JP4103012B2 - Pneumatic booster - Google Patents

Pneumatic booster Download PDF

Info

Publication number
JP4103012B2
JP4103012B2 JP18999394A JP18999394A JP4103012B2 JP 4103012 B2 JP4103012 B2 JP 4103012B2 JP 18999394 A JP18999394 A JP 18999394A JP 18999394 A JP18999394 A JP 18999394A JP 4103012 B2 JP4103012 B2 JP 4103012B2
Authority
JP
Japan
Prior art keywords
valve
passage
input shaft
valve body
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18999394A
Other languages
Japanese (ja)
Other versions
JPH0834345A (en
Inventor
博美 安藤
暢麿 大坂
泰彦 甘利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18999394A priority Critical patent/JP4103012B2/en
Publication of JPH0834345A publication Critical patent/JPH0834345A/en
Application granted granted Critical
Publication of JP4103012B2 publication Critical patent/JP4103012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、車両等のブレーキ系統に用いられる気圧式倍力装置に関する。
【0002】
【従来の技術】
気圧式倍力装置は、一般には、ハウジング内をダイアフラムを備えたパワーピストンにより負圧室と作動圧室とに区画し、前記パワーピストンに負圧通路と大気通路とを有するバルブボデーを取付けると共に、該バルブボデー内に前記作動圧室に対して前記負圧通路と前記大気通路とを切換える弁機構を設け、この弁機構を入力軸と連動させて前記作動圧室に大気を導入し、負圧室と作動圧室との差圧により前記パワーピストンに倍力した推力を発生させる構造となっている。しかしながら、かゝる一般の気圧式倍力装置によれば、パワーピストンに発生する推力は負圧室内の負圧と作動圧室内の大気圧との差に依存し、したがって、大きな推力を得ようとすると、パワーピストンを大型に形成し、あるいは負圧室と作動圧室とをタンデム型として構成しなければならず、全体の大型化が避けられないようになる。
【0003】
そこで最近、作動圧室に高圧空気を導入して推力の一層の増大を図った気圧式倍力装置の開発が進められ、例えば実開平5−32209号公報には、作動圧室に電磁開閉弁を介して高圧空気源を接続すると共に、バルブボデー(弁筒)内に大気通路を遮断する弁手段(逆止弁)を配設し、ブレーキセンサ、車速センサ、ロードセンサ等からの信号に基いて前記電磁開閉弁を開き、作動圧室に高圧空気を導入して負圧室と作動圧室との差圧を増大させるようにした加圧型の気圧式倍力装置が記載されている(その明細書の段落番号22および23参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された加圧型の気圧式倍力装置によれば、高圧空気を連通遮断する電磁開閉弁がハウジングから独立して設けられているため、ハウジングの周りが煩雑となり、車両への設置が面倒になるという問題があった。また、各種センサ類からの信号に基いて開閉弁を制御するため、特別の制御回路が必要となり、装置全体の構造が複雑になるばかりか、高価になるという問題もあった。
【0005】
本発明は、上記従来の問題点に鑑みてなされたもので、その課題とするところは、ハウジングの周りをシンプルにして車両への取付性を改善すると共に、特別のセンサ類や制御回路を不要として構造の簡略化とコスト低減とを達成する加圧型の気圧式倍力装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の発明にあっては、ハウジング内をダイアフラムを備えたパワーピストンにより負圧室と作動圧室とに区画し、前記パワーピストンに負圧通路、大気通路および高圧空気通路を有するバルブボデーを取付け、前記パワーピストンの推力を該バルブボディおよびリアクションディスクを介して出力軸に伝達し、かつ前記リアクションディスクの反力の一部を前記入力軸に作動連結されたプランジャを介して伝達するようにし、前記バルブボデー内に、前記作動圧室に対して前記負圧通路と前記大気通路とを切換える第1の弁機構、および前記作動圧室に対して前記大気通路と前記高圧空気通路とを切換える第2の弁機構を配設し、かつ前記第1、第2の弁機構を入力軸と作動連結し、前記第1の弁機構は、入力軸と前記バルブボデーとの相対移動に応じて前記大気通路を開き、前記第2の弁機構は、前記入力軸に対して所定の力以上の力が与えられた際、前記リアクションディスクからの反力を伝達する前記プランジャに固定されたロッド部材と前記入力軸とが相対移動して前記高圧空気通路を開くように構成としたことを特徴とする。
【0007】
また、請求項2に記載の発明にあっては、ハウジング内をダイアフラムを備えたパワーピストンにより負圧室と作動圧室とに区画し、前記パワーピストンに負圧通路、大気通路および高圧空気通路を有するバルブボデーを取付け、前記パワーピストンの推力を該バルブボデーおよびリアクションディスクを介して出力軸に伝達し、かつ前記リアクションディスクの反力の一部を前記入力軸に作動連結されたプランジャを介して伝達するようにし、該バルブボデーの中空軸部内に、前記作動圧室に対して前記負圧通路と前記大気通路とを切換える第1の弁機構、および前記作動圧室に対して前記大気通路と前記高圧空気通路とを切換える第2の弁機構を配設し、かつ前記第1、第2の弁機構を入力軸と作動連結し、前記第1の弁機構は、入力軸と前記バルブボデーとの相対移動に応じて前記大気通路を開き、第2の弁機構は、前記高圧空気通路途中に形成された弁座および該弁座に常時着座する弁体からなる、前記入力軸に連動する開閉弁と、該開閉弁と相対移動可能で前記リアクションディスクからの反力を伝達する前記プランジャに固定されたロッド部材と、該ロッド部材に一端を当接させて前記開閉弁を前記入力軸側へ付勢するばねとを備え、前記入力軸に対して所定の力以上の力が与えられた際、前記弁体を前記弁座より離間させて高圧空気通路を開くように前記入力軸と前記ロッド部材とが相対移動する構成としたことを特徴とする。
【0008】
【作用】
上記のように構成した気圧式倍力装置においては、作動圧室に対して負圧通路と大気通路とを切換える第1の弁機構に加え、作動圧室に対して大気通路と高圧空気通路とを切換える第2の弁機構もバルブボデー内に配設したので、ハウジングの周りがシンプルとなる。また、第1、第2の弁機構を入力軸と作動連結し、これら弁機構を入力軸と連動して機械的に作動させるので、特別のセンサ類や制御回路が不要となる。さらに、第2の弁機構を、入力軸に対して所定の力以上の力が与えられた際、前記高圧空気通路を開くようにしたので、大気側から高圧空気側に円滑に通路が切換わり、高減速制動時または急制動時に大きな制動力がタイミングよく得られるようになる。
【0009】
【実施例】
以下、本発明の実施例を添付図面に基いて説明する。
図1および2において、1は、フロントシェル2とリヤシェル3とから成るハウジングで、その内部はセンタシェル4により前・後二室に区画され、その前室はさらに、ダイアフラム5を備えたパワーピストン6により前・後二室に区画されている。パワーピストン6により区画されたハウジング1内の前室は負圧室7、その後室は作動圧室8としてそれぞれ構成され、負圧室7には、フロントシェル2に設けた負圧導入口9を通じて、例えばエンジンの吸気マニホールド等の負圧源(図示略)から負圧が導入されるようになっている。一方、センタシェル4により区画されたハウジング1内の後室は蓄圧室10として構成され、この中には、リヤシェル3に設けた高圧導入口12を通じて、ハウジング1とは独立に設けた後述の加圧空気源11から高圧空気が供給されるようになっている。
【0010】
13は、ハウジング1内に配置されたバルブボデーである。バルブボデー13は大径の本体部14と小径の中空軸部15とから成り、その本体部14がダイアフラム5とパワーピストン6とに結合され、かつその中空軸部15がリヤシェル3とセンタシェル4とにシール部材16を介して摺動自在に支持されている。バルブボデー13の中空軸部15はリヤシェル3を挿通してハウジング1の後方まで延ばされ、この中にはブレーキペダル(図示略)と連動する入力軸17が挿入されている。なお、バルブボデー13の全体はハウジングの負圧室7内に配置した戻しばね18により入力軸17側へ付勢されている。また、バルブボデー13の中空軸部15の、ハウジング1の外に突き出た部分は、ダストブーツ19により覆われている。
【0011】
バルブボデー13には、その中空軸部15内を負圧室7、作動圧室8、蓄圧室10に対してそれぞれ連通する負圧通路20、通気路21、高圧空気通路22が設けられている。また、バルブボデー13の本体部14には段付の軸孔23が設けられ、この軸孔23の小径部分にはプランジャ24が摺動自在に嵌挿されている。プランジャ24の軸方向の中間には環状溝24aが形成されており、この環状溝24aには、バルブボデー13の外周から前記通気路21に遊挿したストッパ片25が嵌入されている。ストッパ片25は通気路21内をバルブボデー13の軸方向にわずか移動可能となっており、このストッパ片25の移動範囲内でプランジャ24も軸方向へ摺動できるようになっている。また、バルブボデー13の軸孔23の大径部分には、ゴム製のリアクションディスク26を介して出力軸27の基端大径部が収納されている。出力軸27の先端部は、フロントシェル2を挿通してハウジング1の前方まで延ばされ、これには図示を略すマスタシリンダが作動連結されている。
【0012】
一方、バルブボデー13の中空軸部15内には環状のガイド部材28が嵌合され、このガイド部材28には後述する作動ロッド29が摺動自在に嵌挿されている。ガイド部材28は、ハウジング1の後方から中空軸部15内の段差15aに着座するまで挿入されると共に、中空軸部15の外周からその内部に打込んだストッパ片30により該中空軸部15からの抜けが規制されている。ガイド部材28には、その両端に開口する軸方向孔(大気通路)31と、前記ストッパ片30を受入れる周溝32と、この周溝32の底と内周とに開口する半径方向孔33とが設けられている。ガイド部材28が中空軸部15内の段差15aに着座する状態において、前記周溝32は前記高圧空気通路22に整合し、蓄圧室10内の高圧空気は、該高圧空気通路22、ガイド部材28の周溝32およびその半径方向孔33を経由して作動ロッド29の所まで導入されるようになっている。
【0013】
上記ガイド部材28の前端側は、図2に示すようにバルブボデー13の中空軸部15の内径よりわずか小さい小径部28aとされており、この小径部28aにはシール部材34を介して弁部材35が摺動自在に装着されている。この弁部材35は、前記ガイド部材28に嵌合された筒状のガイド部35aとこのガイド部35aの先端に内方フランジ状に形成された弁部35bとを備え、その全体は内側の金属板36の外面にゴム製のシール板37を加硫接着した二層構造となっている。しかして、前記バルブボデー13の中空軸部15の内周面には前記負圧通路20の開口縁を含む環状の弁座部38が形成され、また、プランジャ24の後端にも環状の弁座部39が形成されており、前記弁部材35の弁部35bはこれら弁座部38,39に離着座可能となっている。
【0014】
上記弁部材35の内部には弁ばね40が配設されており、この弁ばね40は、その一端を弁部材35の弁部35bの内側に係合させると共に、その他端をバルブシート41を介してガイド部材28の前端に係合させている。前記弁ばね40の存在により、弁部材35は、倍力装置の不作動状態では弁座部38,39に着座する状態が維持され、また、バルブシート41はガイド部材28の前端に当接して大気通路31を閉じる状態が維持される。これら弁部材35、弁座部38,39、弁ばね40等は、作動圧室8に対して負圧通路20と大気通路31とを切換える第1の弁機構42を構成し、プランジャ24の右または左方向への移動に応じて、負圧通路20と大気通路31とが通気路21(図1)を経由して作動圧室8に選択的に連通されるようになる。
【0015】
ガイド部材28内の作動ロッド29は、その後端が前記入力軸17に作動連結される一方で、その前端が第2の弁機構43を介して前記プランジャ24に作動連結されている。作動ロッド29には、ガイド部材28の半径方向孔33に対して連通可能な半径方向孔44と、この半径方向孔44を先端に接続する段付の軸方向孔45とが形成されている。また第2の弁機構43は、バルブボデー13の軸線上に配置されかつ一端がプランジャ24に螺合固定されたロッド部材としての固定ピン46と、入力軸17に所定値以上の力が作用した、固定ピン46に対して相対的に移動可能に設けられている開閉弁47と、一端を固定ピン46に一体に設けたばね受け48に当接させて開閉弁47を作動ロッド29側へ付勢するばね49と、一端を前記ばね受け48に係止させて開閉弁47の、作動ロッド29側への移動を規制するストッパ50とを備えている。
【0016】
より詳しくは、図2に示すように開閉弁47は、一端部が固定ピン46にシール部材51を介して摺動自在に嵌合され、かつ他端部を前記作動ロッド29の軸方向孔45に圧入固定させたシート部材52と、作動ロッド29の軸方向孔45内に配置され弁ばね53の付勢力を受けてシート部材(弁座)52の一端のシート面52aに着座するボール(弁体)54とから成っている。シート部材52には、そのシート面52aに一端を開口させた軸方向孔55とこの軸方向孔55を側面に接続する半径方向孔56とが形成されている。また固定ピン46の先端側は小径部46aとされており、固定ピン46は、その小径部46aを前記シート部材52の軸方向孔55内に挿入させている。
【0017】
ここで、開閉弁47は、倍力装置の不作動状態では、図に示すようにばね49とストッパ50との作用により作動ロッド29側への移動端(伸長端)に位置決めされている。この状態において固定ピン46の先端(小径部46aの先端)はボール54に近接する部位に位置決めされており、これにより、ボール54はシート部材52の軸方向孔55を閉じる状態を維持し、ガイド部材28の前方に高圧空気が流入することはない。また、入力軸17から作動ロッド29に加わる力がばね49の力より小さい場合も、開閉弁47は前記伸長端に位置決めされ、前記同様にガイド部材28の前方に高圧空気は流入しない。しかして、この場合は、入力軸17から作動ロッド29に加わる力が、そのまゝ開閉弁47および固定ピン46を介してプランジャ24に伝達され、したがって第1の弁機構42のみが作動することになる。一方、入力軸17から作動ロッド29に加わる力がばね49の力より大きくなると、ばね49が撓んで固定ピン46と開閉弁47とが相対移動し、この結果、固定ピン46によりボール54が押し開かれ、ガイド部材28の前方に高圧空気が流入することになる。
【0018】
なお、高圧空気源11は、ハウジング1の高圧導入口12に配管57を介して直結された圧縮機58と、前記配管57の途中に介装された二つの逆止弁59およびエアドライヤ60とを備えている。また、配管57の、前記二つの逆止弁59の間に位置する部分には、前記ハウジング1の負圧室7に対すると同じ負圧源が負圧配管61を介して接続され、これには電磁開閉弁62が介装されている。
【0019】
以下、上記のように構成した気圧式倍力装置の作用を説明する。
図1および2に示す不作動状態においては作動圧室8に負圧が封じ込められている。この状態からブレーキペダルを踏込むと、入力軸17が移動(前進)して作動ロッド29が図の左方向へ前進し、この時、入力軸17に加わる力が第2の弁機構43のばね49の力より小さければ、作動ロッド29の移動にプランジャ24が連動し、プランジャ24の弁座部39が弁部材35の弁部35bから離間する。すると、ガイド部材29の前方に作動圧室8内の負圧が導入され、バルブシート41が開いて大気通路31からガイド部材29の前方に大気が流入する。この大気は、通気路21を経て作動圧室8に導入され、この結果、エンジン負圧が導入されている負圧室7と作動圧室8との間に差圧が生じ、これによりパワーピストン6に前方への推力が発生する。この推力は、バルブボデー13、バルブボデー13内のリアクションディスク26、出力軸27を介して図示を略すマスタシリンダに伝達され、倍力作用が開始される。なお、この倍力作用時には、リアクションディスク26が弾性変形して、その一部がバルブボデー13の軸孔23内に張り出し、プランジャ24、作動ロッド29を介して入力軸17に反力が伝達される。
【0020】
そして、ブレーキペダルがさらに踏込まれて、入力軸17から作動ロッド29にばね49の力より大きな力が加えられると、ばね49が撓んで固定ピン46と開閉弁47とが相対移動し、固定ピン46によりボール54が押し開かれる。すると、蓄圧室10内の高圧空気が、バルブボデー13の中空軸部15の高圧空気通路22と、ガイド部材28の周溝32およびその半径方向孔33と、作動ロッド29の半径方向孔44および軸方向孔45と、開閉弁47のシート部材52の軸方向孔55および半径方向孔56とを経由して作動ロッド29の前方に流入する。この高圧空気の流入によりバルブシート41がガイド部材28の端面に押付けられ、大気通路31が閉じられる。これと共に、高圧空気は通気路21を経て作動圧室8に流入し、この結果、負圧室7と作動圧室8との間に、さらに大きな差圧が発生し、パワーピストン6に前方への大きな推力が発生する。したがって、いま、第2の弁機構43のばね49として、高減速制動時または急制動時に入力軸17に発生する入力よりわずか小さなばね力を有するものを選択すれば、高減速制動時または急制動時に大きな制動力が得られるようになる。
【0021】
こゝで、ブレーキペダルから踏力がなくなると、プランジャ24がリアクションディスク26に押されて右方向へ移動し、これに応じてプランジャ24の弁座部39が弁部材35の弁座部38に当接し、弁部材35を右方向へ移動させる。この結果、作動圧室8への大気または高圧空気の導入が断たれる一方で、負圧室7内の負圧が負圧通路20および通気路21を経て作動圧室8に導入され、上記した差圧が小さくなって推力が減じる。そして、ブレーキペダルの完全開放と共に、復帰ばね18の押圧力によりバルブボデー13が元の位置に復帰し、弁部材35が二つの弁座部38,39に再び着座する。
【0022】
なお、上記蓄圧室10は、ハウジング1から独立して設けても良いものであるが、上記実施例のようにハウジング1と一体に設けた場合には、ハウジング1の周りがシンプルとなって、車両への取付性がより向上する。
【0023】
【発明の効果】
以上、詳細に説明したように、本発明にかゝる気圧式倍力装置によれば、ハウジングの周りがシンプルとなるので、車両への取付性が向上し、その上、特別のセンサ類や制御回路が不要となって構造の簡略化、コスト低減を達成できる。また、入力軸に対して所定の力以上の力が与えられた際、前記高圧空気通路を開くようにしたので、大気側から高圧空気側に円滑に通路が切換わり、高減速制動時または急減速時に大きな制動力がタイミングよく得られるようになる。
【図面の簡単な説明】
【図1】本発明にかゝる気圧式倍力装置の全体的な構造を示す断面図である。
【図2】本気圧式倍力装置の要部構造を示す断面図である。
【符号の説明】
1 ハウジング
5 ダイアフラム
6 パワーピストン
7 負圧室
8 作動圧室
10 蓄圧室
11 高圧空気源
13 バルブボデー
17 入力軸
20 負圧通路
21 通気路
22 高圧空気通路
24 プランジャ
27 出力軸
28 ガイド部材
29 作動ロッド
31 大気通路
42 第1の弁機構
43 第2の弁機構
46 固定ピン(ロッド部材)
47 開閉弁
49 ばね
52 シート部材(弁座)
54 ボール(弁体)
[0001]
[Industrial application fields]
The present invention relates to a pneumatic booster used in a brake system such as a vehicle.
[0002]
[Prior art]
In general, a pneumatic booster is configured to divide a housing into a negative pressure chamber and a working pressure chamber by a power piston having a diaphragm, and attach a valve body having a negative pressure passage and an atmospheric passage to the power piston. A valve mechanism is provided in the valve body for switching the negative pressure passage and the atmospheric passage with respect to the working pressure chamber, and the valve mechanism is linked with an input shaft to introduce the atmosphere into the working pressure chamber. The power piston is configured to generate a boosted force by the differential pressure between the pressure chamber and the working pressure chamber. However, according to such a general pressure type booster, the thrust generated in the power piston depends on the difference between the negative pressure in the negative pressure chamber and the atmospheric pressure in the working pressure chamber, so that a large thrust can be obtained. Then, the power piston must be formed in a large size, or the negative pressure chamber and the working pressure chamber must be configured as a tandem type, so that the entire size cannot be increased.
[0003]
Recently, therefore, development of a pneumatic booster in which high-pressure air is introduced into the working pressure chamber to further increase the thrust has been promoted. For example, Japanese Utility Model Laid-Open No. 5-32209 discloses an electromagnetic on-off valve in the working pressure chamber. A high-pressure air source is connected via the valve body, and valve means (check valve) for shutting off the atmospheric passage is provided in the valve body (valve cylinder), based on signals from brake sensors, vehicle speed sensors, load sensors, etc. And a pressure-type pneumatic booster that opens the electromagnetic on-off valve and introduces high-pressure air into the working pressure chamber to increase the differential pressure between the negative pressure chamber and the working pressure chamber. See paragraphs 22 and 23 of the description).
[0004]
[Problems to be solved by the invention]
However, according to the pressurization type pneumatic booster described in the above publication, an electromagnetic on-off valve that cuts off high-pressure air is provided independently from the housing. There was a problem that the installation of was troublesome. In addition, since the on-off valve is controlled based on signals from various sensors, a special control circuit is required, which not only complicates the overall structure of the apparatus but also increases the cost.
[0005]
The present invention has been made in view of the above-described conventional problems, and the object of the present invention is to simplify the surroundings of the housing to improve the mounting property to the vehicle and to eliminate the need for special sensors and control circuits. An object of the present invention is to provide a pressure-type pneumatic booster that achieves simplification of structure and cost reduction.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention according to claim 1, the housing is partitioned into a negative pressure chamber and a working pressure chamber by a power piston provided with a diaphragm, and a negative pressure passage and an atmospheric air are provided in the power piston. A valve body having a passage and a high-pressure air passage is mounted, the thrust of the power piston is transmitted to the output shaft through the valve body and the reaction disk , and a part of the reaction force of the reaction disk is operatively connected to the input shaft. A first valve mechanism that switches between the negative pressure passage and the atmospheric passage for the working pressure chamber, and the working pressure chamber for the working pressure chamber. A second valve mechanism for switching between the atmospheric passage and the high-pressure air passage is disposed; and the first and second valve mechanisms are operatively connected to an input shaft; Opening the air passage in response to relative movement between the valve body and the input shaft, said second valve mechanism, when a predetermined force or more force to the input shaft is given, from the reaction disc The rod member fixed to the plunger that transmits the reaction force and the input shaft move relative to each other to open the high-pressure air passage.
[0007]
In the invention according to claim 2, the housing is partitioned into a negative pressure chamber and a working pressure chamber by a power piston having a diaphragm, and a negative pressure passage, an atmospheric passage and a high pressure air passage are provided in the power piston. A valve body having a valve body, a thrust of the power piston being transmitted to the output shaft through the valve body and the reaction disk, and a part of the reaction force of the reaction disk being operatively connected to the input shaft via a plunger. so as to transmit Te, in the hollow shaft portion of the valve body, a first valve mechanism for switching between the air passage and the negative pressure passage with respect to the working pressure chamber, and the air to the working pressure chamber A second valve mechanism for switching between the passage and the high-pressure air passage is provided, and the first and second valve mechanisms are operatively connected to an input shaft, and the first valve mechanism is connected to the input shaft. The input shaft is configured to open the atmospheric passage according to relative movement with the valve body, and the second valve mechanism includes a valve seat formed in the middle of the high-pressure air passage and a valve body that is always seated on the valve seat. An on-off valve that is linked to the on-off valve, a rod member that is movable relative to the on-off valve and that transmits a reaction force from the reaction disk , and an end that abuts the rod member so that the on-off valve is in contact with the rod member. and a spring for biasing the input shaft side, when a predetermined force or more force to the input shaft is given, the input of said valve body to open the high pressure air passage is separated from the valve seat The shaft and the rod member are configured to move relative to each other.
[0008]
[Action]
In the pneumatic booster configured as described above, in addition to the first valve mechanism that switches the negative pressure passage and the atmospheric passage with respect to the working pressure chamber, the atmospheric passage and the high pressure air passage with respect to the working pressure chamber. Since the second valve mechanism for switching is also disposed in the valve body, the area around the housing is simplified. Further, since the first and second valve mechanisms are operatively connected to the input shaft and these valve mechanisms are mechanically operated in conjunction with the input shaft, special sensors and control circuits are not required. Furthermore, the second valve mechanism is configured to open the high-pressure air passage when a force greater than a predetermined force is applied to the input shaft, so that the passage is smoothly switched from the atmosphere side to the high-pressure air side. A large braking force can be obtained with good timing during high deceleration braking or sudden braking.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 and 2, reference numeral 1 denotes a housing composed of a front shell 2 and a rear shell 3, the interior of which is divided into two front and rear chambers by a center shell 4. The front chamber further includes a power piston provided with a diaphragm 5. 6 is divided into two front and rear chambers. The front chamber in the housing 1 defined by the power piston 6 is configured as a negative pressure chamber 7, and the rear chamber is configured as a working pressure chamber 8, and the negative pressure chamber 7 is passed through a negative pressure introduction port 9 provided in the front shell 2. For example, a negative pressure is introduced from a negative pressure source (not shown) such as an intake manifold of the engine. On the other hand, the rear chamber in the housing 1 partitioned by the center shell 4 is configured as a pressure accumulating chamber 10, in which a later-described additional chamber provided independently of the housing 1 is provided through a high-pressure inlet 12 provided in the rear shell 3. High pressure air is supplied from the pressurized air source 11.
[0010]
Reference numeral 13 denotes a valve body disposed in the housing 1. The valve body 13 includes a main body portion 14 having a large diameter and a hollow shaft portion 15 having a small diameter. The main body portion 14 is coupled to the diaphragm 5 and the power piston 6, and the hollow shaft portion 15 is connected to the rear shell 3 and the center shell 4. And slidably supported via a seal member 16. The hollow shaft portion 15 of the valve body 13 extends through the rear shell 3 to the rear of the housing 1, and an input shaft 17 that interlocks with a brake pedal (not shown) is inserted therein. The entire valve body 13 is biased toward the input shaft 17 by a return spring 18 disposed in the negative pressure chamber 7 of the housing. Further, a portion of the hollow shaft portion 15 of the valve body 13 protruding outside the housing 1 is covered with a dust boot 19.
[0011]
The valve body 13 is provided with a negative pressure passage 20, a ventilation passage 21, and a high pressure air passage 22 that communicate with the negative pressure chamber 7, the working pressure chamber 8, and the pressure accumulation chamber 10 in the hollow shaft portion 15. . Further, a stepped shaft hole 23 is provided in the main body portion 14 of the valve body 13, and a plunger 24 is slidably fitted into a small diameter portion of the shaft hole 23. An annular groove 24a is formed in the middle of the plunger 24 in the axial direction, and a stopper piece 25 loosely inserted into the air passage 21 from the outer periphery of the valve body 13 is fitted into the annular groove 24a. The stopper piece 25 is slightly movable in the vent passage 21 in the axial direction of the valve body 13, and the plunger 24 is also slidable in the axial direction within the movement range of the stopper piece 25. A large diameter portion of the shaft hole 23 of the valve body 13 accommodates a large diameter portion of the base end of the output shaft 27 via a rubber reaction disk 26. The distal end portion of the output shaft 27 extends through the front shell 2 to the front of the housing 1, and a master cylinder (not shown) is operatively connected thereto.
[0012]
On the other hand, an annular guide member 28 is fitted into the hollow shaft portion 15 of the valve body 13, and an operating rod 29 described later is slidably fitted into the guide member 28. Guide member 28, while being inserted from the rear of the housing 1 until seated in the step 15a of the hollow shaft portion 15, the stopper piece 30 which are implanted therein from the outer periphery of the hollow shaft portion 15 from the hollow shaft section 15 Omission is regulated. The guide member 28 has an axial hole (atmospheric passage) 31 that opens at both ends thereof, a circumferential groove 32 that receives the stopper piece 30, and a radial hole 33 that opens at the bottom and inner circumference of the circumferential groove 32. Is provided. In a state where the guide member 28 is seated on the step 15 a in the hollow shaft portion 15, the circumferential groove 32 is aligned with the high-pressure air passage 22, and the high-pressure air in the pressure accumulating chamber 10 is the high-pressure air passage 22, the guide member 28. Are introduced to the working rod 29 via the circumferential groove 32 and the radial hole 33 thereof.
[0013]
As shown in FIG. 2, the front end side of the guide member 28 is a small-diameter portion 28a slightly smaller than the inner diameter of the hollow shaft portion 15 of the valve body 13, and the small-diameter portion 28a is provided with a valve member via a seal member 34. 35 is slidably mounted. The valve member 35 includes a cylindrical guide portion 35a fitted to the guide member 28, and a valve portion 35b formed in an inward flange shape at the distal end of the guide portion 35a, and the entirety thereof is an inner metal. It has a two-layer structure in which a rubber seal plate 37 is vulcanized and bonded to the outer surface of the plate 36. Thus, an annular valve seat portion 38 including the opening edge of the negative pressure passage 20 is formed on the inner peripheral surface of the hollow shaft portion 15 of the valve body 13, and an annular valve seat is also formed at the rear end of the plunger 24. A seat portion 39 is formed, and the valve portion 35b of the valve member 35 can be attached to and detached from these valve seat portions 38 and 39.
[0014]
A valve spring 40 is disposed inside the valve member 35. The valve spring 40 has one end engaged with the inside of the valve portion 35b of the valve member 35 and the other end interposed through the valve seat 41. The guide member 28 is engaged with the front end. Due to the presence of the valve spring 40, the valve member 35 is maintained in a state of being seated on the valve seat portions 38 and 39 when the booster is not in operation, and the valve seat 41 is in contact with the front end of the guide member 28. The state where the atmospheric passage 31 is closed is maintained. The valve member 35, the valve seat portions 38 and 39, the valve spring 40, etc. constitute a first valve mechanism 42 that switches the negative pressure passage 20 and the atmospheric passage 31 with respect to the working pressure chamber 8, and the right side of the plunger 24. Alternatively, in accordance with the movement in the left direction, the negative pressure passage 20 and the atmospheric passage 31 are selectively communicated with the working pressure chamber 8 via the vent passage 21 (FIG. 1).
[0015]
The operating rod 29 in the guide member 28 has a rear end operatively connected to the input shaft 17, and a front end operatively connected to the plunger 24 via a second valve mechanism 43. The actuating rod 29 is formed with a radial hole 44 that can communicate with the radial hole 33 of the guide member 28 and a stepped axial hole 45 that connects the radial hole 44 to the tip. The second valve mechanism 43 is disposed on the axis of the valve body 13 and has a fixed pin 46 as a rod member whose one end is screwed and fixed to the plunger 24, and a force greater than a predetermined value is applied to the input shaft 17. At this time , the on-off valve 47 provided so as to be movable relative to the fixed pin 46 and one end of the on-off valve 47 provided integrally with the fixed pin 46 are brought into contact with the on-off valve 47 to the operating rod 29 side. A spring 49 is provided, and a stopper 50 is engaged with one end of the spring receiver 48 to restrict movement of the on-off valve 47 toward the operating rod 29 side.
[0016]
More specifically, as shown in FIG. 2, the opening / closing valve 47 has one end slidably fitted to the fixing pin 46 via the seal member 51 and the other end connected to the axial hole 45 of the operating rod 29. ball seated with the seat member 52 is press-fitted, at one end of the seat surface 52a of the sheet member (the valve seat) 52 receives the urging force of the axial bore 45 disposed valve in the spring 53 of the rod 29 (the valve Body) 54. The sheet member 52 is formed with an axial hole 55 having one end opened on the sheet surface 52a and a radial hole 56 connecting the axial hole 55 to a side surface. Further, the distal end side of the fixed pin 46 is a small diameter portion 46 a, and the fixed pin 46 is inserted into the axial hole 55 of the sheet member 52.
[0017]
Here, in the inoperative state of the booster, the on-off valve 47 is positioned at the moving end (extension end) toward the operating rod 29 by the action of the spring 49 and the stopper 50 as shown in the figure. In this state, the distal end of the fixing pin 46 (the distal end of the small-diameter portion 46a) is positioned at a position close to the ball 54, whereby the ball 54 maintains a state in which the axial hole 55 of the seat member 52 is closed, and the guide High-pressure air does not flow in front of the member 28. Even when the force applied to the operating rod 29 from the input shaft 17 is smaller than the force of the spring 49, the on-off valve 47 is positioned at the extended end, and the high-pressure air does not flow in front of the guide member 28 as described above. In this case, the force applied from the input shaft 17 to the operating rod 29 is transmitted to the plunger 24 as it is through the on-off valve 47 and the fixing pin 46, so that only the first valve mechanism 42 operates. become. On the other hand, when the force applied to the operating rod 29 from the input shaft 17 becomes larger than the force of the spring 49, the spring 49 is bent and the fixed pin 46 and the on-off valve 47 move relative to each other. As a result, the ball 54 is pushed by the fixed pin 46. It is opened and high-pressure air flows in front of the guide member 28.
[0018]
The high-pressure air source 11 includes a compressor 58 directly connected to the high-pressure inlet 12 of the housing 1 via a pipe 57, and two check valves 59 and an air dryer 60 interposed in the middle of the pipe 57. I have. Further, the same negative pressure source as that for the negative pressure chamber 7 of the housing 1 is connected to a portion of the pipe 57 located between the two check valves 59 via a negative pressure pipe 61. An electromagnetic opening / closing valve 62 is interposed.
[0019]
Hereinafter, the operation of the pneumatic booster configured as described above will be described.
In the inoperative state shown in FIGS. 1 and 2, negative pressure is confined in the working pressure chamber 8. When the brake pedal is depressed from this state, the input shaft 17 moves (advances) and the operating rod 29 advances in the left direction in the figure. At this time, the force applied to the input shaft 17 is the spring of the second valve mechanism 43. If the force is less than 49, the plunger 24 is interlocked with the movement of the operating rod 29, and the valve seat portion 39 of the plunger 24 is separated from the valve portion 35b of the valve member 35. Then, the negative pressure in the working pressure chamber 8 is introduced in front of the guide member 29, the valve seat 41 is opened, and the atmosphere flows from the atmospheric passage 31 to the front of the guide member 29. This atmosphere is introduced into the working pressure chamber 8 through the air passage 21, and as a result, a differential pressure is generated between the working pressure chamber 8 and the working pressure chamber 8 into which the engine negative pressure is introduced, thereby causing the power piston. 6 generates a forward thrust. This thrust is transmitted to the master cylinder (not shown) via the valve body 13, the reaction disk 26 in the valve body 13, and the output shaft 27, and a boosting action is started. At the time of this boosting action, the reaction disk 26 is elastically deformed, and a part thereof projects into the shaft hole 23 of the valve body 13, and the reaction force is transmitted to the input shaft 17 through the plunger 24 and the operating rod 29. The
[0020]
When the brake pedal is further stepped on and a force larger than the force of the spring 49 is applied from the input shaft 17 to the operating rod 29, the spring 49 is bent and the fixed pin 46 and the on-off valve 47 move relative to each other. The ball 54 is pushed open by 46. Then, the high-pressure air in the pressure accumulating chamber 10 flows into the high-pressure air passage 22 of the hollow shaft portion 15 of the valve body 13, the circumferential groove 32 of the guide member 28 and its radial hole 33, the radial hole 44 of the actuating rod 29, and It flows into the front of the actuating rod 29 via the axial hole 45 and the axial hole 55 and radial hole 56 of the seat member 52 of the on-off valve 47. The valve seat 41 is pressed against the end face of the guide member 28 by the inflow of the high-pressure air, and the atmospheric passage 31 is closed. At the same time, the high-pressure air flows into the working pressure chamber 8 through the air passage 21. As a result, a larger differential pressure is generated between the negative pressure chamber 7 and the working pressure chamber 8, and the power piston 6 moves forward. A large thrust is generated. Therefore, if the spring 49 of the second valve mechanism 43 has a spring force slightly smaller than the input generated at the input shaft 17 at the time of high deceleration braking or sudden braking, the spring 49 at the time of high deceleration braking or sudden braking is selected. Sometimes a large braking force can be obtained.
[0021]
When the pedal force is lost from the brake pedal, the plunger 24 is pushed by the reaction disk 26 and moves to the right, and the valve seat 39 of the plunger 24 contacts the valve seat 38 of the valve member 35 accordingly. The valve member 35 is moved in the right direction. As a result, the introduction of the atmosphere or the high-pressure air into the working pressure chamber 8 is interrupted, while the negative pressure in the negative pressure chamber 7 is introduced into the working pressure chamber 8 via the negative pressure passage 20 and the air passage 21. The differential pressure is reduced and the thrust is reduced. When the brake pedal is fully opened, the valve body 13 is returned to the original position by the pressing force of the return spring 18, and the valve member 35 is seated again on the two valve seat portions 38 and 39.
[0022]
The pressure accumulating chamber 10 may be provided independently from the housing 1, but when provided integrally with the housing 1 as in the above embodiment, the surroundings of the housing 1 are simplified, Mountability to the vehicle is further improved.
[0023]
【The invention's effect】
As described above in detail, according to the pneumatic pressure booster according to the present invention, the surroundings of the housing are simplified, so that the mounting property to the vehicle is improved. A control circuit is not required, and the structure can be simplified and the cost can be reduced. In addition, since the high-pressure air passage is opened when a force greater than a predetermined force is applied to the input shaft, the passage is smoothly switched from the atmosphere side to the high-pressure air side, during high deceleration braking or suddenly A large braking force can be obtained with good timing during deceleration.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the overall structure of a pneumatic booster according to the present invention.
FIG. 2 is a cross-sectional view showing a main structure of the atmospheric pressure booster.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 5 Diaphragm 6 Power piston 7 Negative pressure chamber 8 Actuation pressure chamber 10 Accumulation chamber 11 High pressure air source 13 Valve body 17 Input shaft 20 Negative pressure passage 21 Ventilation passage 22 High pressure air passage 24 Plunger 27 Output shaft 28 Guide member 29 Actuation rod 31 Atmospheric passage 42 First valve mechanism 43 Second valve mechanism 46 Fixing pin (rod member)
47 On-off valve 49 Spring 52 Seat member (valve seat)
54 Ball (valve)

Claims (2)

ハウジング内をダイアフラムを備えたパワーピストンにより負圧室と作動圧室とに区画し、前記パワーピストンに負圧通路、大気通路および高圧空気通路を有するバルブボデーを取付け、前記パワーピストンの推力を該バルブボディおよびリアクションディスクを介して出力軸に伝達し、かつ前記リアクションディスクの反力の一部を前記入力軸に作動連結されたプランジャを介して伝達するようにし、前記バルブボデー内に、前記作動圧室に対して前記負圧通路と前記大気通路とを切換える第1の弁機構、および前記作動圧室に対して前記大気通路と前記高圧空気通路とを切換える第2の弁機構を配設し、かつ前記第1、第2の弁機構を入力軸と作動連結し、前記第1の弁機構は、入力軸と前記バルブボデーとの相対移動に応じて前記大気通路を開き、前記第2の弁機構は、前記入力軸に対して所定の力以上の力が与えられた際、前記リアクションディスクからの反力を伝達する前記プランジャに固定されたロッド部材と前記入力軸とが相対移動して前記高圧空気通路を開くようにしたことを特徴とする気圧式倍力装置。The housing is partitioned into a negative pressure chamber and a working pressure chamber by a power piston having a diaphragm, a valve body having a negative pressure passage, an atmospheric passage and a high pressure air passage is attached to the power piston, and the thrust of the power piston is applied to the power piston. The valve body and the reaction disc are transmitted to the output shaft , and a part of the reaction force of the reaction disc is transmitted through the plunger operatively connected to the input shaft, and the operation is performed in the valve body. A first valve mechanism for switching the negative pressure passage and the atmospheric passage to the pressure chamber; and a second valve mechanism for switching the atmospheric passage and the high pressure air passage to the working pressure chamber. And the first and second valve mechanisms are operatively connected to an input shaft, and the first valve mechanism is adapted to move the atmosphere according to relative movement between the input shaft and the valve body. Open road, the second valve mechanism, when a predetermined force or more force to the input shaft is given, the rod member which is fixed to the plunger which transmits the reaction force from the reaction disc A pneumatic booster that opens relative to an input shaft to open the high-pressure air passage. ハウジング内をダイアフラムを備えたパワーピストンにより負圧室と作動圧室とに区画し、前記パワーピストンに負圧通路、大気通路および高圧空気通路を有するバルブボデーを取付け、前記パワーピストンの推力を該バルブボデーおよびリアクションディスクを介して出力軸に伝達し、かつ前記リアクションディスクの反力の一部を前記入力軸に作動連結されたプランジャを介して伝達するようにし、該バルブボデーの中空軸部内に、前記作動圧室に対して前記負圧通路と前記大気通路とを切換える第1の弁機構、および前記作動圧室に対して前記大気通路と前記高圧空気通路とを切換える第2の弁機構を配設し、かつ前記第1、第2の弁機構を入力軸と作動連結し、前記第1の弁機構は、入力軸と前記バルブボデーとの相対移動に応じて前記大気通路を開き、第2の弁機構は、前記高圧空気通路途中に形成された弁座および該弁座に常時着座する弁体からなる、前記入力軸に連動する開閉弁と、該開閉弁と相対移動可能で前記リアクションディスクからの反力を伝達する前記プランジャに固定されたロッド部材と、該ロッド部材に一端を当接させて前記開閉弁を前記入力軸側へ付勢するばねとを備え、前記入力軸に対して所定の力以上の力が与えられた際、前記弁体を前記弁座より離間させて高圧空気通路を開くように前記入力軸と前記ロッド部材とが相対移動することを特徴とする気圧式倍力装置。The housing is partitioned into a negative pressure chamber and a working pressure chamber by a power piston having a diaphragm, a valve body having a negative pressure passage, an atmospheric passage and a high pressure air passage is attached to the power piston, and the thrust of the power piston is applied to the power piston. transmitted to the output shaft through the valve body and the reaction disc, and a portion of the reaction force of the reaction disc so as to transmit via a plunger which is operatively connected to the input shaft, the hollow shaft portion of the valve body In addition, a first valve mechanism that switches the negative pressure passage and the atmospheric passage to the working pressure chamber, and a second valve mechanism that switches the atmospheric passage and the high pressure air passage to the working pressure chamber. And the first and second valve mechanisms are operatively connected to the input shaft, and the first valve mechanism is responsive to relative movement between the input shaft and the valve body. An opening / closing valve interlocked with the input shaft, the opening / closing valve comprising: a valve seat formed in the middle of the high-pressure air passage; and a valve body constantly seated on the valve seat; And a rod member fixed to the plunger that transmits a reaction force from the reaction disk , and a spring that urges the open / close valve toward the input shaft by bringing one end into contact with the rod member. The input shaft and the rod member move relative to each other so as to open the high-pressure air passage by separating the valve body from the valve seat when a force greater than a predetermined force is applied to the input shaft. Pneumatic booster characterized by that.
JP18999394A 1994-07-20 1994-07-20 Pneumatic booster Expired - Fee Related JP4103012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18999394A JP4103012B2 (en) 1994-07-20 1994-07-20 Pneumatic booster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18999394A JP4103012B2 (en) 1994-07-20 1994-07-20 Pneumatic booster

Publications (2)

Publication Number Publication Date
JPH0834345A JPH0834345A (en) 1996-02-06
JP4103012B2 true JP4103012B2 (en) 2008-06-18

Family

ID=16250604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18999394A Expired - Fee Related JP4103012B2 (en) 1994-07-20 1994-07-20 Pneumatic booster

Country Status (1)

Country Link
JP (1) JP4103012B2 (en)

Also Published As

Publication number Publication date
JPH0834345A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
US4400943A (en) Brake unit for automotive vehicles
JPH032706B2 (en)
EP0110740B1 (en) Brake actuation assembly
US4800799A (en) Vacuum type brake booster
US4794844A (en) Pneumatically operated servo-booster
US5601008A (en) Vacuum servo unit for a vehicle braking system
EP0420200B1 (en) A booster
US5312173A (en) Control valve actuator
US6782794B2 (en) Negative pressure boosting device
US4757748A (en) Vacuum booster for automobiles
US6282896B1 (en) Idle stroke shortening device in brake system
JP4103012B2 (en) Pneumatic booster
US5190125A (en) Vacuum brake booster
US6397724B1 (en) Negative pressure type servo unit
JP3521258B2 (en) Pneumatic booster
US6955407B2 (en) Negative pressure type brake hydraulic pressure generating device
US6575077B2 (en) Vacuum servo unit
JP2000108880A (en) Negative pressure type booster
US20010004833A1 (en) Master cylinder with improved emergency braking properties for a hydraulic vehicle brake system
JPH11301457A (en) Negative pressure type booster
JPH0577546B2 (en)
JPH10508553A (en) Valve device
JP3911652B2 (en) Tandem pressure booster
JPH1086812A (en) Negative pressure type booster
JPH0510263B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060202

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees