JP4103359B2 - Reflector structure for vehicle headlamps - Google Patents

Reflector structure for vehicle headlamps Download PDF

Info

Publication number
JP4103359B2
JP4103359B2 JP2001250626A JP2001250626A JP4103359B2 JP 4103359 B2 JP4103359 B2 JP 4103359B2 JP 2001250626 A JP2001250626 A JP 2001250626A JP 2001250626 A JP2001250626 A JP 2001250626A JP 4103359 B2 JP4103359 B2 JP 4103359B2
Authority
JP
Japan
Prior art keywords
convex
reflecting surface
concave
reflector structure
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001250626A
Other languages
Japanese (ja)
Other versions
JP2003059316A (en
Inventor
洋 小城
淳 高市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichikoh Industries Ltd
Original Assignee
Ichikoh Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichikoh Industries Ltd filed Critical Ichikoh Industries Ltd
Priority to JP2001250626A priority Critical patent/JP4103359B2/en
Publication of JP2003059316A publication Critical patent/JP2003059316A/en
Application granted granted Critical
Publication of JP4103359B2 publication Critical patent/JP4103359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ヘッドライトやフォグランプ等に適用される、反射面が複数のセグメントに分割して形成されている車両前照灯用リフレクタ構造に関する。
【0002】
【従来の技術】
従来の車両前照灯用リフレクタ構造100は、図6に示すように、反射面2が、中心部位にバルブ装着孔3を開設した自由曲面状に形成されると共に、バルブ装着孔3に装着された光源バルブ4の光の出射角度を異にする複数のセグメントに分割して形成されている。
【0003】
すなわち、反射面2を構成する複数のセグメントは、図7に示すように、水平方向の基準放物面Sの内面に沿って適宜の間隔で連続的に形成される複数の凸状反射面A〜Gにより形成されている。各セグメントの境界部位5は、隣接する凸状反射面同士の接合部位に形成される谷部で構成されており、リフレクタ構造100の正面視で垂直線になるように設計されている(図6参照)。
【0004】
このリフレクタ構造100によれば、光源バルブ4の点灯時に図8に示す配光パターンLを奏することができる。この配光パターンLは、具体的には遠方スクリーン上に映し出されるフォグランプのもので、凸状反射面A,Gの出射光により形成される配光パターンL1と、凸状反射面B,Fの出射光により形成される配光パターンL2と、凸状反射面C,Eの出射光により形成される配光パターンL3と、凸状反射面Dの出射光により形成される配光パターンL4とで構成されている。
【0005】
【発明が解決しようとする課題】
しかしながら、リフレクタ構造100は、配光パターンLの水平方向の拡散幅を拡大するのに限界があり、このため側方視認性の向上に対する要望を達成することができない、という課題を有している。
【0006】
その上、リフレクタ構造100は、各セグメントの境界部位5が谷部を構成しているので、図9(a)に示すように、製造時に境界部位5を埋めるような液溜まり6が現出する虞がある、という課題をも有している。
【0007】
液溜まり6が現出した場合その拡散光範囲R2は、図9(a)、(b)に示すように、液溜まり6の生じないときの拡散光範囲R1の両側端を幅rだけ内側に戻して形成されるため、その分狭くなると共に、両側端部に該当する部分が光溜まりR(図9(b)参照)となって路面に照射されるため、視認性の低下を招く。その他、液溜まり6は、対向車側へ向かう光等制御されない光を出射する虞があり、好ましいものとはいえない。
【0008】
そこで本発明は、各セグメントの境界部位に起因する制御範囲外の出射光および光溜まりの発生を伴うことなく、配光パターンの水平方向の拡散幅の拡大により側方視認性の向上を図ることができる車両前照灯用リフレクタ構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記した目的を達成するため、請求項1記載の発明は、反射面が、中心部位にバルブ装着孔を開設した自由曲面状に形成されると共に、前記バルブ装着孔に装着された光源バルブの光の出射角度を異にする複数のセグメントに分割して形成されている車両前照灯用リフレクタ構造であって、
前記複数のセグメントは、水平方向で交互に連続する複数の凸状反射面および凹状反射面で構成されており、
前記凸状反射面は、水平方向の基準放物面の内面に沿って適宜の間隔で間欠的に形成されており、
前記凹状反射面は、前記凸状反射面と前記基準放物面との交角よりも小さい交角で前記基準放物面の外面に沿って両側の凸状反射面を連結するように線引きすると共に、該線引きを後方へオフセットした位置で前記線引きに沿って形成されており、かつ
前記凸状反射面と凹状反射面との境界部位は、前記オフセット位置を中心とした左右方向のつなぎ幅を設定し、前記オフセット幅の略中間点を通り、かつ前記凸状反射面と前記基準放物面との交角よりも大きい交角で前記基準放物面と交差する緩やかな斜面を左右方向に延設して形成されるつなぎ反射面で、前記つなぎ幅間の前記凸状反射面と凹状反射面とを連続させて構成されていることを特徴とする。
【0010】
このため、請求項1記載の発明では、光源バルブの点灯により、凸状反射面からは、オープン拡散の出射光が得られると共に、凹状反射面からは、クロス拡散の出射光が得られる。
【0011】
また、凸状反射面と基準放物面との交角をαとし、凹状反射面と基準放物面との交角をβとし、かつつなぎ反射面と基準放物面との交角をγとしたとき、γ>α>βの関係が成立し、この関係に基づいてつなぎ反射面からの出射光は、凸状反射面および凹状反射面からの各出射範囲を超えた大拡散パターンとなる。
【0012】
また、凸状反射面と凹状反射面との境界部位は、緩やかな斜面を左右方向に延設して形成されるつなぎ反射面で、凸状反射面と凹状反射面とを連続させて構成されるものであるから、つなぎ反射面内には光を拡散させる突起部や、液溜まりを発生させる谷部や段部等が無く、このためこの部位からの出射光は、制御範囲外の出射光や光溜まりを伴うことなく、制御範囲以内のものとして確保することができる。
【0013】
また、請求項2記載の発明は、請求項1記載の車両前照灯用リフレクタ構造であって、
前記境界部位は、前記反射面の正面視で垂直になるように設計されることを特徴とする。
【0014】
このため、請求項2記載の発明では、つなぎ反射面は、垂直の境界部位の左右両側に延設されて形成されるので、左右両側方向の出射角度の拡大を効率よく行うことができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、図6〜図9に示すものと同一の機能を示すものは同一符号を付して説明する。
【0016】
図1および図2は、本発明の一実施形態としての車両前照灯用リフレクタ構造1を示す。図1は、リフレクタ構造1の正面図であり、図2は、図1のII−II線に沿う概略断面図である。
【0017】
リフレクタ構造1は、フォグランプに適用されるものであって、反射面2が、中心部位にバルブ装着孔3を開設した自由曲面状に形成されると共に、バルブ装着孔3に装着された光源バルブ4の光の出射角度を異にする複数のセグメントに分割して形成されている。このときの自由曲面は、図2中に放物線を破線Sで示すように、回転放物面を基本として形成されている。
【0018】
複数のセグメントは、水平方向で交互に連続する縦長の凸状反射面A〜Gおよび凹状反射面a〜fで構成されている。すなわち、凹状反射面aは凸状反射面A,B間に、凹状反射面bは凸状反射面B,C間に、凹状反射面cは凸状反射面C,D間に、凹状反射面dは凸状反射面D,E間に、凹状反射面eは凸状反射面E,F間に、凹状反射面fは凸状反射面F,G間にそれぞれ形成されている。
【0019】
また、各凸状反射面と凹状反射面との境界部位は、つなぎ反射面7で構成されており、このつなぎ反射面7の両端が、それぞれ凸状反射面A(B,C,D,E,F,G)と凹状反射面a(b,c,d,e,f)に連続している。
【0020】
具体的には、複数のセグメントは次のようにして形成される。
【0021】
先ず、凸状反射面A,B,C,D,E,F,Gは、水平方向の基準放物面Sの内面に沿って適宜の間隔で間欠的に形成される。
【0022】
次に、凹状反射面a,b,c,d,e,fを、それぞれ該当する2個の凸状反射面間に形成する。この形成過程を、図4に示す凸状反射面Cと凹状反射面cとの関係で説明する。
【0023】
すなわち、凹状反射面cの設計第1段階は、図4(a)に示すように、凸状反射面Cと基準放物面Sとの交角αよりも小さい交角βで基準放物面Sの外面に沿って凸状反射面Cを連結するように線引きc1する。その設計第2段階は、図4(b)に示すように、線引きc1を後方へオフセット(オフセット幅h)する。そして凹状反射面cは、オフセットした位置で線引きc1に沿って形成される。
【0024】
また、このときの凸状反射面Cと凹状反射面cとの境界部位は、図4(c)に示すように、オフセット位置(直線oで示す)を中心とした左右方向のつなぎ幅Hを設定し、オフセット幅hの略中間点h1を通り、かつ凸状反射面Cと基準放物面Sとの交角αよりも大きい交角γで基準放物面Sと交差する緩やかな斜面を左右方向に延設して形成されるつなぎ反射面7で、つなぎ幅H間の凸状反射面Cと凹状反射面cとを連続させて構成される。すなわち、つなぎ反射面7は、その一端7aが凸状反射面Cに連続しており、その他端7bが凹状反射面cに連続している。つなぎ反射面7の交角γは、凸状反射面Cの交角αおよび凹状反射面cの交角βよりも大きく、γ>α>βの関係が成立する。
【0025】
このときの一設計例は次のようになる。すなわち、図3に示すように、凸状反射面Cは、水平基準の幅がM(=20mm)で、曲率半径R1(=100mm)で形成されており、凹状反射面cは、水平基準の幅がm(=8mm)で、曲率半径r(=15mm)で形成されており、かつ凸状反射面Dは、水平基準の幅がM(=20mm)で、曲率半径R2(=75mm)で形成されている。
【0026】
また、つなぎ反射面7は、図3および図4に示すように、オフセット幅hが0.5mm、およびつなぎ幅Hが3mmとして設計される。
【0027】
このように構成されたリフレクタ構造1によれば、光源バルブ4の点灯により、凸状反射面A,B,C,D,E,F,Gからは、オープン拡散の出射光が得られると共に、凹状反射面a,b,c,d,e,fからは、クロス拡散の出射光が得られる。すなわち、図3に示すように、凸状反射面Cの凹状反射面cよりの半部分からの出射光は、出射範囲LC(=31°)となり、凸状反射面Dの凹状反射面cよりの半部分からの出射光は、出射範囲LD(=37°)となり、かつ凹状反射面cからの出射光は、出射範囲Lc(=48°)となる。
【0028】
また、つなぎ反射面7からの出射光は、γ>α>βの関係に基づいて、凸状反射面A,B,C,D,E,F,Gおよび凹状反射面a,b,c,d,e,fからの各出射範囲を超えた大拡散パターンとなる。すなわち、図3に示すように、凹状反射面cの両側のつなぎ反射面7の内、凸状反射面D寄りのつなぎ反射面7Dの最大傾斜部分からの出射光は、出射範囲L7D(=63°)となり、かつ他側の凸状反射面C寄りのつなぎ反射面7Cの最大傾斜部分からの出射光は、出射範囲L7C(=56°)となる。
【0029】
また、リフレクタ構造1によれば、光源バルブ4の点灯時に図5に示す配光パターンLを奏することができる。この配光パターンLは、具体的には遠方スクリーン上に映し出されるフォグランプのもので、凸状反射面A,Gの出射光により形成される配光パターンL1と、凸状反射面B,Fの出射光により形成される配光パターンL2と、凸状反射面C,Eの出射光により形成される配光パターンL3と、凸状反射面Dの出射光により形成される配光パターンL4と、凹状反射面a,fの出射光により形成される配光パターンL5と、凹状反射面b,eの出射光により形成される配光パターンL6と、凹状反射面c,dの出射光により形成される配光パターンL7とで構成されている。
【0030】
この配光パターンLによれば、構成要素の配光パターンL1〜L7中、配光パターンL7が、各凹状反射面c,dの両側にそれぞれ形成されるつなぎ反射面7に起因して大拡散となり、これにより側方視認性の向上を図ることができる。
【0031】
また、構成要素の配光パターンL1〜L7中、配光パターンL5およびL6は、基本パターン(図8の配光パターンL参照)以内のものとして形成されるが、各凹状反射面a,f,b,eの両側にそれぞれ形成されるつなぎ反射面7に起因して、各凸状反射面A,G,B,Fとの境界部位の出射光が側方に伸ばされて光斑等をぼかすことができ、この点でも側方視認性の向上を図ることができる。
【0032】
また、凸状反射面(例えば、凸状反射面C)と凹状反射面(例えば、凹状反射面c)との境界部位は、緩やかな斜面を左右方向に延設して形成されるつなぎ反射面7で、凸状反射面Cと凹状反射面cとを連続させて構成されるものであるから、つなぎ反射面7内には光を拡散させる突起部や、液溜まりを発生させる谷部や段部等が無く、このためこの部位からの出射光は、制御範囲外の出射光や光溜まりを伴うことなく、制御範囲以内のものとして確保することができる。
【0033】
また、好ましくは、リフレクタ構造1では、本実施形態のように、凸状反射面A(B,C,D,E,F,G)と凹状反射面a(b,c,d,e,f)との境界部位は、反射面2の正面視(図1)で垂直になるように設計される。ここで境界部位は、オフセット位置oで示す。
【0034】
この構成では、つなぎ反射面7は、垂直の境界部位(オフセット位置o)の左右両側に延設されて形成されるので、左右両側方向の出射角度の拡大を効率よく行うことができ、これにより左右両側方向に大拡散した配光パターンLを容易に形成することができ、ひいては側方視認性の一層の向上を図ることができる。
【0035】
また、つなぎ反射面6は、必要に応じて種種設計される。例えば、オフセット幅hを固定した場合は、つなぎ幅Hを広げる程、反射面7の傾斜度合いは弱まり、これにつれて左右側への伸びも弱まるが、一方その範囲の立体角が増えるため光量が増大して、輝度の向上に寄与する。逆に、つなぎ幅Hを固定した場合は、オフセット幅hが大きくなる程、反射面7の傾斜度合いは強まり、これにつれて左右側への光の伸びが増大する。
【0036】
また、前記実施形態では、フォグランプについて述べたが、本発明はそれに限定されるものでなく、通常のヘッドランプについても適用されることは勿論のことである。ヘッドランプの場合、例えば、反射面は、大拡散制御面、中拡散制御面、15°カット制御面、水平カット制御面、および走行ビーム制御面に分割形成されており、かつ各制御面が複数のセグメントに分割形成されると共に、この複数のセグメントが、凸状反射面と凹状反射面とを交互に連続させて形成される。このときつなぎ反射面は、凸状反射面と凹状反射面との境界部位に形成される。
【0037】
【発明の効果】
以上、詳述したように、請求項1記載の発明によれば、基準放物面との交角が凸状反射面や凹状反射面よりも大きい緩やかな斜面を左右方向に延設して形成されるつなぎ反射面で、凸状反射面と凹状反射面との境界部位を構成したので、各セグメントの境界部位に起因する制御範囲外の出射光および光溜まりの発生を伴うことなく、配光パターンの水平方向の拡散幅の拡大により側方視認性の向上を図ることができる車両前照灯用リフレクタ構造を提供することができる。
【0038】
また、請求項2記載の発明によれば、つなぎ反射面が、垂直の境界部位の左右両側に延設されて形成されるので、請求項1記載の発明の効果に加えて、左右両側方向の出射角度の拡大を効率よく行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての車両前照灯用リフレクタ構造の正面図である。
【図2】図1のII−II線に沿う断面に基づく反射面の表面の軌跡を示す説明図である。
【図3】図2のP部分の拡大した光路追跡説明図である。
【図4】(a)、(b)、(c)は、本発明のつなぎ反射面の設計過程の説明図である。
【図5】本発明のすれ違い配光パターンを示すグラフである。
【図6】従来の車両前照灯用リフレクタ構造の正面図である。
【図7】図6のVII−VII線に沿う断面に基づく反射面の表面の軌跡を示す説明図である。
【図8】従来の車両前照灯用リフレクタ構造のすれ違い配光パターンを示すグラフである。
【図9】(a)、(b)は、従来の車両前照灯用リフレクタ構造の課題を説明する説明図である。
【符号の説明】
1 リフレクタ構造(車両前照灯用リフレクタ構造)
2 反射面
3 バルブ装着孔
4 光源バルブ
7 つなぎ反射面
A,B,C,D,E,F,G 凸状反射面
a,b,c,d,e,f 凹状反射面
H つなぎ幅
h オフセット幅
h1 中間点
o オフセット位置
S 基準放物面
α,β,γ 交角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle headlamp reflector structure that is applied to, for example, a headlight, a fog lamp, and the like and has a reflecting surface divided into a plurality of segments.
[0002]
[Prior art]
In the conventional vehicle headlight reflector structure 100, as shown in FIG. 6, the reflecting surface 2 is formed in a free-form surface having a valve mounting hole 3 at the center, and is mounted in the valve mounting hole 3. The light source bulb 4 is divided into a plurality of segments having different light emission angles.
[0003]
That is, as shown in FIG. 7, the plurality of segments constituting the reflecting surface 2 are a plurality of convex reflecting surfaces A formed continuously at appropriate intervals along the inner surface of the horizontal reference paraboloid S. ~ G. The boundary part 5 of each segment is comprised by the trough part formed in the junction part of adjacent convex reflective surfaces, and is designed so that it may become a perpendicular line by the front view of the reflector structure 100 (FIG. 6). reference).
[0004]
According to the reflector structure 100, the light distribution pattern L shown in FIG. Specifically, the light distribution pattern L is a fog lamp projected on a far screen, and the light distribution pattern L1 formed by the light emitted from the convex reflection surfaces A and G and the convex reflection surfaces B and F are provided. A light distribution pattern L2 formed by the emitted light, a light distribution pattern L3 formed by the emitted light from the convex reflecting surfaces C and E, and a light distribution pattern L4 formed by the emitted light from the convex reflecting surface D It is configured.
[0005]
[Problems to be solved by the invention]
However, the reflector structure 100 has a problem in that there is a limit in expanding the horizontal diffusion width of the light distribution pattern L, and thus the demand for improving the side visibility cannot be achieved. .
[0006]
In addition, in the reflector structure 100, the boundary portion 5 of each segment forms a valley, and therefore, as shown in FIG. 9A, a liquid pool 6 that fills the boundary portion 5 at the time of manufacture appears. There is also a problem that there is a fear.
[0007]
When the liquid pool 6 appears, the diffused light range R2 is, as shown in FIGS. 9 (a) and 9 (b), the both ends of the diffused light range R1 when the liquid pool 6 is not generated are inward by the width r. Since it is formed by returning it, it becomes narrower by that amount, and a portion corresponding to both end portions becomes a light pool R (see FIG. 9B) and is irradiated onto the road surface, which causes a decrease in visibility. In addition, the liquid reservoir 6 may emit uncontrolled light such as light traveling toward the oncoming vehicle, and is not preferable.
[0008]
Therefore, the present invention aims to improve the lateral visibility by expanding the horizontal diffusion width of the light distribution pattern without causing the emission light and the light pool outside the control range due to the boundary portion of each segment. An object of the present invention is to provide a reflector structure for a vehicle headlamp that can be used.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the reflecting surface is formed in a free-form surface having a valve mounting hole at a central portion, and the light of the light source bulb mounted in the bulb mounting hole. A vehicle headlamp reflector structure formed by dividing into a plurality of segments having different emission angles,
The plurality of segments are composed of a plurality of convex reflection surfaces and concave reflection surfaces that are alternately continued in the horizontal direction,
The convex reflecting surface is intermittently formed at appropriate intervals along the inner surface of the horizontal reference paraboloid,
The concave reflecting surface is drawn so as to connect the convex reflecting surfaces on both sides along the outer surface of the reference paraboloid at an intersection angle smaller than the intersection angle of the convex reflection surface and the reference paraboloid surface, and It is formed along the line drawing at a position where the line drawing is offset backward, and a boundary portion between the convex reflection surface and the concave reflection surface sets a connecting width in the left-right direction centering on the offset position. A gentle slope extending in the left-right direction passing through a substantially intermediate point of the offset width and intersecting the reference paraboloid at an intersection angle greater than the intersection angle of the convex reflecting surface and the reference paraboloid. The connecting reflection surface is formed by continuously forming the convex reflection surface and the concave reflection surface between the connection widths.
[0010]
For this reason, according to the first aspect of the present invention, when the light source bulb is turned on, open diffusion outgoing light is obtained from the convex reflection surface, and cross diffusion outgoing light is obtained from the concave reflection surface.
[0011]
Also, when the intersection angle between the convex reflection surface and the reference paraboloid is α, the intersection angle between the concave reflection surface and the reference paraboloid is β, and the intersection angle between the kazana reflection surface and the reference paraboloid is γ. , Γ>α> β is established, and based on this relationship, the light emitted from the connecting reflection surface becomes a large diffusion pattern that exceeds the convex reflection surface and each emission range from the concave reflection surface.
[0012]
The boundary between the convex reflecting surface and the concave reflecting surface is a connecting reflecting surface formed by extending a gentle slope in the left-right direction, and the convex reflecting surface and the concave reflecting surface are continuously formed. Therefore, there are no projections for diffusing light, valleys or steps for generating liquid pools, etc. in the connecting reflection surface, and the emitted light from this part is emitted outside the control range. It can be ensured as being within the control range without any light accumulation.
[0013]
The invention according to claim 2 is the vehicle headlamp reflector structure according to claim 1,
The boundary part is designed to be vertical in a front view of the reflecting surface.
[0014]
For this reason, in the invention described in claim 2, since the connecting reflection surface is formed to extend on both the left and right sides of the vertical boundary portion, the emission angle in the left and right side directions can be efficiently expanded.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, what shows the same function as what is shown in FIGS. 6-9 is attached | subjected and demonstrated with the same code | symbol.
[0016]
1 and 2 show a vehicle headlamp reflector structure 1 according to an embodiment of the present invention. FIG. 1 is a front view of the reflector structure 1, and FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG.
[0017]
The reflector structure 1 is applied to a fog lamp, and a reflecting surface 2 is formed in a free-form surface having a bulb mounting hole 3 at a central portion, and a light source bulb 4 mounted in the bulb mounting hole 3. The light is divided into a plurality of segments having different light emission angles. The free-form surface at this time is formed on the basis of a rotating paraboloid as shown by a broken line S in FIG.
[0018]
The plurality of segments are configured by vertically long convex reflection surfaces A to G and concave reflection surfaces a to f that are alternately continuous in the horizontal direction. That is, the concave reflective surface a is between the convex reflective surfaces A and B, the concave reflective surface b is between the convex reflective surfaces B and C, and the concave reflective surface c is between the convex reflective surfaces C and D. d is formed between the convex reflecting surfaces D and E, the concave reflecting surface e is formed between the convex reflecting surfaces E and F, and the concave reflecting surface f is formed between the convex reflecting surfaces F and G, respectively.
[0019]
Moreover, the boundary part of each convex reflective surface and concave reflective surface is comprised by the connection reflective surface 7, and both ends of this connection reflective surface 7 are each convex reflective surface A (B, C, D, E). , F, G) and the concave reflecting surface a (b, c, d, e, f).
[0020]
Specifically, the plurality of segments are formed as follows.
[0021]
First, the convex reflecting surfaces A, B, C, D, E, F, and G are intermittently formed at appropriate intervals along the inner surface of the horizontal reference paraboloid S.
[0022]
Next, the concave reflective surfaces a, b, c, d, e, and f are formed between the two corresponding convex reflective surfaces. This formation process will be described in relation to the convex reflection surface C and the concave reflection surface c shown in FIG.
[0023]
That is, in the first design stage of the concave reflecting surface c, as shown in FIG. 4 (a), the reference paraboloid S has an intersection angle β smaller than the intersection angle α between the convex reflecting surface C and the reference paraboloid S. A line c1 is drawn so as to connect the convex reflecting surface C along the outer surface. In the second design stage, as shown in FIG. 4B, the line drawing c1 is offset backward (offset width h). The concave reflection surface c is formed along the line c1 at the offset position.
[0024]
Further, the boundary portion between the convex reflecting surface C and the concave reflecting surface c at this time has a connecting width H in the left-right direction centered on the offset position (shown by a straight line o) as shown in FIG. A gentle slope that intersects the reference paraboloid S at the intersection angle γ that passes through the substantially intermediate point h1 of the offset width h and that is larger than the intersection angle α between the convex reflection surface C and the reference paraboloid S is set in the horizontal direction. The convex reflection surface C is formed by extending the projection surface C, and the convex reflection surface C and the concave reflection surface c between the connection widths H are continuously formed. That is, the connecting reflection surface 7 has one end 7 a continuous with the convex reflection surface C and the other end 7 b continuous with the concave reflection surface c. The crossing angle γ of the connecting reflecting surface 7 is larger than the crossing angle α of the convex reflecting surface C and the crossing angle β of the concave reflecting surface c, and the relationship of γ>α> β is established.
[0025]
One design example at this time is as follows. That is, as shown in FIG. 3, the convex reflection surface C is formed with a horizontal reference width M (= 20 mm) and a radius of curvature R1 (= 100 mm), and the concave reflection surface c is a horizontal reference width. The width is m (= 8 mm), the radius of curvature is r (= 15 mm), and the convex reflecting surface D has a horizontal reference width of M (= 20 mm) and a radius of curvature R2 (= 75 mm). Is formed.
[0026]
Further, as shown in FIGS. 3 and 4, the connecting reflection surface 7 is designed with an offset width h of 0.5 mm and a connecting width H of 3 mm.
[0027]
According to the reflector structure 1 configured as described above, the light emitted from the convex reflection surfaces A, B, C, D, E, F, and G is obtained by turning on the light source bulb 4, and the exit diffused light is obtained. From the concave reflecting surfaces a, b, c, d, e, and f, cross-diffused outgoing light is obtained. That is, as shown in FIG. 3, the light emitted from the half of the convex reflection surface C from the concave reflection surface c becomes the emission range LC (= 31 °), and from the concave reflection surface c of the convex reflection surface D. The light emitted from the half of the light becomes the emission range LD (= 37 °), and the light emitted from the concave reflection surface c becomes the emission range Lc (= 48 °).
[0028]
Further, the light emitted from the connecting reflection surface 7 is projected on the convex reflection surfaces A, B, C, D, E, F, G, and the concave reflection surfaces a, b, c, based on the relationship of γ>α> β. It becomes a large diffusion pattern exceeding each emission range from d, e, and f. That is, as shown in FIG. 3, the outgoing light from the maximum inclined portion of the joint reflection surface 7D near the convex reflection surface D out of the joint reflection surfaces 7 on both sides of the concave reflection surface c is an emission range L7D (= 63 And the outgoing light from the maximum inclined portion of the connecting reflective surface 7C near the convex reflective surface C on the other side is an outgoing range L7C (= 56 °).
[0029]
Moreover, according to the reflector structure 1, the light distribution pattern L shown in FIG. Specifically, the light distribution pattern L is a fog lamp projected on a far screen, and the light distribution pattern L1 formed by the light emitted from the convex reflection surfaces A and G and the convex reflection surfaces B and F are provided. A light distribution pattern L2 formed by the emitted light, a light distribution pattern L3 formed by the emitted light from the convex reflecting surfaces C and E, a light distribution pattern L4 formed by the emitted light from the convex reflecting surface D, It is formed by the light distribution pattern L5 formed by the light emitted from the concave reflective surfaces a and f, the light distribution pattern L6 formed by the light emitted from the concave reflective surfaces b and e, and the light emitted from the concave reflective surfaces c and d. And a light distribution pattern L7.
[0030]
According to this light distribution pattern L, among the light distribution patterns L1 to L7 of the constituent elements, the light distribution pattern L7 is largely diffused due to the connecting reflection surfaces 7 formed on both sides of the respective concave reflection surfaces c and d. Thus, the side visibility can be improved.
[0031]
In addition, among the light distribution patterns L1 to L7 of the constituent elements, the light distribution patterns L5 and L6 are formed as those within the basic pattern (see the light distribution pattern L in FIG. 8), but each concave reflection surface a, f, Due to the connecting reflection surfaces 7 formed on both sides of b and e, the outgoing light at the boundary portions with the respective convex reflection surfaces A, G, B, and F is extended sideways to blur light spots and the like. In this respect, lateral visibility can be improved.
[0032]
Further, the boundary portion between the convex reflecting surface (for example, convex reflecting surface C) and the concave reflecting surface (for example, concave reflecting surface c) is a connecting reflecting surface formed by extending a gentle slope in the left-right direction. 7, the convex reflection surface C and the concave reflection surface c are configured to be continuous. Therefore, in the connection reflection surface 7, projections for diffusing light, valleys or steps for generating a liquid pool, and the like. Therefore, the emitted light from this part can be ensured as being within the control range without being accompanied by the emitted light or light pool outside the control range.
[0033]
Preferably, in the reflector structure 1, as in the present embodiment, the convex reflecting surface A (B, C, D, E, F, G) and the concave reflecting surface a (b, c, d, e, f) are used. ) Is designed to be vertical in the front view of the reflecting surface 2 (FIG. 1). Here, the boundary portion is indicated by an offset position o.
[0034]
In this configuration, since the connecting reflection surface 7 is formed to extend on both the left and right sides of the vertical boundary portion (offset position o), it is possible to efficiently increase the emission angle in the left and right side directions. The light distribution pattern L that is greatly diffused in the left and right side directions can be easily formed, and as a result, the side visibility can be further improved.
[0035]
Further, the connecting reflection surface 6 is designed in various ways as necessary. For example, when the offset width h is fixed, as the connecting width H is increased, the degree of inclination of the reflecting surface 7 is weakened, and the extension to the left and right sides is also weakened accordingly. Thus, it contributes to the improvement of luminance. On the contrary, when the connecting width H is fixed, the degree of inclination of the reflecting surface 7 increases as the offset width h increases, and the extension of light to the left and right sides increases accordingly.
[0036]
In the above embodiment, the fog lamp has been described. However, the present invention is not limited thereto, and it is needless to say that the present invention is also applicable to a normal head lamp. In the case of a headlamp, for example, the reflection surface is divided into a large diffusion control surface, a medium diffusion control surface, a 15 ° cut control surface, a horizontal cut control surface, and a traveling beam control surface, and a plurality of control surfaces are provided. The plurality of segments are formed in such a manner that convex reflection surfaces and concave reflection surfaces are alternately continued. At this time, the connecting reflection surface is formed at a boundary portion between the convex reflection surface and the concave reflection surface.
[0037]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, it is formed by extending in the left-right direction a gentle slope whose intersection angle with the reference paraboloid is larger than the convex reflection surface or the concave reflection surface. Since the boundary portion between the convex reflection surface and the concave reflection surface is formed by the rugged reflection surface, the light distribution pattern is not accompanied by the occurrence of light out of the control range and light accumulation due to the boundary portion of each segment. Thus, it is possible to provide a vehicle headlamp reflector structure that can improve lateral visibility by expanding the horizontal diffusion width of the vehicle.
[0038]
According to the second aspect of the present invention, since the connecting reflection surface is formed to extend on both the left and right sides of the vertical boundary portion, in addition to the effect of the first aspect of the invention, The emission angle can be expanded efficiently.
[Brief description of the drawings]
FIG. 1 is a front view of a vehicle headlamp reflector structure according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a locus of a surface of a reflecting surface based on a cross section taken along line II-II in FIG.
FIG. 3 is an enlarged optical path tracking explanatory view of a portion P in FIG. 2;
FIGS. 4A, 4B, and 4C are explanatory diagrams of a design process of a connecting reflection surface according to the present invention.
FIG. 5 is a graph showing a passing light distribution pattern of the present invention.
FIG. 6 is a front view of a conventional vehicle headlight reflector structure.
7 is an explanatory diagram showing a locus of the surface of the reflecting surface based on a cross section taken along line VII-VII in FIG.
FIG. 8 is a graph showing a passing light distribution pattern of a conventional vehicle headlight reflector structure.
FIGS. 9A and 9B are explanatory diagrams for explaining problems of a conventional vehicle headlight reflector structure. FIGS.
[Explanation of symbols]
1 Reflector structure (Vehicle headlight reflector structure)
2 Reflecting surface 3 Bulb mounting hole 4 Light source bulb 7 Connecting reflecting surface A, B, C, D, E, F, G Convex reflecting surface a, b, c, d, e, f Concave reflecting surface H Connecting width h Offset Width h1 Intermediate point o Offset position S Reference paraboloid α, β, γ Intersection angle

Claims (2)

反射面が、中心部位にバルブ装着孔を開設した自由曲面状に形成されると共に、前記バルブ装着孔に装着された光源バルブの光の出射角度を異にする複数のセグメントに分割して形成されている車両前照灯用リフレクタ構造であって、
前記複数のセグメントは、水平方向で交互に連続する複数の凸状反射面および凹状反射面で構成されており、
前記凸状反射面は、水平方向の基準放物面の内面に沿って適宜の間隔で間欠的に形成されており、
前記凹状反射面は、前記凸状反射面と前記基準放物面との交角よりも小さい交角で前記基準放物面の外面に沿って両側の凸状反射面を連結するように線引きすると共に、該線引きを後方へオフセットした位置で前記線引きに沿って形成されており、かつ
前記凸状反射面と凹状反射面との境界部位は、前記オフセット位置を中心とした左右方向のつなぎ幅を設定し、前記オフセット幅の略中間点を通り、かつ前記凸状反射面と前記基準放物面との交角よりも大きい交角で前記基準放物面と交差する緩やかな斜面を左右方向に延設して形成されるつなぎ反射面で、前記つなぎ幅間の前記凸状反射面と凹状反射面とを連続させて構成されていることを特徴とする車両前照灯用リフレクタ構造。
The reflection surface is formed in a free-form surface having a bulb mounting hole in the central portion, and is divided into a plurality of segments having different light emission angles of the light source bulb mounted in the bulb mounting hole. A vehicle headlamp reflector structure,
The plurality of segments are composed of a plurality of convex reflection surfaces and concave reflection surfaces that are alternately continued in the horizontal direction,
The convex reflecting surface is intermittently formed at appropriate intervals along the inner surface of the horizontal reference paraboloid,
The concave reflecting surface is drawn so as to connect the convex reflecting surfaces on both sides along the outer surface of the reference paraboloid at an intersection angle smaller than the intersection angle of the convex reflection surface and the reference paraboloid surface, and It is formed along the line drawing at a position where the line drawing is offset backward, and a boundary portion between the convex reflection surface and the concave reflection surface sets a connecting width in the left-right direction centering on the offset position. A gentle slope extending in the left-right direction passing through a substantially intermediate point of the offset width and intersecting the reference paraboloid at an intersection angle greater than the intersection angle of the convex reflecting surface and the reference paraboloid. A reflector structure for a vehicle headlamp, wherein the connecting reflecting surface is formed by connecting the convex reflecting surface and the concave reflecting surface between the connecting widths.
請求項1記載の車両前照灯用リフレクタ構造であって、
前記境界部位は、前記反射面の正面視で垂直になるように設計されることを特徴とする車両前照灯用リフレクタ構造。
The vehicle headlamp reflector structure according to claim 1,
The vehicle headlamp reflector structure is characterized in that the boundary portion is designed to be vertical in a front view of the reflecting surface.
JP2001250626A 2001-08-21 2001-08-21 Reflector structure for vehicle headlamps Expired - Fee Related JP4103359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250626A JP4103359B2 (en) 2001-08-21 2001-08-21 Reflector structure for vehicle headlamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250626A JP4103359B2 (en) 2001-08-21 2001-08-21 Reflector structure for vehicle headlamps

Publications (2)

Publication Number Publication Date
JP2003059316A JP2003059316A (en) 2003-02-28
JP4103359B2 true JP4103359B2 (en) 2008-06-18

Family

ID=19079409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250626A Expired - Fee Related JP4103359B2 (en) 2001-08-21 2001-08-21 Reflector structure for vehicle headlamps

Country Status (1)

Country Link
JP (1) JP4103359B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662217B2 (en) * 2011-03-24 2015-01-28 スタンレー電気株式会社 Vehicle lighting
JP5781823B2 (en) * 2011-04-25 2015-09-24 スタンレー電気株式会社 Vehicle lighting
WO2016024489A1 (en) 2014-08-11 2016-02-18 株式会社小糸製作所 Vehicle headlight
AT15697U1 (en) * 2016-03-29 2018-04-15 Zkw Group Gmbh Vehicle headlight with a reflector
KR102550210B1 (en) * 2016-05-23 2023-07-05 엘지이노텍 주식회사 Lighting module and lighting apparatus

Also Published As

Publication number Publication date
JP2003059316A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
CN106969311B (en) Vehicle lamp
JPH0410166B2 (en)
US6419380B2 (en) Vehicle light
JPS62285302A (en) Dip type head lamp with shifted bright spot without use of mask
US5079677A (en) Headlamp unit for motor vehicles
KR100235395B1 (en) Headlamp for a vehicle
US7178958B2 (en) Vehicle light
JP4103359B2 (en) Reflector structure for vehicle headlamps
JPH10269805A (en) Headlamp
JP2000322911A (en) Dual-function head lamp for automobile having single light source and fixed optical system
JPS62202402A (en) Projector type head lamp
JP4106885B2 (en) Reflector structure for vehicle headlamps
US5975731A (en) Vehicle headlight with reflective mask
JP4452413B2 (en) Variable light distribution headlamp
JPH046081Y2 (en)
JP2004134290A (en) Lighting implement for vehicle
JP2003059315A (en) Reflector structure of vehicle headlamp
JP4009452B2 (en) Horizontal lens projector type headlamp
JPH0782763B2 (en) Compound mirror
JPS62195801A (en) Head lamp for automobile
JPS62202401A (en) Projector type head lamp
JPH0136241Y2 (en)
JPH0419681Y2 (en)
JP2607414B2 (en) Headlight
JP3966982B2 (en) Vehicle light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees