JP4103519B2 - Production method of secondary olefin - Google Patents

Production method of secondary olefin Download PDF

Info

Publication number
JP4103519B2
JP4103519B2 JP2002278710A JP2002278710A JP4103519B2 JP 4103519 B2 JP4103519 B2 JP 4103519B2 JP 2002278710 A JP2002278710 A JP 2002278710A JP 2002278710 A JP2002278710 A JP 2002278710A JP 4103519 B2 JP4103519 B2 JP 4103519B2
Authority
JP
Japan
Prior art keywords
olefin
tertiary
mixture
hydrocarbon
hydrocarbon mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278710A
Other languages
Japanese (ja)
Other versions
JP2004115406A (en
Inventor
正信 山瀬
和弥 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002278710A priority Critical patent/JP4103519B2/en
Publication of JP2004115406A publication Critical patent/JP2004115406A/en
Application granted granted Critical
Publication of JP4103519B2 publication Critical patent/JP4103519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第2級オレフィンの製造方法に関するものである。第三工程の詳細は、分子内に2以上の二重結合および/または1以上の三重結合を有する不飽和炭化水素(以下高度に不飽和な炭化水素と称す)を含む、低不飽和度のC4炭化水素混合物を、主として固定床反応器を用いて触媒の存在下に水素と接触させ、二重結合の異性化を伴わずに高度に不飽和な炭化水素のみを、対比する低不飽和度の炭化水素に転化する選択的水素添加方法であって、本発明の工程配列により水素化触媒への被毒物質の影響を緩和し、触媒活性の安定化が図られ、安定して効率的に所望の高品質の第2級オレフィンを得ることができるという優れた特徴を有する第2級オレフィンの製造方法に関するものである。
【0002】
【従来の技術】
高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物を原料として、該混合物を水洗後、該混合物と第1級アルコールとを強酸性陽イオン交換樹脂存在下の反応に供するアルキル第3級アルキルエーテルの製造方法、該混合物の還元処理を行った担持型パラジウム触媒による選択的な水素添加方法はそれぞれ公知である。(たとえば、特許文献1、特許文献2参照。)。高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物よりアルキル第3級アルキルエーテルを合成し、しかる後に第2級オレフィンまたは第2級オレフィンおよび第3級オレフィンを製造する場合、本発明の第一工程〜第四工程が、一般的には第三工程、第一工程、第二工程、第四工程の配列で採用され、プラント最上流部となる第三工程での水素添加は液相状態で行われるのが通例である。しかしながら従来の方法によると、原料となる高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物中に含まれるメチルメルカプタン等のS(硫黄)分が触媒被毒物質となって水素化触媒を失活させ、水素化触媒の再生および交換頻度が増加する上に、ガードリアクター等の水素化触媒被毒物質除去用の装置の設置が必要となる等の問題を有していた。
【0003】
【特許文献1】
特公昭61−40655号公報(第1頁)
【特許文献2】
特公昭62−36013号公報(第1頁−第2頁)
【0004】
【発明が解決しようとする課題】
かかる状況の下、本発明が解決しようとする課題は、特定の工程配列の採用のみで水素化触媒に対する被毒物質の影響を緩和し、安定して経済的に高品質の第2級オレフィンを得ることができるという優れた特徴を有する第2級オレフィンの製造方法を提供する点にある。
【0005】
【課題を解決するための手段】
すなわち、本発明は、下記の第一工程〜第四工程を含む第2級オレフィンの製造方法に係るものである。
第一工程:高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物を水洗し、該水洗後の混合物と第1級アルコールとを強酸性陽イオン交換樹脂の存在下で反応させ、主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物を得る工程
第二工程:第一工程で得た主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物の混合物から、主として第3級オレフィンが除かれたC4炭化水素混合物を含む留分を蒸留により分離する工程
第三工程:還元処理を行った担持型パラジウム触媒を充填した固定床反応器を用いて、第二工程で得た前記留分を気相状態で選択的に水素添加する工程
第四工程:第三工程で得た水素添加された留分から、蒸留によって第2級オレフィンに対する高沸点成分および低沸点成分を分離し、第2級オレフィンを得る工程
【0006】
【発明の実施の形態】
本発明の第一工程は、高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物を水洗し、該水洗後の混合物と第1級アルコールとを強酸性陽イオン交換樹脂の存在下で反応させ、主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物を得る工程である。
【0007】
本発明に用いられる高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物としては、ナフサ等のスチームクラッキングによって得られるいわゆるC4留分と呼ばれるブタジエン、ブテン、ブタン等からなるC4炭化水素混合物、そしてこのC4留分からブタジエンの大部分を抽出によって取り除いたいわゆるスペントBB留分と呼ばれるC4炭化水素混合物があげられる。C4炭化水素混合物の組成の例としてはイソブテン42.4重量%、ブテン−1 24.1重量%、n−ブタン14.2重量%、ブテン−2 14.0重量%、イソブタン4.4重量%、イソペンタン0.2重量%、S化合物0.3重量ppm、その他高度に不飽和な炭化水素としてプロパジエン、メチルアセチレン、1,2−ブタジエン、1,3−ブタジエン、エチルアセチレン、ビニルアセチレン、ペンタジエン等を含むC4炭化水素混合物があげられる。
【0008】
第1級アルコールとしては、メタノール等をあげることができる。
【0009】
強酸性陽イオン交換樹脂としては、ジビニルベンゼンで架橋したスチレン系スルホン酸樹脂、ホルムアルデヒドで架橋したフェノールスルホン酸樹脂等が代表例として挙げられ、好ましくはマクロポーラス型の樹脂が採用され、具体例としては、デュオライトC−26H(商品名)、アンバーリスト15(商品名)等をあげることができる。
【0010】
第一工程では、高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物中の第3級オレフィンと第1級アルコールを反応させることにより、第3級エーテルが得られる。
【0011】
第3級エーテルとしては、イソブテンとメタノールにより得られるメチル−tert−ブチルエーテル等をあげることができる。イソブテンとメタノールからメチル−tert−ブチルエーテルを得る場合の反応式を示すと(1)のとおりである。
(CH−C=CH+CHOH→(CHC−O−CH
(1)
【0012】
本工程の具体的な条件としては、特公昭61−40655号公報によれば、水洗条件としては、原料となる炭化水素混合物と水との混合比で1:0.1〜1:10好ましくは1:0.5〜1:2が採用される。反応条件としては、反応温度は10〜120℃、好ましくは30〜100℃、反応圧力は5〜50kg/cmG、好ましくは10〜30kg/cmG、第3級オレフィンに対する第1級アルコールのモル比は0.5〜20、好ましくは1.0〜10が採用される。
【0013】
本発明の第二工程は、第一工程で得た主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物の混合物から、主として第3級オレフィンが除かれたC4炭化水素混合物を含む留分を蒸留により分離する工程である。
【0014】
本工程には、通常の蒸留塔が使用でき、例えば多孔板塔、バルブ塔、充填塔などいずれの形式でもよい。運転圧力は通常3〜6kg/cmGが採用される。
【0015】
本発明の第三工程は、還元処理を行った担持型パラジウム触媒を充填した固定床反応器を用いて、第二工程で得た前記留分を気相状態で選択的に水素添加する工程である。
【0016】
本工程の具体的な条件としては、特公昭62−36013号公報によれば、反応温度等の条件は特に限定されるものではないが、通常反応温度は−20〜150℃、好ましくは20℃〜100℃が採用される。反応圧力は反応温度によっても変化するが、常圧〜50気圧が一般的であり、特に2〜20気圧が好ましい。ジエン、アセチレン等の高度に不飽和な炭化水素に対する水素のモル比は通常1〜10の範囲であり、好ましくは1〜2である。
【0017】
担持型パラジウム触媒の担体としては、通常アルミナ、シリカゲル、珪藻土、活性炭等があり、好ましくはアルミナが用いられる。これらの担体に担持されるパラジウムは通常0.001〜10%、好ましくは0.01〜5%が採用される。
【0018】
本工程における水素添加は気相状態で行うのが有利であるが、液相状態でも可能である。水素添加を気相状態で行った場合、次工程となる蒸留工程へ水素添加した留分を気相状態で供給することができるため、蒸留のための熱エネルギーを大幅に削減できる。
【0019】
本発明の第四工程は、第三工程で得た水素添加された留分から、蒸留によって第2級オレフィンに対する高沸点成分および低沸点成分を分離し、第2級オレフィンを得る工程である。
【0020】
本工程には、通常の蒸留塔が使用でき、例えば多孔板塔、バルブ塔、充填塔などいずれの形式でもよい。運転圧力は通常4〜10kg/cmGが採用される。
【0021】
第2級オレフィンに対する高沸点成分としては、n−ブタン、cis−2−ブテン、trans−2−ブテン等をあげることができる。
【0022】
第2級オレフィンに対する低沸点成分としては、イソブタン等をあげることができる。
【0023】
本発明の最大の特徴は、第3級オレフィンが除かれた、高度に不飽和な炭化水素を含む低不飽和度のC4炭化水素混合物を、主として固定床反応器を用いて触媒の存在下に水素と接触させ、二重結合の異性化を伴わずに高度に不飽和な炭化水素のみを対比する低不飽和度の炭化水素に転化する選択的水素添加方法において、該水素添加工程を含む第2級オレフィンの製造工程の配列を特定した点にある。
【0024】
本発明の工程を採用することにより、前記の課題が解決される。その理由は次のとおりである。すなわち本発明の工程配列を採用することにより、原料となるC4炭化水素混合物中の、水素化触媒の被毒物質であるメチルメルカプタン等のS分が、水洗、陽イオン交換樹脂、蒸留塔の経由によって分離され、水素化触媒に対する被毒物質の影響を大幅に緩和し、安定して経済的に高品質の第2級オレフィンを得ることができる。
【0025】
ただし、原料C4炭化水素混合物中に含まれる水素化触媒の被毒物質の濃度によっては、本発明による工程配列を採用するか、ガードリアクター等を設置するかはプラントの特性によって決められるべきである。
【0026】
【実施例】
次に、実施例により本発明を説明する。
実施例1
第1工程
高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物を水洗後、強酸性陽イオン交換樹脂としてのデュオライトC−26Hの存在下、該混合物(イソブテン42.4重量%、ブテン−1 24.1重量%、n−ブタン14.2重量%、ブテン−2 14.0重量%、イソブタン4.4重量%、1,3ブタジエン0.7重量%、イソペンタン0.2重量%、S化合物0.3重量ppm)と第1級アルコールとしてのメタノールとを原料として、主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物を得た。具体的な条件は下記のとおりとした。
水洗条件としては原料となる炭化水素混合物と水との混合比は1:0.5を採用し、反応は2段の断熱型反応器によって行い、反応条件としては1段の入口温度を49℃、出口温度を87℃、2段の入口温度を42℃、出口温度を51℃とし、反応圧力は18kg/cmGを採用した。第3級オレフィンに対するメタノールのモル比は1.2とした。
第2工程
第1工程で得た主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物の混合物から、主として第3級オレフィンが除かれたC4炭化水素混合物を含む留分を蒸留により分離した。蒸留塔の運転圧力は4.5kg/cmGを採用した。
第3工程
第2工程で得た前記留分を、還元処理を行った担持型パラジウム触媒を充填した固定床反応器を用いて、選択的に気相状態で水素添加した。具体的な条件としては次の通りとした。担持型パラジウム触媒としては、0.3重量%のパラジウムをアルミナ担体に担持した還元処理済みの市販触媒を採用した。反応は2段の断熱型反応器によって行い、1段の入口温度を60℃、出口温度を78℃、2段の入口温度を64℃、出口温度を71℃とし、反応圧力は5kg/cmGを採用した。また、ジエンに対する水素のモル比は1段で1.2、2段で0.9、1段および2段全体で1.1を採用した。
第4工程
第三工程で得た水素添加された留分から、蒸留によって第2級オレフィンに対する高沸点成分および低沸点成分を分離し、第2級オレフィンを得た。蒸留は2基の蒸留塔によって行い、第1塔では第2級オレフィンに対する高沸点成分を分離し、第2塔では第2級オレフィンに対する低沸点成分を分離した。運転圧力は第1塔で4kg/cmG、第2塔で5.5kg/cmGを採用した。
【0027】
比較例1
実施例1と同一組成の原料C4炭化水素混合物を用い、流通反応による水素化触媒の失活テストを実施した。その結果、数時間で水素化触媒が大幅に失活するという不都合を生じた。
【0028】
【発明の効果】
以上、説明したとおり、本発明による工程配列を採用することで水素化触媒への被毒物質の影響を緩和し、触媒活性の安定化を図り、安定して効率的に所望の高品質の第3級オレフィンを得ることができるという優れた特徴を有する第2級オレフィンの製造方法を提供することができた。
【図面の簡単な説明】
【図1】実施例1の概略フローを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a secondary olefin. The details of the third step include a low degree of unsaturation, including unsaturated hydrocarbons having two or more double bonds and / or one or more triple bonds in the molecule (hereinafter referred to as highly unsaturated hydrocarbons). The C4 hydrocarbon mixture is contacted with hydrogen mainly in the presence of a catalyst using a fixed bed reactor, and only highly unsaturated hydrocarbons without double bond isomerization are compared with low unsaturation. A selective hydrogenation method for converting to hydrocarbons of the present invention, wherein the process sequence of the present invention alleviates the effects of poisonous substances on the hydrogenation catalyst, stabilizes the catalytic activity, and is stable and efficient. The present invention relates to a method for producing a secondary olefin having an excellent characteristic that a desired high-quality secondary olefin can be obtained.
[0002]
[Prior art]
Using a low-unsaturated C4 hydrocarbon mixture containing a highly unsaturated hydrocarbon as a raw material, the mixture is washed with water, and then the mixture and the primary alcohol are subjected to a reaction in the presence of a strongly acidic cation exchange resin. A method for producing an alkyl tertiary alkyl ether and a selective hydrogenation method using a supported palladium catalyst in which the mixture is reduced are known. (For example, refer to Patent Document 1 and Patent Document 2.) When synthesizing alkyl tertiary alkyl ethers from low unsaturated C4 hydrocarbon mixtures containing highly unsaturated hydrocarbons and then producing secondary olefins or secondary olefins and tertiary olefins The first step to the fourth step of the present invention are generally employed in the arrangement of the third step, the first step, the second step, and the fourth step, and hydrogen in the third step that becomes the most upstream part of the plant. The addition is usually done in liquid phase. However, according to the conventional method, S (sulfur) content such as methyl mercaptan contained in the low-unsaturated C4 hydrocarbon mixture containing the highly unsaturated hydrocarbon as the raw material becomes the catalyst poison. In addition to deactivating the hydrogenation catalyst and increasing the frequency of regeneration and replacement of the hydrogenation catalyst, there were problems such as the need to install a device for removing the hydrogenation catalyst poisonous substance such as a guard reactor. .
[0003]
[Patent Document 1]
Japanese Examined Patent Publication No. 61-40655 (first page)
[Patent Document 2]
Japanese Examined Patent Publication No. 62-36013 (first page-second page)
[0004]
[Problems to be solved by the invention]
Under such circumstances, the problem to be solved by the present invention is to reduce the influence of poisonous substances on the hydrogenation catalyst only by adopting a specific process sequence, and to stably produce a high quality secondary olefin. It is in the point of providing the manufacturing method of the secondary olefin which has the outstanding characteristics that it can obtain.
[0005]
[Means for Solving the Problems]
That is, this invention concerns on the manufacturing method of the secondary olefin containing the following 1st process-4th process.
First step: Washing a C4 hydrocarbon mixture having a low degree of unsaturation containing a highly unsaturated hydrocarbon with water, and reacting the mixture with the primary alcohol in the presence of a strongly acidic cation exchange resin Step 2 to obtain a C4 hydrocarbon mixture from which mainly alkyl tertiary alkyl ether and tertiary olefin have been removed. Second step: mainly alkyl tertiary alkyl ether and tertiary olefin obtained in the first step are removed. A step of separating a fraction containing a C4 hydrocarbon mixture from which a tertiary olefin has been mainly removed from a mixture of C4 hydrocarbon mixtures by distillation. Third step: A fixed bed filled with a supported palladium catalyst subjected to a reduction treatment. Using the reactor, the fraction obtained in the second step is selectively hydrogenated in the gas phase. Fourth step: From the hydrogenated fraction obtained in the third step, a secondary ozone is obtained by distillation. Separating the high-boiling components and low-boiling component to the fins, steps [0006] to obtain a secondary olefin
DETAILED DESCRIPTION OF THE INVENTION
In the first step of the present invention, a C4 hydrocarbon mixture having a low degree of unsaturation containing a highly unsaturated hydrocarbon is washed with water, and the mixture after washing with the primary alcohol is subjected to a strongly acidic cation exchange resin. This is a step of reacting in the presence to obtain a C4 hydrocarbon mixture from which alkyl tertiary alkyl ether and tertiary olefin are mainly removed.
[0007]
As the C4 hydrocarbon mixture having a low degree of unsaturation and containing a highly unsaturated hydrocarbon used in the present invention, C4 composed of butadiene, butene, butane, etc., which is called a C4 fraction obtained by steam cracking such as naphtha. Examples thereof include hydrocarbon mixtures and C4 hydrocarbon mixtures called so-called spent BB fractions in which most of the butadiene has been removed from the C4 fraction by extraction. Examples of the composition of the C4 hydrocarbon mixture include 42.4% by weight of isobutene, 24.1% by weight of butene-1, 14.2% by weight of n-butane, 14.0% by weight of butene-2, and 4.4% by weight of isobutane. Isopentane 0.2 wt%, S compound 0.3 wt ppm, and other highly unsaturated hydrocarbons such as propadiene, methylacetylene, 1,2-butadiene, 1,3-butadiene, ethylacetylene, vinylacetylene, pentadiene, etc. C4 hydrocarbon mixture containing
[0008]
Examples of the primary alcohol include methanol.
[0009]
Typical examples of the strongly acidic cation exchange resin include styrene sulfonic acid resin crosslinked with divinylbenzene, phenol sulfonic acid resin crosslinked with formaldehyde, etc., preferably a macroporous resin is used, Can include Duolite C-26H (product name), Amber List 15 (product name), and the like.
[0010]
In the first step, a tertiary ether is obtained by reacting a tertiary olefin with a primary alcohol in a low unsaturated C4 hydrocarbon mixture containing a highly unsaturated hydrocarbon.
[0011]
Examples of the tertiary ether include methyl tert-butyl ether obtained from isobutene and methanol. The reaction formula for obtaining methyl-tert-butyl ether from isobutene and methanol is as shown in (1).
(CH 3 ) 2 —C═CH 2 + CH 3 OH → (CH 3 ) 3 C—O—CH 3
(1)
[0012]
As specific conditions for this step, according to Japanese Examined Patent Publication No. 61-40655, the water washing condition is preferably 1: 0.1 to 1:10 in terms of the mixing ratio of the hydrocarbon mixture as the raw material and water. 1: 0.5-1: 2 is adopted. As reaction conditions, the reaction temperature is 10 to 120 ° C., preferably 30 to 100 ° C., the reaction pressure is 5 to 50 kg / cm 2 G, preferably 10 to 30 kg / cm 2 G, and the primary alcohol with respect to the tertiary olefin. The molar ratio is 0.5 to 20, preferably 1.0 to 10.
[0013]
The second step of the present invention is a C4 hydrocarbon mainly obtained by removing the tertiary olefin from the mixture of the alkyl tertiary alkyl ether obtained in the first step and the C4 hydrocarbon mixture from which the tertiary olefin is removed. This is a step of separating a fraction containing the mixture by distillation.
[0014]
In this step, a normal distillation tower can be used, and any form such as a perforated plate tower, a valve tower, and a packed tower may be used. The operating pressure is usually 3 to 6 kg / cm 2 G.
[0015]
The third step of the present invention is a step of selectively hydrogenating the fraction obtained in the second step in a gas phase state using a fixed bed reactor filled with a supported palladium catalyst subjected to reduction treatment. is there.
[0016]
As specific conditions for this step, according to Japanese Examined Patent Publication No. Sho 62-36013, conditions such as reaction temperature are not particularly limited, but usually reaction temperature is -20 to 150 ° C, preferably 20 ° C. ~ 100 ° C is employed. Although the reaction pressure varies depending on the reaction temperature, it is generally from normal pressure to 50 atm, and particularly preferably from 2 to 20 atm. The molar ratio of hydrogen to highly unsaturated hydrocarbon such as diene or acetylene is usually in the range of 1-10, preferably 1-2.
[0017]
As the carrier of the supported palladium catalyst, there are usually alumina, silica gel, diatomaceous earth, activated carbon and the like, and preferably alumina is used. The palladium supported on these carriers is usually 0.001 to 10%, preferably 0.01 to 5%.
[0018]
The hydrogenation in this step is advantageously performed in a gas phase state, but can also be performed in a liquid phase state. When hydrogenation is carried out in the gas phase, the hydrogenated fraction can be supplied in the gas phase to the distillation step as the next step, so that the heat energy for distillation can be greatly reduced.
[0019]
The fourth step of the present invention is a step of obtaining a secondary olefin by separating a high-boiling component and a low-boiling component with respect to the secondary olefin by distillation from the hydrogenated fraction obtained in the third step.
[0020]
In this step, a normal distillation tower can be used, and any form such as a perforated plate tower, a valve tower, and a packed tower may be used. The operating pressure is usually 4 to 10 kg / cm 2 G.
[0021]
Examples of the high boiling point component for the secondary olefin include n-butane, cis-2-butene, and trans-2-butene.
[0022]
Examples of the low boiling point component for the secondary olefin include isobutane.
[0023]
The greatest feature of the present invention is that a low-unsaturated C4 hydrocarbon mixture containing highly unsaturated hydrocarbons, excluding tertiary olefins, is mainly used in the presence of a catalyst using a fixed bed reactor. In a selective hydrogenation method in which hydrogen is brought into contact and converted to a low-unsaturated hydrocarbon that compares only highly unsaturated hydrocarbons without double bond isomerization, the hydrogenation step includes It is in the point which specified the arrangement | sequence of the manufacturing process of a secondary olefin.
[0024]
By adopting the process of the present invention, the above problem is solved. The reason is as follows. That is, by adopting the process sequence of the present invention, the S component such as methyl mercaptan, which is a poisoning substance of the hydrogenation catalyst, in the C4 hydrocarbon mixture as a raw material passes through water washing, cation exchange resin, distillation column. Thus, the influence of the poisoning substance on the hydrogenation catalyst can be greatly reduced, and a high-quality secondary olefin can be obtained stably and economically.
[0025]
However, depending on the concentration of the poisoning substance of the hydrogenation catalyst contained in the raw material C4 hydrocarbon mixture, whether to adopt the process sequence according to the present invention or install a guard reactor or the like should be determined by the characteristics of the plant. .
[0026]
【Example】
Next, an example explains the present invention.
Example 1
First Step: After washing a low-unsaturated C4 hydrocarbon mixture containing highly unsaturated hydrocarbons with water, the mixture (isobutene 42.4) in the presence of Duolite C-26H as a strongly acidic cation exchange resin. Wt%, butene-1 24.1 wt%, n-butane 14.2 wt%, butene-2 14.0 wt%, isobutane 4.4 wt%, 1,3 butadiene 0.7 wt%, isopentane 0. 2 wt%, S compound 0.3 wt ppm) and methanol as a primary alcohol were used as raw materials to obtain a C4 hydrocarbon mixture from which mainly alkyl tertiary alkyl ether and tertiary olefin were removed. Specific conditions were as follows.
As the water washing condition, a mixing ratio of the hydrocarbon mixture as a raw material and water is 1: 0.5, the reaction is performed by a two-stage adiabatic reactor, and the reaction condition is that the inlet temperature of the first stage is 49 ° C. The outlet temperature was 87 ° C., the two-stage inlet temperature was 42 ° C., the outlet temperature was 51 ° C., and the reaction pressure was 18 kg / cm 2 G. The molar ratio of methanol to tertiary olefin was 1.2.
Second Step A fraction containing a C4 hydrocarbon mixture mainly free of tertiary olefins from a mixture of C4 hydrocarbon mixture mainly free of tertiary alkyl ethers and tertiary olefins obtained in Step 1 Was separated by distillation. The operating pressure of the distillation tower was 4.5 kg / cm 2 G.
Third Step The fraction obtained in the second step was selectively hydrogenated in a gas phase using a fixed bed reactor filled with a supported palladium catalyst subjected to a reduction treatment. Specific conditions were as follows. As the supported palladium catalyst, a reduction-treated commercial catalyst in which 0.3% by weight of palladium was supported on an alumina carrier was employed. The reaction is carried out in a two-stage adiabatic reactor, the first stage inlet temperature is 60 ° C., the outlet temperature is 78 ° C., the second stage inlet temperature is 64 ° C., the outlet temperature is 71 ° C., and the reaction pressure is 5 kg / cm 2. G was adopted. The molar ratio of hydrogen to diene was 1.2 for the first stage, 0.9 for the second stage, and 1.1 for the first and second stages.
Fourth step From the hydrogenated fraction obtained in the third step, a high-boiling component and a low-boiling component relative to the secondary olefin were separated by distillation to obtain a secondary olefin. Distillation was performed with two distillation columns. In the first column, high-boiling components for the secondary olefins were separated, and in the second column, low-boiling components for the secondary olefins were separated. The operating pressure was employed 5.5 kg / cm 2 G at 4 kg / cm 2 G, the second column the first column.
[0027]
Comparative Example 1
Using a raw material C4 hydrocarbon mixture having the same composition as in Example 1, a deactivation test of the hydrogenation catalyst by flow reaction was performed. As a result, there was a disadvantage that the hydrogenation catalyst was largely deactivated within several hours.
[0028]
【The invention's effect】
As described above, by adopting the process sequence according to the present invention, the influence of poisonous substances on the hydrogenation catalyst is mitigated, the catalytic activity is stabilized, and the desired high-quality first step is stably and efficiently performed. It was possible to provide a method for producing a secondary olefin having an excellent feature that a tertiary olefin can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic flow of Example 1. FIG.

Claims (1)

下記の第一工程〜第四工程を含む第2級オレフィンの製造方法。
第一工程:高度に不飽和な炭化水素を含む、低不飽和度のC4炭化水素混合物を水洗し、該水洗後の混合物と第1級アルコールとを強酸性陽イオン交換樹脂の存在下で反応させ、主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物を得る工程
第二工程:第一工程で得た主としてアルキル第3級アルキルエーテルと第3級オレフィンが除かれたC4炭化水素混合物の混合物から、主として第3級オレフィンが除かれたC4炭化水素混合物を含む留分を蒸留により分離する工程
第三工程:還元処理を行った担持型パラジウム触媒を充填した固定床反応器を用いて、第二工程で得た前記留分を気相状態で選択的に水素添加する工程
第四工程:第三工程で得た水素添加された留分から、蒸留によって第2級オレフィンに対する高沸点成分および低沸点成分を分離し、第2級オレフィンを得る工程
The manufacturing method of the secondary olefin containing the following 1st process-4th process.
First step: Washing a C4 hydrocarbon mixture having a low degree of unsaturation containing a highly unsaturated hydrocarbon with water, and reacting the mixture with the primary alcohol in the presence of a strongly acidic cation exchange resin Step 2 to obtain a C4 hydrocarbon mixture from which mainly alkyl tertiary alkyl ether and tertiary olefin have been removed. Second step: mainly alkyl tertiary alkyl ether and tertiary olefin obtained in the first step are removed. A step of separating a fraction containing a C4 hydrocarbon mixture from which a tertiary olefin has been mainly removed from a mixture of C4 hydrocarbon mixtures by distillation. Third step: A fixed bed filled with a supported palladium catalyst subjected to a reduction treatment. Using the reactor, the fraction obtained in the second step is selectively hydrogenated in the gas phase. Fourth step: From the hydrogenated fraction obtained in the third step, a secondary ozone is obtained by distillation. Separating the high-boiling components and low-boiling component to the fins, to obtain a secondary olefin
JP2002278710A 2002-09-25 2002-09-25 Production method of secondary olefin Expired - Fee Related JP4103519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278710A JP4103519B2 (en) 2002-09-25 2002-09-25 Production method of secondary olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278710A JP4103519B2 (en) 2002-09-25 2002-09-25 Production method of secondary olefin

Publications (2)

Publication Number Publication Date
JP2004115406A JP2004115406A (en) 2004-04-15
JP4103519B2 true JP4103519B2 (en) 2008-06-18

Family

ID=32273915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278710A Expired - Fee Related JP4103519B2 (en) 2002-09-25 2002-09-25 Production method of secondary olefin

Country Status (1)

Country Link
JP (1) JP4103519B2 (en)

Also Published As

Publication number Publication date
JP2004115406A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US6358482B1 (en) Facility for the production of isobutene and propylene from hydrocarbon cuts containing four carbon atoms
AU682385B2 (en) Selective hydrogenation of highly unsaturated compounds in hydrocarbon streams
US5898091A (en) Process and plant for the conversion of olefinic C4 and C5 cuts to an ether and to propylene
US6169218B1 (en) Selective hydrogenation of highly unsaturated compounds in hydrocarbon streams
Molnár et al. Hydrogenation of carbon–carbon multiple bonds: chemo-, regio-and stereo-selectivity
US7045670B2 (en) Process for liquid phase hydrogenation
JP2000505117A (en) Improved process for selective hydrogenation of highly unsaturated compounds and isomerization of olefins in hydrocarbon streams
US20040077909A1 (en) Process for selective production of propylene from hydrocarbon fractions with four carbon atoms
US5059732A (en) Process for selective catalytic hydrogenation in liquid phase of a normally gaseous feed containing ethylene, acetylene and gasoline
JP2001072612A5 (en)
JPH0253479B2 (en)
US4587369A (en) Selectively hydrogenating acetylenic compounds in a high butadiene content C4 cut
GB2073235A (en) Recovery of 1,3-butadiene
KR102009548B1 (en) Thioetherification of mercaptanes in c4 hydrocarbon mixtures
JPH0412318B2 (en)
US6159433A (en) Plant for the conversion of olefinic C4 and C5 cuts to an ether and to propylene
US6495732B1 (en) Olefin isomerization process
JP4103519B2 (en) Production method of secondary olefin
WO2016195955A1 (en) Processes for separating an isobutane recycle stream from a mixed c4 stream
JP2008526847A (en) Method for selective hydrogenation of alkynes
JPS639496B2 (en)
CN114276834B (en) Preparation method of refined C5 fraction
TWI835968B (en) Catalyst and process for removing mercaptans from hydrocarbon streams
TW202026407A (en) Catalyst and process for removing mercaptans from hydrocarbon streams
JP2024517178A (en) Upgrading of streams containing C3 and C4 hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees