JP4103768B2 - FRP hollow structure molding method and core used in this molding method - Google Patents

FRP hollow structure molding method and core used in this molding method Download PDF

Info

Publication number
JP4103768B2
JP4103768B2 JP2003362201A JP2003362201A JP4103768B2 JP 4103768 B2 JP4103768 B2 JP 4103768B2 JP 2003362201 A JP2003362201 A JP 2003362201A JP 2003362201 A JP2003362201 A JP 2003362201A JP 4103768 B2 JP4103768 B2 JP 4103768B2
Authority
JP
Japan
Prior art keywords
preform
inner shell
curing
core
hollow structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003362201A
Other languages
Japanese (ja)
Other versions
JP2005125558A (en
Inventor
広幸 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003362201A priority Critical patent/JP4103768B2/en
Publication of JP2005125558A publication Critical patent/JP2005125558A/en
Application granted granted Critical
Publication of JP4103768B2 publication Critical patent/JP4103768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

本発明は、FRP中空構造体の成形方法およびこの成形方法に使用される中子に関し、詳しくは、内部に梁構造を有するFRP中空構造体の成形方法およびこの成形方法に使用される中子に関するものである。   The present invention relates to a method for forming an FRP hollow structure and a core used in the method, and more particularly to a method for forming an FRP hollow structure having a beam structure therein and a core used in the method. Is.

従来、複雑な形状のFRP製構造体を製造するのに好適な製造方法として、FRP製構造体を構成する複数の構造部材をプリプレグにより各々成形し、各構造部材を半硬化状態に仮成形した後、各構造部材を組み合せてプリフォームとし、このプリフォームを硬化処理してFRP製構造体を製造する方法が提案されている(例えば特許文献1参照)。   Conventionally, as a suitable manufacturing method for manufacturing an FRP structure having a complicated shape, a plurality of structural members constituting the FRP structure are each molded by a prepreg, and each structural member is temporarily molded in a semi-cured state. Subsequently, a method has been proposed in which structural members are combined to form a preform, and the preform is cured to manufacture a FRP structure (see, for example, Patent Document 1).

ここで、特許文献1によれば、プリプレグにより成形される各構造部材には、マトリックス樹脂の反応率を0.2〜0.8とする半硬化処理、すなわち、硬化深度(Cure Index)を20〜80%とする半硬化処理が施され、この状態で各構造部材がプリフォームとして組み合わされる。
特開2000−15710号公報
Here, according to Patent Document 1, each structural member formed by the prepreg is subjected to a semi-curing treatment in which the reaction rate of the matrix resin is 0.2 to 0.8, that is, the curing depth (Cure Index) is 20. A semi-curing treatment of ˜80% is performed, and in this state, each structural member is combined as a preform.
JP 2000-15710 A

ところで、特許文献1に記載のように、硬化深度を20〜80%とする半硬化処理が施された各構造部材は、再加熱しても流動が起き難く、表面が柔らかなゲル状となるに留まり、粘着性(タック性)が発現しない恐れが多大にある。このため、各構造部材をプリフォームとして組み合せて硬化処理しても、各構造部材が強固に接着できない恐れがあり、接着剤などを併用しないと、強固なFRP製構造体を製造できないという懸念がある。   By the way, as described in Patent Document 1, each structural member subjected to the semi-curing treatment with a curing depth of 20 to 80% hardly flows even when reheated, and has a soft gel surface. There is a great risk that the adhesiveness (tackiness) will not develop. For this reason, even if each structural member is combined as a preform and cured, each structural member may not be firmly bonded, and there is a concern that a strong FRP structure cannot be produced unless an adhesive is used in combination. is there.

また、一般に中空のFRP製構造体を製造するには中子が使用されるが、この中子はFRP製構造体の成形後に除去する必要がある。すなわち、中空のFRP製構造体の製造には中子の除去工程が不可欠となり、工数が嵩むという問題がある。   In general, a core is used to manufacture a hollow FRP structure, but the core needs to be removed after the FRP structure is formed. That is, there is a problem in that the process of removing the core becomes indispensable for the production of the hollow FRP structure, and the number of steps increases.

そこで、本発明は、中子の除去工程が不要でありながら、内部に梁構造を有する強固なFRP中空構造体を確実に成形することができるFRP中空構造体の成形方法を提供することを課題とし、また、このFRP中空構造体の成形方法に使用するのに好適な中子を提供することを課題とする。   Therefore, the present invention has an object to provide a method for forming an FRP hollow structure capable of reliably forming a strong FRP hollow structure having a beam structure therein while eliminating a core removal step. In addition, an object of the present invention is to provide a core suitable for use in this FRP hollow structure molding method.

本発明に係るFRP中空構造体の成形方法は、内部に梁構造を有するFRP中空構造体の成形方法であって、それぞれ所定形状のツールにプリプレグを積層することで梁構造を有する内殻プリフォームの各部のパーツプリフォームを成形するパーツプリフォーム成形工程と、成形された各パーツプリフォームを内殻プリフォームとして組み立てる内殻プリフォーム組立工程と、組み立てられた内殻プリフォームを予備加熱して所定の硬化深度(Cure Index)まで硬化させる予備加熱硬化工程と、予備加熱された内殻プリフォームを中子としてその外周にプリプレグを積層することで外郭プリフォームを成形する外郭プリフォーム成形工程と、内殻プリフォームと共に外郭プリフォームを型枠内で本加熱して硬化させる本加熱硬化工程とを備え、予備加熱硬化工程では、内殻プリフォームを5〜15%の硬化深度まで硬化させることを特徴とする。   A method for forming an FRP hollow structure according to the present invention is a method for forming an FRP hollow structure having a beam structure therein, and an inner shell preform having a beam structure by laminating a prepreg on a tool having a predetermined shape. A part preform molding process for molding a part preform for each part of the above, an inner shell preform assembling process for assembling each molded part preform as an inner shell preform, and preheating the assembled inner shell preform A preheating and curing step for curing to a predetermined curing depth (Cure Index), and an outer preform forming step for forming an outer preform by laminating a prepreg on the outer periphery of the preheated inner shell preform as a core. And a main heating and curing step in which the outer preform and the outer shell preform are heated and cured in the mold. In the preheating curing step, the inner shell preform is cured to a curing depth of 5 to 15%.

本発明に係るFRP中空構造体の成形方法において、予備加熱硬化工程により5〜15%の硬化深度まで硬化された内殻プリフォームは、表面硬度の上昇により高い寸法精度を有するため、外郭プリフォーム成形工程により外郭プリフォームを成形する際の中子として確実に機能する。また、このように5〜15%の硬化深度まで硬化された内殻プリフォームは、本加熱硬化工程により再加熱されることで表面が軟化、流動化して粘着性が発現するため、外郭プリフォームに良好に接着して確実に一体化される。   In the method for forming an FRP hollow structure according to the present invention, the inner shell preform cured to a curing depth of 5 to 15% by the preheating and curing step has a high dimensional accuracy due to an increase in surface hardness. It functions reliably as a core when molding the outer preform by the molding process. In addition, the inner shell preform cured to a curing depth of 5 to 15% is softened and fluidized by reheating by the main heating and curing process, so that adhesiveness is developed. Adhering well to each other is surely integrated.

従って、本発明に係るFRP中空構造体の成形方法では、パーツプリフォーム成形工程、内殻プリフォーム組立工程、予備加熱硬化工程、外郭プリフォーム成形工程および本加熱硬化工程を経ることにより、梁構造を有する内殻プリフォームと、この内殻プリフォームを中子としてその外周に成形された外郭プリフォームとが確実に一体化して硬化する。その結果、内殻プリフォームを構造部材として内部に梁構造を有する強固なFRP中空構造体が確実に成形される。そして、中子としての内殻プリフォームは、FRP中空構造体の構造部材として強度および剛性の向上に寄与する。   Accordingly, in the FRP hollow structure molding method according to the present invention, the beam structure is obtained through the parts preform molding process, the inner shell preform assembling process, the preheating curing process, the outer preform molding process and the main heating curing process. The inner shell preform having the inner shell preform and the outer shell preform formed on the outer periphery of the inner shell preform as a core are reliably integrated and cured. As a result, a strong FRP hollow structure having a beam structure inside is reliably formed using the inner shell preform as a structural member. The inner shell preform as the core contributes to improvement in strength and rigidity as a structural member of the FRP hollow structure.

一方、本発明に係る中子は、内部に梁構造を有するFRP中空構造体の成形方法に使用される中子であって、それぞれ所定形状のツールにプリプレグを積層して成形された複数のパーツプリフォームを組み立てた梁構造を有する中子プリフォームからなり、この中子プリフォームを予備加熱により5〜15%の硬化深度まで硬化させて構成したことを特徴とする。   On the other hand, the core according to the present invention is a core used in a method for forming an FRP hollow structure having a beam structure therein, and a plurality of parts formed by laminating a prepreg on a tool having a predetermined shape. It consists of a core preform having a beam structure in which a preform is assembled, and this core preform is cured by preheating to a curing depth of 5 to 15%.

本発明に係る中子は、中子プリフォームを予備加熱により5〜15%の硬化深度まで硬化させて構成されており、表面硬度の上昇により高い寸法精度を有するため、その外周にプリプレグを積層して外郭プリフォームを成形するFRP中空構造体の成形方法において、外郭プリフォームを成形するための中子として確実に機能する。また、このように5〜15%の硬化深度まで硬化された中子は、再加熱により表面が軟化、流動化して粘着性が発現するため、その外周に成形された外郭プリフォームと共に本加熱されることで、外郭プリフォームに良好に接着して確実に一体化され、内部に梁構造を有する強固なFRP中空構造体の構造部材として強度および剛性の向上に寄与する。   The core according to the present invention is configured by curing a core preform to a curing depth of 5 to 15% by preheating, and has a high dimensional accuracy due to an increase in surface hardness. Therefore, a prepreg is laminated on the outer periphery. Thus, in the FRP hollow structure forming method for forming the outer preform, it functions reliably as a core for forming the outer preform. In addition, the core cured to a curing depth of 5 to 15% in this way is softened and fluidized by reheating, and thus exhibits adhesiveness. Therefore, the core is heated together with the outer preform formed on the outer periphery thereof. As a result, it is firmly bonded to the outer preform and reliably integrated, and contributes to improvement in strength and rigidity as a structural member of a strong FRP hollow structure having a beam structure inside.

なお、本発明のFRP中空構造体の成形方法およびこの成形方法に使用する中子において、使用される「プリプレグ」は、強化繊維に熱硬化性樹脂を含浸させたシート状の成形用中間材料である。強化繊維としては、カーボン繊維、ガラス繊維、アラミド繊維などの無機繊維の他、各種の金属繊維が挙げられる。また、熱硬化性樹脂としては、エポキシ樹脂、ポリエステル樹脂、シリコーン樹脂、ポリイミド樹脂などが挙げられる。   The “prepreg” used in the FRP hollow structure molding method of the present invention and the core used in this molding method is a sheet-like intermediate material in which reinforcing fibers are impregnated with a thermosetting resin. is there. Examples of the reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, and aramid fibers, and various metal fibers. Examples of the thermosetting resin include an epoxy resin, a polyester resin, a silicone resin, and a polyimide resin.

本発明に係るFRP中空構造体の成形方法によれば、梁構造を有する内殻プリフォームと、この内殻プリフォームを中子としてその外周に成形された外郭プリフォームとを確実に一体化して硬化させることができるため、内殻プリフォームを構造部材として内部に梁構造を有する強固なFRP中空構造体を確実に成形することができる。また、中子としての内殻プリフォームがFRP中空構造体の構造部材となるため、従来のような中子の除去工程が不要となり、FRP中空構造体の成形工数を低減できる。   According to the FRP hollow structure forming method according to the present invention, the inner shell preform having a beam structure and the outer preform formed on the outer periphery of the inner shell preform as a core are reliably integrated. Since it can be cured, a strong FRP hollow structure having a beam structure inside can be reliably formed using the inner shell preform as a structural member. Further, since the inner shell preform as the core serves as a structural member of the FRP hollow structure, a conventional core removal step is not required, and the number of steps for forming the FRP hollow structure can be reduced.

一方、本発明に係る中子は、表面硬度の上昇により高い寸法精度を有するため、その外周にプリプレグを積層して外郭プリフォームを成形するFRP中空構造体の成形方法において、外郭プリフォームを成形するための中子としての機能を確実に発揮することができる。また、この中子は、再加熱により表面が軟化、流動化して粘着性が発現するため、その外周に形成された外郭プリフォームと共に本加熱されることで、外郭プリフォームに良好に接着して確実に一体化することができ、内部に梁構造を有する強固なFRP中空構造体の構造部材として強度および剛性の向上に寄与することができる。   On the other hand, since the core according to the present invention has high dimensional accuracy due to the increase in surface hardness, the outer preform is molded in the FRP hollow structure molding method in which the outer preform is formed by laminating the prepreg on the outer periphery. The function as a core for doing this can be demonstrated reliably. In addition, since the core softens and fluidizes due to reheating and the adhesiveness is developed, this core adheres well to the outer preform by being heated together with the outer preform formed on the outer periphery thereof. As a structural member of a strong FRP hollow structure having a beam structure inside, it can contribute to the improvement of strength and rigidity.

以下、図面を参照して本発明に係るFRP製構造体の成形方法およびこの成形方法に使用される中子の実施の形態を説明する。参照する図面において、図1は一実施形態に係る成形方法によって成形されるFRP中空構造体の構造を示す斜視図、図2は一実施形態に係る成形方法によってFRP中空構造体を成形するための作業工程図である。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method for forming an FRP structure according to the present invention and a core used in the molding method will be described below with reference to the drawings. In the drawings to be referred to, FIG. 1 is a perspective view showing a structure of an FRP hollow structure formed by a forming method according to an embodiment, and FIG. 2 is a view for forming the FRP hollow structure by a forming method according to an embodiment. FIG.

一実施形態に係るFRP中空構造体の成形方法は、図1に示すようなFRP中空構造体1を成形する方法であって、図2に示すパーツプリフォーム成形工程A、内殻プリフォーム組立工程B、予備加熱硬化工程C、外郭プリフォーム成形工程Dおよび本加熱硬化工程Eを経ることにより、図1に示したFRP中空構造体1を成形する。   The FRP hollow structure forming method according to an embodiment is a method of forming the FRP hollow structure 1 as shown in FIG. 1, and includes a parts preform forming step A and an inner shell preform assembling step shown in FIG. 2. The FRP hollow structure 1 shown in FIG. 1 is formed by passing through B, the pre-heat curing step C, the outer preform forming step D, and the main heat curing step E.

FRP中空構造体1は、溝形断面(コの字形断面またはU字形断面)の梁構造部2A,2Bが左右の壁面に対向して成形された角筒状の内殻プリフォーム2(図3参照)と、この内殻プリフォーム2の外周に成形される外郭プリフォーム3とが加熱処理により硬化して一体に接着することで、内部に梁構造を有する角筒状に成形される。   The FRP hollow structure 1 includes a rectangular tube-shaped inner shell preform 2 in which beam structures 2A and 2B having a groove-shaped cross section (a U-shaped cross section or a U-shaped cross section) are formed to face left and right wall surfaces (FIG. 3). And the outer preform 3 formed on the outer periphery of the inner shell preform 2 are cured by heat treatment and integrally bonded to form a rectangular tube having a beam structure inside.

ここで、パーツプリフォーム成形工程A(図2参照)では、図3に示す内殻プリフォーム2を例えば図4に示すように6個のパーツに分割した各パーツプリフォーム2A〜2Fをそれぞれ成形する。すなわち、溝形断面の梁構造部2A,2Bに対応したパーツプリフォーム2A,2Bと、このパーツプリフォーム2A,2Bが嵌め込まれる切欠きを有する形状で上下に2分割され、かつ、切欠き部分で前後に2分割された各パーツプリフォーム2C〜2Fを成形する。   Here, in the part preform molding step A (see FIG. 2), each of the part preforms 2A to 2F obtained by dividing the inner shell preform 2 shown in FIG. 3 into, for example, six parts as shown in FIG. To do. That is, the parts preforms 2A and 2B corresponding to the beam-shaped portions 2A and 2B having a groove-shaped cross section, and a shape having a notch into which the part preforms 2A and 2B are fitted, are divided into two vertically and a notch Each of the part preforms 2C to 2F divided into two parts at the front and rear is formed.

パーツプリフォーム2A,2Bは、長方形に裁断したプリプレグを専用のツール(図示省略)の外周に積層することで、溝形断面の前後に接合代が連続したハット形の断面形状にそれぞれ形成する。すなわち、パーツプリフォーム2Aは、前後に接合代2A1,2A2が連続したハット形の断面形状に成形し、パーツプリフォーム2Bは、前後に接合代2B1,2B2が連続したハット形の断面形状に成形する。   The part preforms 2A and 2B are each formed into a hat-shaped cross-sectional shape in which joining margins are continuous before and after the groove-shaped cross-section by laminating prepregs cut into a rectangle on the outer periphery of a dedicated tool (not shown). That is, the part preform 2A is formed into a hat-shaped cross-sectional shape in which the joining allowances 2A1, 2A2 are continuous in the front and back, and the part preform 2B is formed in a hat-shaped cross-sectional shape in which the joining allowances 2B1, 2B2 are continuous in the front and rear. To do.

一方、パーツプリフォーム2C〜2Fは、パーツプリフォーム2A,2Bが嵌め込まれる切欠きに対応した突片2C1〜2F1をそれぞれ有する形状の概略長方形に裁断したプリプレグを専用のツール(図示省略)の外周に積層してコの字形の断面形状にそれぞれ成形する。   On the other hand, the part preforms 2C to 2F are outer peripheries of a dedicated tool (not shown) obtained by cutting a prepreg cut into a substantially rectangular shape having protrusions 2C1 to 2F1 corresponding to notches into which the part preforms 2A and 2B are fitted. To form a U-shaped cross-sectional shape.

各パーツプリフォーム2A〜2Fの成形に使用するプリプレグは、強化繊維に熱硬化性樹脂を含浸させたシート状の成形用中間材料であり、例えばカーボン繊維にエポキシ樹脂を含浸させたカーボン/エポキシプリプレグ(例えば東邦テナックス社製W3101/Q-112J)を使用する。そして、このプリプレグを例えば11層に積層して各パーツプリフォーム2A〜2Fを成形する。   The prepreg used for molding each of the part preforms 2A to 2F is a sheet-shaped intermediate material in which a reinforcing fiber is impregnated with a thermosetting resin. For example, a carbon / epoxy prepreg in which a carbon fiber is impregnated with an epoxy resin (For example, W3101 / Q-112J manufactured by Toho Tenax Co., Ltd.) is used. And this prepreg is laminated | stacked on 11 layers, for example, and each part preform 2A-2F is shape | molded.

内殻プリフォーム組立工程B(図2参照)では、図4に示す形状に成形された各パーツプリフォーム2A〜2Fを図3に示す形状の内殻プリフォーム2として組み立てる。その際、パーツプリフォーム2Aの前側の接合代2A1は、パーツプリフォーム2C,2Dの突片2C1,2D1が突出する後側の一方の側面に重ね、後側の接合代2A2は、パーツプリフォーム2E,2Fの突片2E1,2F1が突出する前側の一方の側面に重ねる。また、パーツプリフォーム2Bの前側の接合代2B1は、パーツプリフォーム2C,2Dの突片2C1,2D1が突出する後側の他方の側面に重ね、後側の接合代2B2は、パーツプリフォーム2E,2Fの突片2E1,2F1が突出する前側の他方の側面に重ねる。   In the inner shell preform assembling step B (see FIG. 2), the respective part preforms 2A to 2F formed into the shape shown in FIG. 4 are assembled as the inner shell preform 2 having the shape shown in FIG. At that time, the joining margin 2A1 on the front side of the parts preform 2A is overlapped on one side surface on the rear side from which the projecting pieces 2C1 and 2D1 of the parts preforms 2C and 2D protrude, and the joining margin 2A2 on the rear side is the parts preform. The 2E, 2F protrusions 2E1, 2F1 are overlapped on one side of the front side where the protrusions 2E1, 2F protrude. Further, the joint margin 2B1 on the front side of the parts preform 2B is overlapped with the other side surface on the rear side from which the projecting pieces 2C1 and 2D1 of the part preforms 2C and 2D protrude, and the joint margin 2B2 on the rear side is composed of the parts preform 2E. , 2F are overlapped with the other side surface on the front side from which the protruding pieces 2E1, 2F1 protrude.

予備加熱硬化工程C(図2参照)では、図3に示す形状に組み立てられた内殻プリフォーム2を図示しない加熱炉内で予備加熱して5〜15%(好ましくは5〜10%)の硬化深度(Cure Index)まで硬化させる。その際、内殻プリフォーム2の予備加熱温度は、カーボン/エポキシプリプレグの硬化温度として推奨されている120〜130℃より少なくとも50℃程度低い70〜80℃の温度とする。   In the preheating and curing step C (see FIG. 2), the inner shell preform 2 assembled into the shape shown in FIG. 3 is preheated in a heating furnace (not shown) to 5 to 15% (preferably 5 to 10%). Cure to cure index. At that time, the preheating temperature of the inner shell preform 2 is set to a temperature of 70 to 80 ° C. which is at least about 50 ° C. lower than 120 to 130 ° C. recommended as a curing temperature of the carbon / epoxy prepreg.

また、内殻プリフォーム2の硬化深度は、内殻プリフォーム2の表面に貼り付けた誘電特性センサの検出信号に基づいて判定する。そして、誘電特性センサの検出信号値が5〜15%(好ましくは5〜10%)の硬化深度に対応する値として予め求められている値に達した時点で内殻プリフォーム2を冷却してその硬化反応を停止させる。   Further, the curing depth of the inner shell preform 2 is determined based on a detection signal of a dielectric property sensor attached to the surface of the inner shell preform 2. Then, when the detection signal value of the dielectric property sensor reaches a value obtained in advance as a value corresponding to a curing depth of 5 to 15% (preferably 5 to 10%), the inner shell preform 2 is cooled. The curing reaction is stopped.

この予備加熱硬化工程Cの具体例を述べると以下のとおりであり、内殻プリフォーム2(図3参照)の表面に誘電特性センサ(NETZSCH-Geratebau社製IDEX-Midcon)を貼り付け、この内殻プリフォーム2を熱電対と共に加熱炉内に投入し、80℃/0.2気圧の加温加圧雰囲気で予備加熱した。そして、測定システムであるマイクロダイエレクトロメータ(Microdielectrometer)(NETZSCH-Geratebau社製Eumetric systemIII)により内殻プリフォーム2の樹脂温度、樹脂粘度、硬化深度(Cure Index)を測定した。 A specific example of this pre-heating and curing step C is described as follows. A dielectric property sensor (IDEX-Midcon manufactured by NETZSCH-Geratebau) is attached to the surface of the inner shell preform 2 (see FIG. 3). The shell preform 2 is put into a heating furnace together with a thermocouple, and 80 ° C./0.0. Preheating was performed in a heated and pressurized atmosphere of 2 atm. Then, the resin temperature, resin viscosity, and cure depth (Cure Index) of the inner shell preform 2 were measured using a microdielectrometer (Eumetric system III manufactured by NETZSCH-Geratebau) as a measurement system.

なお、測定システムによる硬化深度(Cure Index)の測定に先立って、内殻プリフォーム2と同等の試験片を急加温徐冷して100%硬化させる実験を実施し、この実験により同測定システムで得られたデータから測定パラメータを抽出した。そして、測定システムによる硬化深度(Cure Index)の測定に際しては、同測定システムにより予め抽出された測定パラメータに基づいて硬化深度(Cure Index)を補正した。   Prior to the measurement of the cure index by the measurement system, an experiment was performed in which a test piece equivalent to the inner shell preform 2 was rapidly heated and gradually cooled to be cured 100%. The measurement parameters were extracted from the data obtained in (1). And in the measurement of the cure depth (Cure Index) by a measurement system, the cure depth (Cure Index) was correct | amended based on the measurement parameter previously extracted by the measurement system.

そして、測定システムによる硬化深度(Cure Index)の測定結果が10%に達した時点で加熱炉による内殻プリフォーム2の加熱を停止させ、内殻プリフォーム2を急冷してその硬化反応を停止させた。加熱炉による予備加熱処理の経過時間は80分、内殻プリフォーム2の樹脂の到達温度は84℃であった(図5参照)。   When the measurement result of the cure depth (Cure Index) by the measurement system reaches 10%, the heating of the inner shell preform 2 by the heating furnace is stopped, and the inner shell preform 2 is rapidly cooled to stop the curing reaction. I let you. The elapsed time of the preheating treatment in the heating furnace was 80 minutes, and the temperature reached by the resin of the inner shell preform 2 was 84 ° C. (see FIG. 5).

このような予備加熱硬化工程Cを経て成形された内殻プリフォーム2は、10%の硬化深度(Cure Index)まで硬化されており、表面硬度の上昇により高い寸法精度を有するため、次の外郭プリフォーム成形工程D(図2参照)により外郭プリフォーム3を成形する際の中子として確実に機能する。   The inner shell preform 2 molded through the preheating and curing step C is cured to a cure index of 10% and has a high dimensional accuracy due to an increase in surface hardness. It functions reliably as a core when the outer preform 3 is molded by the preform molding step D (see FIG. 2).

そこで、外郭プリフォーム成形工程Dでは、予備加熱硬化工程Cにより10%の硬化深度(Cure Index)まで硬化させた内殻プリフォーム2を中子として、その外周に帯状のプリプレグを例えば12層の積層状態に巻き付けて外郭プリフォーム3を成形する(図6参照)。使用するプリプレグは、内殻プリフォーム2の成形に使用したプリプレグと同じカーボン/エポキシプリプレグ(例えば東邦テナックス社製W3101/Q-112J)である。   Therefore, in the outer preform forming step D, for example, the inner shell preform 2 cured to a cure depth of 10% in the preheating and curing step C is used as a core, and a belt-like prepreg is formed on the outer periphery thereof with, for example, 12 layers. The outer preform 3 is formed by winding in a laminated state (see FIG. 6). The prepreg used is the same carbon / epoxy prepreg (for example, W3101 / Q-112J manufactured by Toho Tenax Co., Ltd.) as the prepreg used for forming the inner shell preform 2.

本加熱硬化工程E(図2参照)では、内殻プリフォーム2の外周に積層した外郭プリフォーム3を内殻プリフォーム2と共に型枠内で本加熱して硬化させる。すなわち、内殻プリフォーム2の外周に積層された外郭プリフォーム3を図7に2点鎖線で示すような上下2分割構造のFRP型4内に投入し、図示しないオートクレーブ内において例えば130℃/4気圧の加温加圧雰囲気で4時間本加熱する。   In the main heat curing step E (see FIG. 2), the outer preform 3 laminated on the outer periphery of the inner shell preform 2 is finally heated and cured in the mold together with the inner shell preform 2. That is, the outer preform 3 laminated on the outer periphery of the inner shell preform 2 is put into an FRP mold 4 having an upper and lower split structure as shown by a two-dot chain line in FIG. This is heated for 4 hours in a heated and pressurized atmosphere of 4 atm.

このような本加熱硬化工程Eにおいて、予め10%の硬化深度に硬化された内殻プリフォーム2は、本加熱時間の経過の初期に表面が一旦軟化、流動化して粘着性を発現し、外郭プリフォーム3の内面に良好に接着して確実に一体化される。その後、本加熱時間の経過と共に内殻プリフォーム2および外郭プリフォーム3は一体となって硬化する。   In such a main heating and curing step E, the inner shell preform 2 that has been cured to a curing depth of 10% in advance is softened and fluidized at the initial stage of the main heating time, and exhibits adhesiveness. It adheres well to the inner surface of the preform 3 and is reliably integrated. Thereafter, as the main heating time elapses, the inner shell preform 2 and the outer preform 3 are integrally cured.

従って、一実施形態に係るFRP中空構造体の成形方法によれば、図1に示すように、内部に梁構造部2A,2Bを有する強固なFRP中空構造体1を確実に成形することができる。そして、外郭プリフォーム3を成形するための中子としての内殻プリフォーム2は、そのままFRP中空構造体1の構造部材として強度および剛性の向上に寄与するため、中子の除去工程が不要となり、FRP中空構造体1の成形工数を低減することができる。   Therefore, according to the FRP hollow structure forming method according to the embodiment, as shown in FIG. 1, the strong FRP hollow structure 1 having the beam structures 2A and 2B inside can be reliably formed. . The inner shell preform 2 as a core for forming the outer preform 3 contributes to improvement in strength and rigidity as a structural member of the FRP hollow structure 1 as it is, and therefore, a core removal step is not required. The number of molding steps for the FRP hollow structure 1 can be reduced.

本発明によるFRP中空構造体の成形方法は、前述した一実施形態に限定されるものではない。例えば、外郭プリフォーム成形工程D(図2参照)においては、図8に示すように、内殻プリフォーム2の梁構造部2A,2Bの各凹部に芯材となる適宜のフォーム材5,5を嵌め込んだものを中子とし、その外周に外郭プリフォーム3を積層して成形してもよい。   The molding method of the FRP hollow structure according to the present invention is not limited to the above-described embodiment. For example, in the outer preform forming step D (see FIG. 2), as shown in FIG. 8, appropriate foam materials 5 and 5 serving as cores in the respective concave portions of the beam structure portions 2A and 2B of the inner shell preform 2 are formed. May be formed by stacking the outer preform 3 on the outer periphery thereof.

また、予備加熱硬化工程C(図2参照)においては、以下の実験結果により、前述した測定システムによる硬化深度(Cure Index)の測定結果が5〜15%の範囲の任意の値に達した時点で加熱炉による内殻プリフォーム2の加熱を停止させるようにしてもよい。   Moreover, in the preheating curing process C (refer FIG. 2), when the measurement result of the cure depth (Cure Index) by the measurement system mentioned above reached arbitrary values in the range of 5 to 15% by the following experimental results. The heating of the inner shell preform 2 by the heating furnace may be stopped.

図9は、硬化深度を5%とした内殻プリフォーム2および硬化深度を15%とした内殻プリフォーム2を試料とし、これらの内殻プリフォーム2の再加熱による樹脂粘度の変化を測定した実験結果を示している。この実験においては、試料とする2つの内殻プリフォーム2を5日間室温で保持し、その後これらの内殻プリフォーム2を前述した本加熱硬化工程Eと同様に130℃/4気圧の加温加圧雰囲気で4時間再加熱した。   FIG. 9 shows changes in resin viscosity due to reheating of the inner shell preform 2 using the inner shell preform 2 having a curing depth of 5% and the inner shell preform 2 having a curing depth of 15% as samples. The experimental results are shown. In this experiment, the two inner shell preforms 2 as samples were held at room temperature for 5 days, and then the inner shell preforms 2 were heated at 130 ° C./4 atm as in the above-described heat curing step E. Reheated in a pressurized atmosphere for 4 hours.

ここで、図9の実験結果のグラフに示すように、硬化深度を5%とした内殻プリフォーム2は、再加熱により樹脂粘度が大きく低下するため(図中実線のグラフで示す)、流動性が高くなって良好な粘着性(タック性)を発現した。一方、硬化深度を15%とした内殻プリフォーム2は、硬化深度を5%とした内殻プリフォーム2と較べると、再加熱による樹脂粘度の低下幅が小さいため(図中破線のグラフで示す)、流動性が低くなっているが、それでも僅かに粘着性(タック性)を発現した。この実験結果により、硬化深度が15%を超える内殻プリフォーム2は、粘着性(タック性)を発現できないが、硬化深度が15%以下では粘着性(タック性)を発現することが判明した。   Here, as shown in the graph of the experimental results in FIG. 9, the inner shell preform 2 having a curing depth of 5% has a resin viscosity that is greatly reduced by reheating (shown by a solid line graph in the figure). The adhesiveness increased and good tackiness (tackiness) was expressed. On the other hand, the inner shell preform 2 with a cure depth of 15% has a smaller decrease in resin viscosity due to reheating than the inner shell preform 2 with a cure depth of 5% (in the graph of the broken line in the figure). As shown in the figure, the fluidity is low, but it still exhibits slight tackiness (tackiness). From this experimental result, it was found that the inner shell preform 2 having a curing depth exceeding 15% cannot exhibit tackiness (tackiness) but exhibits tackiness (tackiness) at a curing depth of 15% or less. .

本発明の一実施形態に係る成形方法によって成形されるFRP中空構造体の構造を示す斜視図である。It is a perspective view which shows the structure of the FRP hollow structure shape | molded by the shaping | molding method which concerns on one Embodiment of this invention. 一実施形態に係る成形方法によってFRP中空構造体を成形するための作業工程図である。It is a work process figure for shape | molding a FRP hollow structure by the shaping | molding method which concerns on one Embodiment. 図2の内殻プリフォーム組立工程により組みたたられる内殻プリフォームの構造を示す斜視図である。FIG. 3 is a perspective view showing the structure of the inner shell preform assembled by the inner shell preform assembling step of FIG. 2. 図3に示した内殻プリフォームを6個のパーツに分割した各パーツプリフォームの斜視図である。FIG. 4 is a perspective view of each part preform obtained by dividing the inner shell preform shown in FIG. 3 into six parts. 図3に示した内殻プリフォームの予備加熱温度と内殻プリフォームの樹脂の硬化深度との関係を示すグラフである。It is a graph which shows the relationship between the preheating temperature of the inner shell preform shown in FIG. 3, and the hardening depth of resin of an inner shell preform. 図2の外郭プリフォーム成形工程により成形される外郭プリフォームを内殻プリフォームと共に示す斜視図である。FIG. 3 is a perspective view showing the outer preform formed by the outer preform forming step of FIG. 2 together with the inner shell preform. 図2の本加熱硬化工程に使用されるFRP型を内殻プリフォームおよび外郭プリフォームと共に示す斜視図である。It is a perspective view which shows the FRP type | mold used for this heat curing process of FIG. 2 with an inner shell preform and an outer shell preform. 図2の外郭プリフォーム成形工程で使用される中子の変形例を示す斜視図である。It is a perspective view which shows the modification of the core used in the outline preform shaping | molding process of FIG. 図3に示した内殻プリフォームと同様の硬化深度の異なる2つの内殻プリフォームの再加熱実験による樹脂粘度の変化を示すグラフである。It is a graph which shows the change of the resin viscosity by the reheating experiment of two inner shell preforms from which the hardening depth similar to the inner shell preform shown in FIG. 3 differs.

符号の説明Explanation of symbols

1 FRP中空構造体
2 内殻プリフォーム
2A 梁構造部(パーツプリフォーム)
2B 梁構造部(パーツプリフォーム)
2C〜2F パーツプリフォーム
3 外郭プリフォーム
4 FRP型
5 フォーム材
A パーツプリフォーム成形工程
B 内殻プリフォーム組立工程
C 予備加熱硬化工程
D 外郭プリフォーム成形工程
E 本加熱硬化工程
1 FRP hollow structure 2 Inner shell preform 2A Beam structure (part preform)
2B Beam structure (part preform)
2C-2F Parts preform 3 Outer preform 4 FRP type 5 Foam material A Parts preform molding process B Inner shell preform assembly process C Preheating curing process D Outer preform molding process E Main heating curing process

Claims (2)

内部に梁構造を有するFRP中空構造体の成形方法であって、
それぞれ所定形状のツールにプリプレグを積層することで梁構造を有する内殻プリフォームの各部のパーツプリフォームを成形するパーツプリフォーム成形工程と、
成形された各パーツプリフォームを前記内殻プリフォームとして組み立てる内殻プリフォーム組立工程と、
組み立てられた内殻プリフォームを予備加熱して所定の硬化深度まで硬化させる予備加熱硬化工程と、
予備加熱された内殻プリフォームを中子としてその外周にプリプレグを積層することで外郭プリフォームを成形する外郭プリフォーム成形工程と、
前記内殻プリフォームと共に前記外郭プリフォームを型枠内で本加熱して硬化させる本加熱硬化工程とを備え、
前記予備加熱硬化工程では、前記内殻プリフォームを5〜15%の硬化深度まで硬化させることを特徴とするFRP中空構造体の成形方法。
A method for forming an FRP hollow structure having a beam structure therein,
A part preform molding process for molding a part preform of each part of the inner shell preform having a beam structure by laminating a prepreg on a tool of a predetermined shape,
An inner shell preform assembling step for assembling each molded part preform as the inner shell preform;
A preheating and curing step in which the assembled inner shell preform is preheated and cured to a predetermined curing depth;
An outer preform molding step for forming an outer preform by laminating a prepreg on the outer periphery of the preheated inner shell preform as a core,
A main heating and curing step of curing the outer preform together with the inner shell preform by heating in a mold.
In the preliminary heating and curing step, the inner shell preform is cured to a curing depth of 5 to 15%.
内部に梁構造を有するFRP中空構造体の成形方法に使用される中子であって、
それぞれ所定形状のツールにプリプレグを積層して成形された複数のパーツプリフォームを組み立てた梁構造を有する中子プリフォームからなり、
この中子プリフォームを予備加熱により5〜15%の硬化深度まで硬化させて構成したことを特徴とする中子。
A core used in a method for forming an FRP hollow structure having a beam structure therein,
Each consists of a core preform having a beam structure in which a plurality of part preforms formed by laminating prepregs on a tool of a predetermined shape are assembled,
A core formed by curing the core preform to a curing depth of 5 to 15% by preheating.
JP2003362201A 2003-10-22 2003-10-22 FRP hollow structure molding method and core used in this molding method Expired - Fee Related JP4103768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362201A JP4103768B2 (en) 2003-10-22 2003-10-22 FRP hollow structure molding method and core used in this molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362201A JP4103768B2 (en) 2003-10-22 2003-10-22 FRP hollow structure molding method and core used in this molding method

Publications (2)

Publication Number Publication Date
JP2005125558A JP2005125558A (en) 2005-05-19
JP4103768B2 true JP4103768B2 (en) 2008-06-18

Family

ID=34641927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362201A Expired - Fee Related JP4103768B2 (en) 2003-10-22 2003-10-22 FRP hollow structure molding method and core used in this molding method

Country Status (1)

Country Link
JP (1) JP4103768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715592A (en) * 1993-06-22 1995-01-17 Nec Corp Facsimile equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035835A (en) * 2005-07-26 2007-02-08 Taiyo Nippon Sanso Corp Manufacturing method of inner tub of cryostat
JP5076505B2 (en) * 2007-01-10 2012-11-21 トヨタ自動車株式会社 Method for manufacturing FRP hollow structure
DE102007015517A1 (en) * 2007-03-30 2008-10-02 Airbus Deutschland Gmbh Process for producing a structural component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715592A (en) * 1993-06-22 1995-01-17 Nec Corp Facsimile equipment

Also Published As

Publication number Publication date
JP2005125558A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
WO2011155403A1 (en) Method for manufacturing curved glass-resin laminate
RU2438866C2 (en) Method of producing structural component from composite material reinforced by fibres for aerospace engineering, moulding core for production of said component, and component thus produced and/or by means of said core
US8961724B2 (en) Structural composite panel with metallic foam core
US20100278586A1 (en) Structural connecting rod made of a composite and process for producing such a connecting rod
JP6005086B2 (en) Method for manufacturing composite structure
JP6902753B2 (en) Manufacturing method of carbon fiber reinforced resin member
KR940011167A (en) Method for producing a metal-polypropylene-metal laminate and a molded sheet material of the laminate
US20110036495A1 (en) Method of manufacturing a complex structure made of a composite by assembling rigid components
KR20200127486A (en) Integrated structure and method of different kinds materials
JP2016221963A (en) Material composite
JP4103768B2 (en) FRP hollow structure molding method and core used in this molding method
WO2019111571A1 (en) Method for bonding composite material, and composite material
US4784920A (en) Thin fiber-reinforced plastic composite plate and method of molding the same
US10272620B2 (en) Fiber-reinforced composite material and method for manufacturing same
JP2009107292A (en) Manufacturing process of resin structure
JPH06106632A (en) Method for molding composite material product
JP2000015710A (en) Production of structure made of frp
JP2008183818A (en) Process of molding composite body consisting of thermoplastic member and thermosetting member
JPS6389332A (en) Improving molding method of fiber-reinforced resin material
JP6709056B2 (en) Method for manufacturing fiber-reinforced resin structure
JP2006001074A (en) Manufacturing method of hollow molded product made of fiber reinforced resin
TWI715442B (en) Method of manufacturing wheel rim
CN103302843A (en) Making method of plate-shaped fiber reinforced product
JP2021017038A (en) Manufacturing method of structure body, and mold
JP2013052527A (en) Resin member and composite member as well as method for manufacturing composite member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees