行い、最後に凍結乾燥してアミノ化ヒドロゲルを得た。このアミノ化ヒドロゲルの推定構造を図3に示す。
[実施例4]アセチル化ヒドロゲルの調製(図4参照)
実施例2で得られたCDI−PR2.347g(ポリロタキサンとして1g)をDMSO5mlに溶解させ、そこへ融解した両末端にアミノ基を有するポリエチレングリコール(PEG−BA,平均分子量2000)1.7426gを加えて撹拌した。さらに炭酸水素ナトリウム30gを加え、よく撹拌した後に、ポリテトラフルオロエチレン製のスペーサ(直径1.3cm,深さ1cm)に0.8gずつ入れて、35℃で1日ゲル化反応を行い、ポリロタキサンヒドロゲルとした。反応終了後、無水酢酸25mlとピリジン37.5mlをDMSO500mlに溶解した溶液にこのポリロタキサンヒドロゲルを加えて、25℃で12時間アセチル化反応を行った。ここで、ゲル化反応において未反応の活性化部位と未活性の水酸基に対してアセチル基が導入されると考えられる。アセチル化反応終了後、反応生成物を20重量%のクエン酸水溶液に浸漬して、炭酸水素ナトリウムの発泡および溶出を9時間行うことにより多孔質化を行った。発泡・溶出終了後に得られた反応生成物を蒸留水で洗浄し、エタノールで脱水和を行い、最後に凍結乾燥してアセチル化ヒドロゲルを得た。このアセチル化ヒドロゲルの推定構造を図4に示す。
[実施例5]ポリリジン固定化ヒドロゲルの調製(図5参照)
ポリε−リジンは、有機溶媒に溶解しないためα−CDと反応させて擬ポリロタキサン型ポリリジンとしたあと反応系に添加した。即ち、予めポリε−リジンとα−CDとを反応させて擬ポリロタキサン型ポリリジンとし、これをアミノ化剤とした。この擬ポリロタキサン型ポリリジン1.7833g(0.0738mmol;ポリロタキサンの2等量)と実施例2で得られたCDI−PR2.347g(ポリロタキサンとして1g)をDMSO5mlに溶解させ、そこへ融解した両末端にアミノ基を有するポリエチレングリコール(PEG−BA,平均分子量2000)1.7426gを加えて撹拌した。さらに炭酸水素ナトリウム30gを加え、よく撹拌した後に、ポリテトラフルオロエチレン製のスペーサ(直径1.3cm,深さ1cm)に0.8gずつ入れて、35℃で1日ゲル化反応を行った。DMSO中では擬ポリロタキサン型ポリリジンの解離が生起するため、ポリε−リジンのアミノ基が露出されてCDI−PRとの反応が進行しゲル内に固定化される。ゲル化反応終了後に、反応生成物を20重量%のクエン酸水溶液に浸漬して、炭酸水素ナトリウムの発泡および溶出を9時間行うことにより多孔質化を行った。発泡・溶出終了後に反応生成物を蒸留水で洗浄し、エタノールで脱水和を行い、最後に凍結乾燥してポリε−リジン固定化ヒドロゲルを得た。このポリε−リジン固定化ヒドロゲルの推定構造を図5に示す。
[実施例6]接着効率の測定
実施例3で得たアミノ化ヒドロゲルと、実施例3においてアミノ化反応を省略して得たヒドロゲル(以下、非修飾ヒドロゲルという)とを用いて細胞培養実験を行った。即ち、アミノ化ヒドロゲルおよび非修飾ヒドロゲルの各々を12分割し、十分に水洗後、70%エタノールに30分間浸漬して滅菌した。その後、培養用シャーレに移し、滅菌缶の中で蓋を開封した状態にして50℃で一晩乾燥した。分割した各ヒドロゲルに1×10cells/mLに調整したウサギ軟骨細胞懸濁液を20μL滴下した。この状態で30分間放置した後、24穴プレートに移し、培養用培地2mLを加えた。また、検量線作成のために、6.4×10cells/mLの細胞懸濁液を調整し、24穴プレートに6.4×10〜1×10cells/100mL/ウェルとなるように調整した。
接着効率の測定は、各ヒドロゲルから零れ落ちた細胞数をMTTアッセイで計測することにより行った。MTTアッセイでは、MTT試薬が細胞内酵素活性によって還元されてフォルマザンが生成されることからフォルマザンは生細胞数の酵素活性に相関しているため、フォルマザンの吸光度を測定することにより細胞数を計測することができる。まず、播種24時間後の培養していた各ヒドロゲル入りの24穴プレートを、37℃に設定したマイクロプレートミキサで2時間撹拌した。この操作により接着せずに溜まっている細胞をヒドロゲルより洗い出した。その後、ヒドロゲルを別の24穴プレートに移し、培養用培地2mLを各穴に加えて軟骨細胞培養実験に供した。
一方、零れ落ちた(洗い出した)細胞が存在する24穴プレートには、MTT試薬50μLを各穴に滴下し、マイクロインキュベータで24時間攪拌しながら培養した。培養後、MTTが細胞内脱水素酵素により還元されて生成するフォルマザンを0.04mol/LのHCl/イソプロパノール1000μLで可溶化して、溶液200μLを96穴プレートに移して吸光度(A570/650)を測定し、接着効率の測定を行った。検量線用プレートも同様の操作で処理した。その結果、図6に示すように、アミノ化ヒドロゲルで培養したものは検出限界以下であったのに対し、非修飾ヒドロゲルで培養したものは播種細胞数に対し42.6%が非修飾ヒドロゲルに取り込まれずに零れ落ちた結果となった。なお、MTTは3−(4,5−ジメチル−2−チアゾイル)−2,5−ジフェニル−2H−テトラゾリウムブロマイドの略である。
[実施例7]細胞増殖性の評価
軟骨細胞培養実験に供した24穴プレートでは、37℃、5%CO2インキュベータ内で21日間静置培養を行った。培養中は、経時的に顕微鏡観察を行い、MTTアッセイによる細胞数の計測を行った。その結果、アミノ化ヒドロゲルで培養したものと非修飾ヒドロゲルで培養したものとではほぼ同様の増殖曲線が得られた。ただし、培養21日後以降は、アミノ化ヒドロゲルで培養したものの方が非修飾ヒドロゲルで培養したものに比べ生細胞数が多くなり、培養28日後には非修飾ヒドロゲル中の生細胞数は1.8×10cells/担体(n=3)であったのに対し、アミノ化ヒドロゲル中の生細胞数は2.7×10cells/担体(n=1)と、ほぼ1.5倍の細胞数となった。
また、アミノ化ヒドロゲルで培養したものと非修飾ヒドロゲルで培養したものの培養28日後のアルシァンブルーによる染色像を撮影したところ、いずれも強度のアルシァンブルー陽性像が得られ、軟骨基質(酸性ムコ多糖(グリコサミノグリカン)類)が産生していることが確認できた。ただし、アミノ化ヒドロゲルで培養したものでは、アルシァンブルー陽性部位が担体全体に連続していたのに対し、非修飾ヒドロゲルで培養したものでは、細胞コロニーが散在しそのコロニー周囲にアルシァンブルー陽性部位が限定されており、両者は明確に差別化することができた。
[実施例8]アミノ基量と細胞増殖能との相関及びアミノ基量とグリコサミノグリカン産生能との相関
エチレンジアミンによりアミノ基を導入したアミノ化ヒドロゲルとして、実施例3に準じて下記表に示すコード番号Amino−2〜7を作製した。ここで、Amino−1はコントロールであり、エチレンジアミンによるアミノ基の導入を行っていないポリロタキサンヒドロゲルである。下記表中、アミノ基量とは、ドライゲル1gに対するアミノ基のμmol数を表す数値である。表中のAmino−1では、アミノ基を導入していないにもかかわらずアミノ基量が12μmol/g程度となっているが、これはアミノ化前のポリロタキサンヒドロゲル中に含まれるNHによるものと思われる。このため、Amino−2〜7のアミノ基の導入割合は、各アミノ基量からAmino−1のアミノ基量を差し引いた値と推定される。

Figure 0004104556
各コードのポリロタキサンヒドロゲルを用いた細胞培養は以下のようにして行った。即ち、各コードのポリロタキサンヒドロゲルを4分割し、十分に水洗後(蒸留水中での撹拌(30分間)を4度行った)、70%エタノールに30分間浸漬して滅菌した。その後、24穴プレートに移し、安全キャビネット内で一晩送風乾燥した。このポリロタキサンヒドロゲルに1×10cells/mLに調整したウサギ軟骨細胞液を20μL滴下した。30分間放置した後、培養用培地を加えた。また、検量線作成のために、6.4×10cells/mLの細胞懸濁液を調整し、24穴プレートに6.4×10〜1×10cells/1000μL/wellの範囲で播種した。37℃、5%COインキュベータ内で24日間静置培養を行った。培地交換は3〜4日ごとに行った。
生細胞数の測定は以下のようにして行った。即ち、24穴プレートから各コードのポリロタキサンヒドロゲルにつきそれぞれ4つずつ取り出し、新たな24穴プレートに入れて10%FBS/PBS1mLとMTT溶液100μLを添加し、マイクロインキュベータで24時間撹拌しながら培養した。0.04mol/L HCl/イソプロパノール1mLを加えて撹拌しながら生成フォルマザンを可溶化させた。96穴プレートに200μLずつ入れて吸光度(A570/650)を測定し、測定した吸光度を別途作成した検量線に照らして生細胞数を求めた。
グリコサミノグリカン(GAG)の定量は以下のようにして行った。即ち、24穴プレートから各コードのポリロタキサンヒドロゲルにつきそれぞれ4つずつ取り出し、48穴プレートにPBS0.5mLと共に入れた。2時間マイクロインキュベータで撹拌しながら洗浄した。この洗浄操作をもう一度繰り返した後、一昼夜4℃で保管した。PBSを吸引後、細胞分散液0.5mLを添加し、マイクロインキュベータで3時間撹拌しながらインキュベーションし、細胞基質を分解した。測定には、簡易型・酸性ムコ多糖定量キット(ホクドー社製)を用いた。まず、未知検体100μLをマイクロ遠心チューブに入れ、用事調製(緩衝液53.6mLに対して発色原液1.7mLを加えて撹拌)した反応溶液1.3mLを添加し撹拌した。5〜20分後の反応液200μLを96穴プレートに移して直ちに吸光度(650nm)を測定し、測定した吸光度を別途作成した検量線に照らしてGAGの産生量を求めた。なお、検量線を作成する際には、標準溶液を100,40,20,10,5,2.5,1.25μg/mLの濃度に調製し、未知検体と同様に操作した。
これらの結果を図8及び図9に示す。図8は、生細胞数の測定結果に基づき、アミノ基量と細胞増殖能(培養0日目に対する比率)との関係をグラフ化したものであり、図9は、GAGの定量結果に基づき、アミノ基量とGAG産生能との関係をグラフ化したものである。これらの図から明らかなように、細胞増殖能についてはアミノ基量が高い方(65〜90μmol/g)が良好であったのに対して、GAG産生能についてはアミノ基量が低い方(75μmol/g以下)が良好であった。ちなみに、アミノ基量と1細胞あたりのGAG産生量との関係をグラフ化したところ、図10に示すようにアミノ基量が高くなるに従い、1細胞あたりのGAG産生量が低くなる傾向を示した。
以上の結果から、例えば、採取した細胞の量が多いときには、細胞増殖能は低くてよいがグリコサミノグリカンの産生能は高い方が好ましいことがあるため、これに見合ったアミノ基量、具体的には図8及び図9からアミノ基量が75μmol/g以下、又はアミノ基の導入割合が63μmol/g以下を採用するようにしてもよい。また、採取した細胞の量が少ないときには、グリコサミノグリカンの産生能が低くても細胞増殖能は高い方が好ましいため、これに見合ったアミノ基量、具体的には図8及び図9からアミノ基量が65〜90μmol/g、又はアミノ基の導入割合が53〜78μmol/gを採用してもよい。
産業上の利用の可能性
本発明によれば、整形外科、口腔外科、形成外科などの医療分野に広く利用可能な組織再生用基材、移植用材料を提供することができる。
【図面の簡単な説明】
図1はポリロタキサンの合成手順を表す説明図、図2はCDI−PRの合成手順を表す説明図、図3はアミノ化ヒドロゲルの合成手順を表す説明図、図4はアセチル化ヒドロゲルの合成手順を表す説明図、図5はポリリジン固定化ヒドロゲルの合成手順を表す説明図、図6は細胞接着性の評価を表すグラフ、図7は細胞増殖性の評価を表すグラフ、図8はアミノ基量と細胞増殖能との関係を表すグラフ、図9はアミノ基量とグリコサミノグリカンの産生能との関係を表すグラフ、図10はアミノ基量と1細胞あたりのグリコサミノグリカンの産生量との関係を表すグラフである。Technical field
The present invention relates to a tissue regeneration substrate, a transplant material, and a method for producing the same that can be widely used in the medical field such as orthopedics, oral surgery, and plastic surgery.
Background art
In recent years, regenerative medicine and tissue engineering have attracted attention. In tissue engineering, a tissue regeneration substrate plays an important role as a scaffold for cell proliferation. Functions required for a tissue regeneration substrate include biocompatibility, degradability, mechanical strength, and the like.
Conventionally, collagen, polyglycolic acid, and the like are known as such tissue regeneration substrates. However, infectiousness of unknown viruses cannot be denied with animal-derived matrices, while artificial materials can be used. It has not yet been solved that degradation products may induce an inflammatory reaction, and that it is difficult to control the time for degradation and disappearance.
In order to solve these problems, the present inventors, in WO 02/02159 (International Publication), have bulky substituents via hydrolyzable bonds at both ends of a linear molecule penetrating a plurality of cyclic molecules. A polyrotaxane having a bioaffinity group introduced therein, or cyclic molecules contained in one adjacent polyrotaxane molecule with respect to this polyrotaxane, bioaffinity groups, or a cyclic molecule and a bioaffinity group are crosslinked by a crosslink. We have proposed a tissue regeneration substrate comprising a polyrotaxane hydrogel having a network structure.
However, the tissue regeneration substrate proposed in the above publication may not have sufficient cell adhesion, and it may be difficult to efficiently retain cells on the tissue regeneration substrate during cell seeding.
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a tissue regeneration base material with improved cell adhesion. It is another object of the present invention to provide a transplant material that can reconstruct a tissue well. It is another object of the present invention to provide a method for producing such a transplant material.
Disclosure of the invention
A first aspect of the present invention relates to a polyrotaxane in which a biocompatible group having a bulky substituent is introduced to both ends of a linear molecule penetrating a plurality of cyclic molecules via a hydrolyzable bond, or to this polyrotaxane In the substrate for tissue regeneration comprising a polyrotaxane hydrogel having a network structure by crosslinking the cyclic molecules contained in one adjacent polyrotaxane molecule, between the bioaffinity groups or between the cyclic molecule and the bioaffinity group by a crosslink bond, Some of the cyclic molecules are characterized by having a modifying group that imparts cell adhesion.
When, for example, chondrocytes are cultured using this tissue regeneration substrate, the cells proliferate while maintaining a chondrocyte-like morphology. In addition, even if this tissue regeneration substrate alone is implanted into a living body, tissue regeneration is possible because it hardly inhibits cell morphology or proliferation. In particular, since the cyclic molecule has a modifying group that imparts cell adhesion, the cells can be efficiently held as compared with the case where there is no such modifying group.
In the tissue regeneration substrate of the present invention, the linear molecule or the cyclic molecule is not particularly limited as long as it has biocompatibility (a property that hardly causes harm to the living body). Examples of the linear molecule include polyethylene glycol, One or two or more types selected from the group consisting of polypropylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, and polymethyl vinyl ether are preferable. By selecting a cyclic molecule or linear molecule having such excellent biocompatibility, the synthesized polyrotaxane or polyrotaxane hydrogel is excellent in biocompatibility and is suitable as a transplant material for tissue regeneration. The average molecular weight is preferably 200 to 100,000, particularly 400 to 5,000. The cyclic molecule is preferably α, β or γ-cyclodextrin, but may have a similar cyclic structure, such as cyclic polyether, cyclic polyester, cyclic Examples include polyether amines and cyclic polyamines. As a combination of a linear molecule and a cyclic molecule, a combination of α-cyclodextrin and polyethylene glycol is preferable.
In the tissue regeneration substrate of the present invention, the hydrolyzable bond may be any bond as long as it is a bond that hydrolyzes in vivo. Among these, an ester bond is preferable in consideration of rapid non-enzymatic hydrolysis in vivo.
When the tissue regeneration substrate is a polyrotaxane hydrogel, the crosslinking bond is preferably a urethane bond, an amide bond, a carbamide bond, an ether bond, a sulfide bond, or a Schiff base bond. Moreover, when a cyclic bond bridge | crosslinks cyclic molecules, it is preferable that it is more stable with respect to water than a hydrolysable bond. This is because the hydrolyzable bond is first decomposed and the biocompatible group having a bulky substituent is removed from both ends of the linear molecule, and the crosslinked cyclic molecule is released once. This is because a proper decomposition pattern can be obtained.
In the tissue regeneration substrate of the present invention, the bioaffinity groups at both ends of the linear molecule can be any group as long as the group has a high affinity for the living body (a group that is highly safe for the living body). For example, amino acids, oligopeptides, oligosaccharides or sugar derivatives are preferable. Examples of amino acids include alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tryptophan, aspartic acid, glutamine sun, glycine, serine, threonine, tyrosine, cysteine, lysine, arginine, histidine and the like. Examples of oligopeptides include those formed by peptide bonding of a plurality of the above-mentioned amino acids. The oligosaccharide has 1 to 5 repeating units, and the constituent polysaccharide includes dextran, hyaluronic acid, chitin, chitosan, alginic acid, chondroitin sulfate, starch, and the like. Furthermore, examples of sugar derivatives include compounds obtained by chemically modifying oligosaccharides, polysaccharides or monosaccharides such as acetylation or isopropylation. Of these, amino acids having a benzene ring, such as L-phenylalanine, L-tyrosine, and L-tryptophan are preferred.
In the substrate for tissue regeneration of the present invention, the bulky substituent of the biocompatible group may be any group as long as it can prevent the cyclic molecule from falling off from the linear molecule. For example, one or more benzene groups A group having a ring or a group having one or more tertiary butyl is preferred. Examples of the group having one or more benzene rings include a benzyloxycarbonyl (Z) group, a 9-fluorenylmethyloxycarbonyl (Fmoc) group, a benzyl ester (OBz) group, and the like. Examples of the group having tributyl include a tertiary butylcarbonyl (Boc) group and an amino acid tertiary butyl ester (OBu group). Among these, a benzyloxycarbonyl group is preferable.
As the tissue regeneration substrate of the present invention, the linear molecule is polyethylene glycol, the cyclic molecule is α-cyclodextrin, the hydrolyzable bond is an ester bond, and the biodegradable group having the bulky substituent is Particularly preferred is benzyloxycarbonyl-L-phenylalanine. When α-cyclodextrin is made to penetrate polyethylene glycol, the stoichiometric number of the ratio of repeating units (ethylene oxide units) of α-cyclodextrin and polyethylene glycol is said to be 1: 2.
In the tissue regeneration substrate of the present invention, the modifying group is preferably a positively charged group. In general, cells have both positive and negative charges but are known to have a lot of negative charges and have a negative charge as a whole. It is preferable to introduce a charged group because cell adhesion is improved and cells can be efficiently held.
In the tissue regeneration substrate of the present invention, the modifying group is preferably a group containing a nitrogen atom. Since the nitrogen atom has a property of being positively charged and cationized, it is preferable because adhesion with a negatively charged cell is improved and the cell can be efficiently held. Examples of the group containing a nitrogen atom include an amino group introduced into a cyclic molecule by the following aminating agent. Diamine alkanes such as hydrazine, 1,2-diaminoethane (ethylenediamine), 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopropane, 1,6-diaminohexane, o-phenylene Examples include diaminobenzenes such as diamine, m-phenylenediamine, and p-phenylenediamine, and polyamines (polymer compounds having a plurality of amino groups) such as polylysine, polyvinylamine, and chitosan.
In the case where the modifying group is an amino group, the correlation between the introduction ratio of the amino group into the polyrotaxane hydrogel and the cell growth state or the glycosaminoglycan production state when a predetermined cell is cultured using the tissue regeneration substrate A relationship may be obtained in advance, and the amino group introduction ratio may be set so that a desired cell growth state or glycosaminoglycan production state is obtained in light of the correlation. For example, when the amount of collected cells is large, the introduction ratio of amino groups with high glycosaminoglycan production ability is adopted even if the cell growth ability is low, and when the amount of collected cells is small, the production ability of glycosaminoglycan is low. Alternatively, an introduction ratio of an amino group having high cell proliferation ability may be employed.
In addition, the modifying group may be a polycation. This is also preferable because adhesion to cells having negative charges is improved and the cells can be efficiently held. The polycation is a polymer compound having a large number of positive charges, and examples thereof include a polymer compound containing quaternary ammonium.
In the tissue regeneration substrate of the present invention, the modifying group is preferably a hydrophobic group. In general, it is preferable to introduce a hydrophobic group as a modifying group because cell adhesion is improved and cells can be efficiently retained.
In the tissue regeneration substrate of the present invention, the modifying group is preferably one or more selected from the group consisting of an acyl group, cholesterol, triglyceride, phospholipid, glyceroglycolipid and sphingoglycolipid. . These groups are preferred because they become hydrophobic by protecting the hydroxyl group, so that cell adhesion is improved and cells can be efficiently retained. Among these, examples of the acyl group include groups introduced into a cyclic molecule by the following acylating agent. That is, acid anhydrides such as acetic anhydride, propanoic anhydride, butanoic anhydride and benzoic acid, and acid halides such as acetic chloride, among which acid anhydrides are preferred.
The tissue regeneration substrate of the present invention comprises polyrotaxane and N, in which a biocompatible group having a bulky substituent is introduced via hydrolyzable bonds at both ends of a linear molecule penetrating a plurality of cyclodextrins. The reaction product obtained by reacting with N′-carbonyldiimidazole may be obtained by reacting polyethylene glycol bisamine and an aminating agent. Since the compound thus obtained is an aminated polyrotaxane hydrogel, a positive charge is introduced into the hydrogel and cell adhesion is improved. In addition, you may employ | adopt what was mentioned above as a linear molecule | numerator, a hydrolysable bond, a bulky substituent, and a bioaffinity group.
The tissue regeneration substrate of the present invention comprises polyrotaxane and N, in which a biocompatible group having a bulky substituent is introduced via hydrolyzable bonds at both ends of a linear molecule penetrating a plurality of cyclodextrins. The reaction product obtained by reacting with N′-carbonyldiimidazole may be obtained by reacting polyethylene glycol bisamine and an acylating agent. The compound thus obtained is obtained by acylating polyrotaxane hydrogel, so that the hydrophobicity is increased and the cell adhesion is improved. In addition, you may employ | adopt what was mentioned above as a linear molecule | numerator, a hydrolysable bond, a bulky substituent, and a bioaffinity group.
The tissue regeneration substrate of the present invention is not particularly limited as long as it is in a form in which cells can be cultured or incorporated. For example, in the form of a sheet, seed the cells on it, or gel with the cells to embed the cells, in the form of a gel, seed the cells on it, dissolve in a solvent and seed the cells in the solution Alternatively, it may be suspended in a solvent and seeded with cells. In particular, it is preferable to use a polyrotaxane or a polyrotaxane hydrogel porous material in view of facilitating cell retention and culture. The pores at this time are not particularly limited as long as the size and density can hold the cells. In addition, even when the tissue regeneration substrate is transplanted into a living body alone without being combined with cells, the form of the tissue regeneration substrate is not limited. Preferably, a porous body is used to provide a suitable environment for the cells from the tissue surrounding the transplant to proliferate. In this case, the size and density of the pores are not particularly limited as long as the size and density are appropriate for the cells to enter from the tissue around the transplant and regenerate the tissues such as cell proliferation and substrate production. Moreover, as a manufacturing method of a porous body, a well-known method is applicable, for example, the method of gelatinizing in the presence of sodium hydrogencarbonate, the method of vacuum-freeze-drying hydrous hydrogel, etc. are applicable.
The tissue regeneration substrate of the present invention may be used for culturing or incorporating any cell in particular, but is preferably, for example, an adhesion-dependent cell, such as chondrocytes, osteoblasts, fibroblasts, Examples include epidermal cells, epithelial cells, adipocytes, hepatocytes, pancreatic cells, muscle cells, or precursor cells thereof, mesenchymal stem cells, embryonic stem cells (ES cells), and the like. These cells may be used alone or in combination of two or more depending on the site to be transplanted. These cells may be collected from a living body by a known collection method according to the cell type, and the collected cells may be used as they are, or proliferated or differentiated by culturing in an appropriate medium for a predetermined period. Then, it may be seeded on a tissue regeneration substrate.
Examples of a method for regenerating a tissue using the tissue regeneration substrate of the present invention include a method of using the tissue regeneration substrate alone, a method of simply incorporating cells into the tissue regeneration substrate, Examples thereof include a method of culturing cells on a regeneration substrate. In addition, as a method for immobilizing cells, for example, in the case of polyrotaxane hydrogel, a method of immobilizing cells by adding a high concentration cell culture solution and allowing the cells to be taken into the gel pores as the gel swells, or rotating culture Examples thereof include a method of fixing cells by seeding the cells and then reducing the pressure to such an extent that the cells are not affected.
When a transplant material in which cells are cultured or cells are incorporated in the tissue regeneration substrate of the present invention, tissue regeneration can be performed earlier than when the tissue regeneration substrate is used alone. As a method for producing the transplant material, any production method may be used. However, after the tissue regeneration base material is appropriately sized or shaped according to the purpose of use, the tissue regeneration base material is used. It is preferred to obtain the transplant material by culturing or incorporating the cells. For example, when reconstructing ear cartilage, a cell suspension is injected into a tissue regeneration substrate shaped and processed to fit the ear application site, and cultured for a certain period of time as a transplant material. Good. In this case, the implant material is implanted at the application site of the ear. Conversely, after culturing or incorporating cells into the tissue regeneration substrate, the transplant material may be appropriately sized or shaped according to the application site at the time of use or shipment.
In the transplant material in which, for example, chondrocytes are cultured on the tissue regeneration substrate of the present invention, the cultured cells proliferate while maintaining a chondrocyte-like morphology and produce abundant cartilage matrix. Since cartilage tissue is repaired mainly by chondrocytes and the matrix produced by the cells, the abundant content of them means that the transplant material has a high tissue regeneration ability. . As described above, when the culture operation is performed, it is preferable in terms of allowing cells necessary for tissue repair to proliferate, or supporting a cell production substance (such as a substrate or a growth factor) in a transplant material, Even if the cells are killed for some reason, the matrix and growth factors produced by the cells remain in the transplant material, which is effective for tissue regeneration. Further, even when chondrocytes are seeded on the tissue regeneration base material, that is, simply incorporated without culturing, the cell morphology is maintained, so that these cells function for tissue regeneration immediately after transplantation. It is effective as a transplant material.
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1] Synthesis of polyrotaxane (see Fig. 1)
[1-1] Synthesis of PEG having amino groups at both ends
Polyethylene glycol (PEG) having a molecular weight of 3300 (33 g, 10 mmol) and succinic anhydride (20 g, 200 mmol) were dissolved in toluene (220 ml), and the solution was refluxed at 150 ° C. for 5 hours. After completion of the reaction, the reaction mixture was poured into excess diethyl ether, filtered and dried under reduced pressure to obtain a crude product. This was dissolved in dichloromethane, insoluble matters were removed by centrifugation, and the mixture was poured into excess diethyl ether. After separation by filtration and drying under reduced pressure, PEG (compound A) having carboxyl groups at both ends was obtained as a white powder. This compound A (20 g, 5.7 mmol) and N-hydroxysuccinimide (HOSu) (17.1 g, 148.2 mmol) were dissolved in a mixed solution of 1,4-dioxane and dichloromethane (350 ml, volume ratio 1: 1). After cooling with ice, dicyclohexylcarbodiimide (DCC) (23.5 g, 114 mmol) was added. The mixture was stirred for 1 hour while being cooled with ice, and then stirred overnight at room temperature. The by-product dicyclohexylurea was filtered off, and the filtrate was concentrated and poured into excess diethyl ether. After separation by filtration and drying under reduced pressure, PEG (compound B) in which the carboxyl group was activated was obtained as a white powder. Next, dichloromethane (75 ml) in which compound B (10 g, 2.7 mmol) was dissolved was added dropwise to dichloromethane (75 ml) in which ethylenediamine (0.4 ml, 6 mmol) was dissolved. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour. did. After completion of the reaction, the solution was poured into excess diethyl ether, and after filtration and drying under reduced pressure, PEG (compound C) having amino groups at both ends was obtained as a white powder.
[1-2] Preparation of pseudopolyrotaxane
An aqueous solution (20 ml) of compound C (4 g, 1.12 mmol) was added dropwise at room temperature to a saturated aqueous solution (311 ml) of α-cyclodextrin (α-CD) (48 g, 49.2 mmol). The mixture was stirred for 1 hour while being irradiated with ultrasonic waves, and then stirred at room temperature for 24 hours. A white precipitate was collected by centrifugation and dried under reduced pressure at 50 ° C. to obtain a white powder pseudopolyrotaxane. Polyrotaxane refers to a product in which a linear molecule (eg, PEG) penetrates a large number of cyclic molecules (eg, cyclodextrin) and both ends of the linear molecule are capped with bulky substituents. , Which means that both ends of the polyrotaxane are not yet capped with bulky substituents.
[1-3] Preparation of end-capping agent
In order to introduce benzyloxycarbonyl-L-phenylalanine (ZL-Phe, Z represents benzyloxycarbonyl group) as a bulky substituent that prevents the elimination of α-CD, the carboxyl of ZL-Phe Group activation was performed. That is, ZL-Phe (100 g, 334 mmol) was dissolved in 1,4-dioxane (800 ml), and HOSu (38.42 g, 334 mmol) was added while cooling with ice. After 1 hour, a 1,4-dioxane solution (200 ml) in which DCC (75.7 g, 367 mmol) was dissolved was slowly added, and the mixture was stirred for 1 hour while cooling with ice, and then stirred overnight at room temperature. The by-product dicyclohexylurea was filtered off, and the filtrate was concentrated and poured into excess diethyl ether. After filtration and drying under reduced pressure, a crude product was obtained. After the crude product was dissolved in dichloromethane so that it was as saturated as possible at room temperature, an appropriate amount of petroleum ether was added and refrigerated for recrystallization. The crystals were separated by filtration and dried under reduced pressure to obtain ZL-Phe succinimide ester (ZL-Phe-OSu) as white needle crystals.
[1-4] Preparation of polyrotaxane
ZL-Phe-OSu (80 g, 200 mmol) was dissolved in dimethyl sulfoxide (DMSO) (60 ml), and pseudopolyrotaxane (45 g, 2 mmol) was added. While stirring this heterogeneous solution at room temperature, DMSO was added little by little so as to be uniform, and stirred for 96 hours. After completion of the reaction, the reaction solution was poured into excess diethyl ether to obtain a crude product. The crude product is washed with acetone and dimethylformamide (DMF) in this order to remove impurities (unreacted ZL-Phe-OSu, α-CD, compound C, etc.), filtered and dried under reduced pressure to biodegrade. Sex polyrotaxane was obtained as a white powder. The synthesis was confirmed by 1H-NMR. Further, the α-CD penetration number of this polyrotaxane was 23 as determined from the integral ratio of the proton of PEG and the proton at the 1-position of α-CD in 1H-NMR.
[Example 2] Preparation of CDI-activated polyrotaxane (see Fig. 2)
The polyrotaxane obtained in Example 1 (1 g, 0.0369 mol, CD = 0.871 mmol, OH = 15.6 mmol) was dissolved in DMSO (10 ml) under a nitrogen atmosphere, and N, N′-carbonyldiimidazole (CDI) was obtained. ) 2.54 g (15.6 mmol; equivalent to a hydroxyl group in polyrotaxane) was added and reacted at room temperature under a nitrogen atmosphere. After 3 hours, the mixture was added dropwise to ether to form a white precipitate, which was filtered at room temperature. And dried under reduced pressure to obtain a CDI-activated polyrotaxane (CDI-PR) as a white powder. The activation rate of this CDI-PR was calculated from the absorbance at 207 nm using an ultraviolet absorption spectrometer, and found to be 91.37%.
[Example 3] Preparation of aminated hydrogel (see FIG. 3)
2.347 g of CDI-PR obtained in Example 2 (1 g as a polyrotaxane) was dissolved in 5 ml of DMSO, and 1.7426 g of polyethylene glycol (PEG-BA, average molecular weight 2000) having amino groups at both ends melted therein was added. And stirred. Further, 30 g of sodium hydrogen carbonate was added and stirred well, then 0.8 g each was placed in a polytetrafluoroethylene spacer (diameter 1.3 cm, depth 1 cm) and subjected to a gelation reaction at 35 ° C. for one day. A hydrogel was obtained. After completion of the reaction, this polyrotaxane hydrogel was added to a solution in which 5 ml of ethylenediamine was dissolved in 500 ml of DMSO, and amination reaction was performed at 25 ° C. for 12 hours. Here, it is thought that amination is performed by adding ethylenediamine to an unreacted activated site in the gelation reaction. After completion of the amination reaction, the reaction product was immersed in a 20% by weight aqueous citric acid solution, and porous hydrogenation was performed by foaming and elution of sodium bicarbonate for 9 hours. The reaction product obtained after completion of foaming and elution was washed with distilled water, dehydrated with ethanol, and finally freeze-dried to obtain an aminated hydrogel. The estimated structure of this aminated hydrogel is shown in FIG.
[Example 4] Preparation of acetylated hydrogel (see Fig. 4)
2.347 g of CDI-PR obtained in Example 2 (1 g as a polyrotaxane) was dissolved in 5 ml of DMSO, and 1.7426 g of polyethylene glycol (PEG-BA, average molecular weight 2000) having amino groups at both ends melted therein was added. And stirred. Further, 30 g of sodium hydrogen carbonate was added and stirred well, then 0.8 g each was placed in a polytetrafluoroethylene spacer (diameter 1.3 cm, depth 1 cm) and subjected to a gelation reaction at 35 ° C. for one day. A hydrogel was obtained. After completion of the reaction, this polyrotaxane hydrogel was added to a solution in which 25 ml of acetic anhydride and 37.5 ml of pyridine were dissolved in 500 ml of DMSO, and acetylation reaction was performed at 25 ° C. for 12 hours. Here, it is considered that an acetyl group is introduced into an unreacted activation site and an inactive hydroxyl group in the gelation reaction. After completion of the acetylation reaction, the reaction product was immersed in a 20% by weight citric acid aqueous solution, and foaming and elution of sodium hydrogen carbonate was performed for 9 hours to make it porous. The reaction product obtained after completion of foaming and elution was washed with distilled water, dehydrated with ethanol, and finally freeze-dried to obtain an acetylated hydrogel. The estimated structure of this acetylated hydrogel is shown in FIG.
[Example 5] Preparation of polylysine-immobilized hydrogel (see FIG. 5)
Since poly-ε-lysine does not dissolve in an organic solvent, it was reacted with α-CD to form a pseudopolyrotaxane-type polylysine and then added to the reaction system. That is, poly ε-lysine and α-CD were previously reacted to form a pseudopolyrotaxane type polylysine, which was used as an aminating agent. 1.7833 g (0.0738 mmol; 2 equivalents of polyrotaxane) of this pseudopolyrotaxane-type polylysine and 2.347 g of CDI-PR (1 g as a polyrotaxane) obtained in Example 2 were dissolved in 5 ml of DMSO, and dissolved at both ends. 1.7426 g of polyethylene glycol having an amino group (PEG-BA, average molecular weight 2000) was added and stirred. Further, 30 g of sodium bicarbonate was added and stirred well, then 0.8 g each was placed in a polytetrafluoroethylene spacer (diameter 1.3 cm, depth 1 cm), and a gelation reaction was carried out at 35 ° C. for 1 day. Since dissociation of pseudopolyrotaxane type polylysine occurs in DMSO, the amino group of poly-ε-lysine is exposed and the reaction with CDI-PR proceeds to be immobilized in the gel. After completion of the gelation reaction, the reaction product was immersed in a 20% by weight citric acid aqueous solution, and foaming and elution of sodium hydrogen carbonate was performed for 9 hours to make it porous. After foaming and elution, the reaction product was washed with distilled water, dehydrated with ethanol, and finally lyophilized to obtain a polyε-lysine immobilized hydrogel. The presumed structure of this poly (epsilon) -lysine fixed hydrogel is shown in FIG.
[Example 6] Measurement of adhesion efficiency
Cell culture experiments were performed using the aminated hydrogel obtained in Example 3 and the hydrogel obtained by omitting the amination reaction in Example 3 (hereinafter referred to as unmodified hydrogel). That is, each of the aminated hydrogel and the unmodified hydrogel was divided into 12 parts, thoroughly washed with water, and then immersed in 70% ethanol for 30 minutes for sterilization. Then, it moved to the petri dish for culture | cultivation, made the state which opened the lid | cover in the sterilization can, and dried it overnight at 50 degreeC. 1 × 10 for each divided hydrogel 7 20 μL of rabbit chondrocyte suspension adjusted to cells / mL was dropped. After leaving in this state for 30 minutes, it was transferred to a 24-well plate, and 2 mL of culture medium was added. In order to create a calibration curve, 6.4 × 10 6 cells / mL cell suspension is prepared and 6.4 × 10 4 in a 24-well plate 5 ~ 1x10 4 It adjusted so that it might become cells / 100mL / well.
The adhesion efficiency was measured by measuring the number of cells that fell from each hydrogel by MTT assay. In the MTT assay, formazan is correlated with the enzyme activity of the number of living cells because the MTT reagent is reduced by intracellular enzyme activity to produce formazan. Therefore, the number of cells is measured by measuring the absorbance of formazan. be able to. First, the 24-well plate containing each hydrogel cultured 24 hours after seeding was stirred for 2 hours with a microplate mixer set at 37 ° C. By this operation, the cells accumulated without adhering were washed out from the hydrogel. Thereafter, the hydrogel was transferred to another 24-well plate, and 2 mL of the culture medium was added to each hole for use in a chondrocyte culture experiment.
On the other hand, 50 μL of MTT reagent was dropped into each well of a 24-well plate containing cells that had fallen off (washed out), and cultured with stirring in a microincubator for 24 hours. After cultivation, formazan produced by reduction of MTT by intracellular dehydrogenase is solubilized with 1000 μL of 0.04 mol / L HCl / isopropanol, and 200 μL of the solution is transferred to a 96-well plate, and the absorbance (A570 / 650) is measured. To measure the adhesion efficiency. The calibration curve plate was processed in the same manner. As a result, as shown in FIG. 6, those cultured with the aminated hydrogel were below the detection limit, whereas those cultured with the unmodified hydrogel accounted for 42.6% of the seeded cells in the unmodified hydrogel. As a result, it was spilled without being taken in. MTT is an abbreviation for 3- (4,5-dimethyl-2-thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide.
[Example 7] Evaluation of cell proliferation
The 24-well plate subjected to the chondrocyte culture experiment was statically cultured for 21 days in a 37 ° C., 5% CO 2 incubator. During culture, the cells were observed with a microscope over time, and the number of cells was measured by MTT assay. As a result, almost the same growth curves were obtained between those cultured with an aminated hydrogel and those cultured with an unmodified hydrogel. However, after 21 days of culturing, the number of viable cells increased in those cultured with an aminated hydrogel compared to those cultured with an unmodified hydrogel, and after 28 days of culturing, the number of viable cells in the unmodified hydrogel was 1.8. × 10 6 cells / carrier (n = 3) whereas the number of viable cells in the aminated hydrogel was 2.7 × 10 6 Cells / carrier (n = 1) and cell number almost 1.5 times.
In addition, when stained with alcian blue after culturing 28 days after culturing with an aminated hydrogel and with an unmodified hydrogel, both showed a strong alcian blue-positive image, and cartilage matrix (acid mucopolysaccharide (glycosamisaccharide) Noglycan)) was confirmed to be produced. However, when cultured with an aminated hydrogel, the Alcian blue positive sites were continuous throughout the carrier, whereas when cultured with an unmodified hydrogel, cell colonies were scattered and the Alcian Blue positive sites were limited around the colonies. Both were clearly differentiated.
[Example 8] Correlation between the amount of amino groups and the ability to grow cells, and the relationship between the amount of amino groups and the ability to produce glycosaminoglycans
Code numbers Amino-2 to 7 shown in the following table were produced according to Example 3 as aminated hydrogels having an amino group introduced with ethylenediamine. Here, Amino-1 is a control and is a polyrotaxane hydrogel in which no amino group is introduced by ethylenediamine. In the following table, the amino group amount is a numerical value representing the number of μmoles of amino groups relative to 1 g of dry gel. In Amino-1 in the table, the amount of amino group is about 12 μmol / g even though no amino group is introduced, which seems to be due to NH contained in the polyrotaxane hydrogel before amination. It is. For this reason, the introduction ratio of amino groups of Amino-2 to 7 is estimated to be a value obtained by subtracting the amino group amount of Amino-1 from the amount of each amino group.
Figure 0004104556
Cell culture using the polyrotaxane hydrogel of each cord was performed as follows. That is, the polyrotaxane hydrogel of each cord was divided into four parts, sufficiently washed with water (stirring in distilled water (30 minutes) was performed 4 times), and then immersed in 70% ethanol for 30 minutes for sterilization. Then, it moved to the 24-hole plate and air-dried overnight in the safety cabinet. In this polyrotaxane hydrogel, 1 × 10 7 20 μL of rabbit chondrocyte solution adjusted to cells / mL was dropped. After leaving for 30 minutes, the culture medium was added. In order to create a calibration curve, 6.4 × 10 6 cells / mL cell suspension is prepared and 6.4 × 10 4 in a 24-well plate 5 ~ 1x10 4 Cells were seeded in the range of cells / 1000 μL / well. 37 ° C, 5% CO 2 Static culture was performed in an incubator for 24 days. The medium was changed every 3 to 4 days.
The number of viable cells was measured as follows. Specifically, four polyrotaxane hydrogels of each cord were taken out from the 24-well plate, placed in a new 24-well plate, added with 1 mL of 10% FBS / PBS and 100 μL of MTT solution, and cultured with stirring in a microincubator for 24 hours. 0.04 mol / L HCl / isopropanol (1 mL) was added and the formazan produced was solubilized while stirring. 200 μL each was placed in a 96-well plate and the absorbance (A570 / 650) was measured, and the number of viable cells was determined by comparing the measured absorbance with a separately prepared calibration curve.
Glycosaminoglycan (GAG) was quantified as follows. That is, 4 each of polyrotaxane hydrogel of each cord was taken out from the 24-well plate, and placed in a 48-well plate together with 0.5 mL of PBS. Washed with stirring in a micro-incubator for 2 hours. This washing operation was repeated once more and then stored at 4 ° C. overnight. After aspirating PBS, 0.5 mL of the cell dispersion was added and incubated with stirring in a microincubator for 3 hours to decompose the cell substrate. A simple acid mucopolysaccharide assay kit (Hokudo) was used for the measurement. First, 100 μL of an unknown sample was placed in a microcentrifuge tube, and 1.3 mL of the reaction solution prepared for use (1.7 mL of a chromogenic stock solution was added to 53.6 mL of buffer and stirred) was added and stirred. 200 μL of the reaction solution after 5 to 20 minutes was transferred to a 96-well plate, and the absorbance (650 nm) was immediately measured, and the amount of GAG produced was determined based on a separately prepared calibration curve. When preparing a calibration curve, standard solutions were prepared at concentrations of 100, 40, 20, 10, 5, 2.5, and 1.25 μg / mL and operated in the same manner as for unknown samples.
These results are shown in FIGS. FIG. 8 is a graph showing the relationship between the amount of amino groups and the cell growth ability (ratio to the culture day 0) based on the measurement result of the number of living cells. FIG. 9 is based on the GAG quantitative result, It is a graph of the relationship between the amount of amino groups and GAG production ability. As is apparent from these figures, the higher amino group amount (65 to 90 μmol / g) was better for the cell proliferation ability, whereas the lower amino group amount (75 μmol for GAG production ability). / G or less). Incidentally, when the relationship between the amount of amino groups and the amount of GAG production per cell was graphed, the amount of GAG production per cell tended to decrease as the amount of amino groups increased as shown in FIG. .
From the above results, for example, when the amount of collected cells is large, the cell proliferation ability may be low, but it may be preferable that the production ability of glycosaminoglycan is high. Specifically, from FIG. 8 and FIG. 9, the amino group amount may be 75 μmol / g or less, or the amino group introduction ratio may be 63 μmol / g or less. In addition, when the amount of collected cells is small, it is preferable that the cell proliferating ability is high even if the ability to produce glycosaminoglycan is low. Therefore, the amount of amino group corresponding to this, specifically from FIG. 8 and FIG. The amino group amount may be 65 to 90 μmol / g, or the amino group introduction ratio may be 53 to 78 μmol / g.
Industrial applicability
ADVANTAGE OF THE INVENTION According to this invention, the base material for tissue reproduction | regeneration which can be widely utilized in medical fields, such as an orthopedic surgery, an oral surgery, a plastic surgery, and the material for transplantation can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the procedure for synthesizing polyrotaxane, FIG. 2 is an explanatory diagram showing the procedure for synthesizing CDI-PR, FIG. 3 is an explanatory diagram showing the procedure for synthesizing an aminated hydrogel, and FIG. 4 is a procedure for synthesizing an acetylated hydrogel. FIG. 5 is an explanatory diagram showing the procedure for synthesizing the polylysine-immobilized hydrogel, FIG. 6 is a graph showing the evaluation of cell adhesion, FIG. 7 is a graph showing the evaluation of cell proliferation, and FIG. FIG. 9 is a graph showing the relationship between the amount of amino groups and the production ability of glycosaminoglycan. FIG. 10 is a graph showing the relationship between the amount of amino groups and the production amount of glycosaminoglycan per cell. It is a graph showing the relationship.

Claims (8)

複数の環状分子を貫通させた線状分子の両末端に加水分解性結合を介して嵩高い置換基を有する生体親和性基が導入されたポリロタキサン、又は、このポリロタキサンにつき隣合うポリロタキサン1分子中に含まれる環状分子同士、生体親和性基同士もしくは環状分子と生体親和性基とを架橋結合で架橋して網目構造としたポリロタキサンヒドロゲルからなる組織再生用基材において、
前記複数の環状分子には細胞接着性を付与する修飾基としてアミノ基有し、該アミノ基のポリロタキサン又はポリロタキサンヒドロゲル1gに対する導入量(アミノ基量)は75μmol/g以下である、組織再生用基材。
In a polyrotaxane in which a biocompatible group having a bulky substituent is introduced via hydrolyzable bonds at both ends of a linear molecule penetrating a plurality of cyclic molecules, or in a polyrotaxane adjacent to this polyrotaxane In the tissue regeneration substrate comprising a polyrotaxane hydrogel having a network structure by crosslinking the cyclic molecules contained, between the bioaffinity groups or between the cyclic molecules and the bioaffinity groups by crosslinking.
The plurality of cyclic molecules have an amino group as a modifying group for imparting cell adhesion , and the introduction amount (amino group amount) of the amino group into 1 g of polyrotaxane or polyrotaxane hydrogel is 75 μmol / g or less . Base material.
前記アミノ基は、アミノ化剤としてジアミノアルカン類及びポリアミン類から選ばれた1種又は2種以上を用いて導入したものである、請求項1又は2に記載の組織再生用基材。The tissue regeneration substrate according to claim 1 or 2 , wherein the amino group is introduced using one or more selected from diaminoalkanes and polyamines as an aminating agent. 前記アミノ基は、アミノ化剤としてヒドラジン、1,2−ジアミノエタン(エチレンジアミン)、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、o−フェニレンジアミン、m−フェニレンジアミン及びp−フェニレンジアミンからなる群より選ばれた1種又は2種以上を用いて導入したものである、請求項1又は2に記載の組織再生用基材。The amino group, a hydrazine as aminating agent, 1,2-diaminoethane (ethylenediamine), 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diamino pentane, 1,6-diaminohexane, o The base material for tissue regeneration according to claim 1 or 2 , which is introduced using one or more selected from the group consisting of -phenylenediamine, m-phenylenediamine and p-phenylenediamine. 前記アミノ基は、アミノ化剤としてジアミノベンゼン類、ポリリジン、ポリビニルアミン及びキトサンからなる群より選ばれた1種又は2種以上を用いて導入したものである、請求項1又は2に記載の組織再生用基材。The tissue according to claim 1 or 2 , wherein the amino group is introduced using one or more selected from the group consisting of diaminobenzenes, polylysine, polyvinylamine and chitosan as an aminating agent. Recycling substrate. 組織再生用基材を製造する方法であって、
複数のシクロデキストリンを貫通させた線状分子の両末端に加水分解性結合を介して嵩高い置換基を有する生体親和性基が導入されたポリロタキサンとN,N’−カルボニルジイミダゾールとを反応させ、該反応によって得られる反応生成物にポリエチレングリコールビスアミンおよびアミノ化剤を、該アミノ化剤由来のアミノ基のポリロタキサン又はポリロタキサンヒドロゲル1gに対する導入量(アミノ基量)が75μmol/g以下となるように反応させることにより、組織再生用基材を製造する方法。
A method for producing a tissue regeneration substrate,
Reaction of a polyrotaxane introduced with a biocompatible group having a bulky substituent via a hydrolyzable bond at both ends of a linear molecule penetrating a plurality of cyclodextrins and N, N′-carbonyldiimidazole The reaction product obtained by the reaction is introduced with polyethylene glycol bisamine and an aminating agent so that the introduction amount of amino group derived from the aminating agent to 1 g of polyrotaxane or polyrotaxane hydrogel (amino group amount) is 75 μmol / g or less. The method of manufacturing the base material for structure | tissue reproduction by making it react.
請求項1〜のいずれかに記載の組織再生用基材に細胞が培養されているか又は組み込まれている移植用材料。A transplant material in which cells are cultured or incorporated in the tissue regeneration substrate according to any one of claims 1 to 4 . 請求項1〜のいずれかに記載の組織再生用基材又は請求項6に記載の移植用材料にグリコサミノグリカンが保持されている移植用材料。Graft material tissue glycosaminoglycans in transplantation material regeneration substrate or placing serial to claim 6 is held according to any one of claims 1-4. 請求項1〜のいずれかに記載の組織再生用基材に細胞を培養するか又は組み込むことにより移植用材料を得る移植用材料の製法。A method for producing a transplant material for obtaining a transplant material by culturing or incorporating cells into the tissue regeneration substrate according to any one of claims 1 to 4 .
JP2003572612A 2002-03-06 2003-03-05 Tissue regeneration substrate, transplantation material, and production method thereof Expired - Fee Related JP4104556B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002060698 2002-03-06
JP2002060698 2002-03-06
PCT/JP2003/002531 WO2003074099A1 (en) 2002-03-06 2003-03-05 Base material for tissue regeneration, transplantation material and process for producing the same

Publications (2)

Publication Number Publication Date
JPWO2003074099A1 JPWO2003074099A1 (en) 2005-06-23
JP4104556B2 true JP4104556B2 (en) 2008-06-18

Family

ID=27784814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003572612A Expired - Fee Related JP4104556B2 (en) 2002-03-06 2003-03-05 Tissue regeneration substrate, transplantation material, and production method thereof

Country Status (3)

Country Link
JP (1) JP4104556B2 (en)
AU (1) AU2003213367A1 (en)
WO (1) WO2003074099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117547A (en) * 2016-07-02 2016-11-16 上海大学 Multi-arm polyglutamic acid with beta cyclodextrin as core, its injection aquagel and preparation method thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600879B2 (en) * 2003-11-17 2010-12-22 独立行政法人科学技術振興機構 Chondrocyte culture or regeneration substrate and chondrocyte culture method
CA2552837C (en) * 2004-01-08 2012-09-11 The University Of Tokyo Crosslinked polyrotaxane and process for producing the same
WO2005080469A1 (en) * 2004-01-08 2005-09-01 The University Of Tokyo Compound having crosslinked polyrotaxane and process for producing the same
JP5326099B2 (en) * 2004-05-07 2013-10-30 国立大学法人 東京大学 Material having crosslinked polyrotaxane and method for producing the same
JP4161106B2 (en) 2004-09-30 2008-10-08 独立行政法人科学技術振興機構 Cell peeling agent and cell sheet peeling method
EP1852454B1 (en) * 2005-02-21 2016-12-07 The University of Tokyo Material comprising a first polyrotaxane and a second polyrotaxane and process for producing the same
CN101253259A (en) 2005-07-20 2008-08-27 苏尔莫迪克斯公司 Polymer coated nanofibrillar structures and methods for cell maintenance and differentiation
JP2007063412A (en) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd Hydrophilic modified polyrotaxane and crosslinked polyrotaxane
JP4521875B2 (en) 2005-08-31 2010-08-11 日産自動車株式会社 Hydrophobic modified polyrotaxane
CN101253219B (en) * 2005-08-31 2012-10-31 日产自动车株式会社 Hydrophobic modified polyrotaxane and crosslinked polyrotaxane
JP5145548B2 (en) * 2005-09-02 2013-02-20 国立大学法人 東京大学 Polyrotaxane-containing solution and use thereof
JP2007099991A (en) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd Material for curing type solvent-based soft feeling coating and coating by using the same
WO2007040262A1 (en) 2005-10-06 2007-04-12 Nissan Motor Co., Ltd. Material for curable solvent-based topcoating material, and coating material and coating film comprising or formed from the same
EP1950262B1 (en) 2005-10-06 2011-11-23 Nissan Motor Company Limited Material for room temperature curable solvent-borne overcoating material, coating material using same and coating film
JP2007099990A (en) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd Material for curable solvent-based undercoating, coating obtained by using the same and coating film
JP4376849B2 (en) * 2005-10-06 2009-12-02 日産自動車株式会社 Room temperature drying solvent-based clear paint and coating film and polyrotaxane
JP2007099992A (en) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd Material for ordinary-temperature-drying solvent-based topcoating, coating obtained by using the same and coating film
JP2007099994A (en) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd Material for normal temperature-drying type solvent-based undercoating and coating by using the same
JP2007099995A (en) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd Material for normal temperature-drying type solvent-based soft feeling coating, and coating and coated film by using the same
EP1985283A4 (en) * 2006-01-18 2011-08-03 Next21 Kk Gel-forming composition for medical use, devices for the application of the composition, and drug release controlling carrier
JP5311530B2 (en) * 2006-02-23 2013-10-09 リンテック株式会社 Adhesive sheet
JP2008045055A (en) * 2006-08-18 2008-02-28 Univ Of Tokyo Material having polyrotaxane which brings about high diffusion coefficient
CA2780294C (en) 2009-11-09 2018-01-16 Spotlight Technology Partners Llc Polysaccharide based hydrogels
WO2011057133A1 (en) 2009-11-09 2011-05-12 Spotlight Technology Partners Llc Fragmented hydrogels
AU2011268951B2 (en) * 2010-06-22 2014-08-07 Universite De Rouen Improved crosslinked hyaluronan hydrogels for 3D cell culture
WO2015115609A1 (en) * 2014-01-31 2015-08-06 生化学工業株式会社 Diamine crosslinking agent, acidic polysaccharide crosslinked body, and medical material
WO2018142633A1 (en) * 2017-02-01 2018-08-09 株式会社島津製作所 Gel composition for culturing cells, production method thereof, method for culturing cells, and substrate for culturing cells
WO2019225600A1 (en) * 2018-05-22 2019-11-28 学校法人東京理科大学 Method for evaluating hydrogel
US20220235182A1 (en) * 2019-06-19 2022-07-28 Asm Inc. Polyrotaxane comprising long-chain alkyl group in cyclic molecule, composition comprising said polyrotaxane, and method for producing said polyrotaxane
JPWO2022113940A1 (en) * 2020-11-26 2022-06-02

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410979A (en) * 1987-07-03 1989-01-13 Mitsubishi Chem Ind Microcarrier for cultivating cell
JPH0538278A (en) * 1991-08-08 1993-02-19 Kao Corp Substrate material for cell culture
JPH07178A (en) * 1993-06-11 1995-01-06 New Japan Chem Co Ltd Carrier for cell culture
JP3547616B2 (en) * 1998-05-11 2004-07-28 独立行政法人 科学技術振興機構 Supramolecular implant materials
US6900055B1 (en) * 1998-10-28 2005-05-31 Cellon S.A. Preparation of porous silicone rubber for growing cells or living tissue
CN1208094C (en) * 2000-07-03 2005-06-29 株式会社日本组织工程 Base materials for tissue regeneration, transplant materials and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117547A (en) * 2016-07-02 2016-11-16 上海大学 Multi-arm polyglutamic acid with beta cyclodextrin as core, its injection aquagel and preparation method thereof
CN106117547B (en) * 2016-07-02 2019-02-22 上海大学 Using beta-cyclodextrin as the multi-arm polyglutamic acid of core, its injection aquagel and preparation method thereof

Also Published As

Publication number Publication date
WO2003074099A1 (en) 2003-09-12
JPWO2003074099A1 (en) 2005-06-23
AU2003213367A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP4104556B2 (en) Tissue regeneration substrate, transplantation material, and production method thereof
JP4753525B2 (en) Tissue regeneration substrate, transplant material, and production method thereof
Jin et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering
JP4335316B2 (en) Polymers containing polysaccharides such as alginate or modified alginate
Munarin et al. Biofunctional chemically modified pectin for cell delivery
JP5219030B2 (en) Stimulus-responsive degradation gel
Tsai et al. Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering
Cao et al. Physical, mechanical and degradation properties, and Schwann cell affinity of cross-linked chitosan films
Liu et al. Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release
KR100871303B1 (en) Cytodetaching agent and method of detaching cell sheet
Tran et al. RGD-conjugated in situ forming hydrogels as cell-adhesive injectable scaffolds
Sun et al. Covalently crosslinked hyaluronic acid‐chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering
CA2366669A1 (en) Cell-culture and polymer constructs
La Gatta et al. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering
Baran et al. Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes
US20100278893A1 (en) Implantable material comprising cellulose and the glycopeptide xyloglucan-grgds
EP1806367A2 (en) Polymers containing polysaccharides such as alginates or modified alginates
Ehrenfreund-Kleinman et al. Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth
Stangel-Wójcikiewicz et al. Microwave-assisted synthesis and characterization of novel chitosan-based biomaterials for pelvic organ prolapse treatment.
JP2606213B2 (en) Complexes of Modified Microbial Cellulose with Gels and Animal Cell Membrane
Maeta et al. Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix
WO2023033749A1 (en) Method of preparing hyaluronic acid-alginate (ha-alg) hydrogel and ha-alg hydrogel
CN115232371A (en) Hydrogel, preparation method and application
RO135041A2 (en) Process and composition for preparing exopolysaccharide-based materials with potential applications in aortic valve tissue engineering
KR20080114067A (en) Manufacturing method of palmitoyl chitosan and chitosan film containing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees