JP4102176B2 - Painted steel sheet with excellent corrosion resistance - Google Patents

Painted steel sheet with excellent corrosion resistance Download PDF

Info

Publication number
JP4102176B2
JP4102176B2 JP2002353481A JP2002353481A JP4102176B2 JP 4102176 B2 JP4102176 B2 JP 4102176B2 JP 2002353481 A JP2002353481 A JP 2002353481A JP 2002353481 A JP2002353481 A JP 2002353481A JP 4102176 B2 JP4102176 B2 JP 4102176B2
Authority
JP
Japan
Prior art keywords
coating film
coating
steel sheet
elongation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002353481A
Other languages
Japanese (ja)
Other versions
JP2004181860A (en
Inventor
健二 坂戸
啓明 森
浩 圓谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002353481A priority Critical patent/JP4102176B2/en
Publication of JP2004181860A publication Critical patent/JP2004181860A/en
Application granted granted Critical
Publication of JP4102176B2 publication Critical patent/JP4102176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、加工によってAl−Zn合金めっき層に発生しがちな亀裂を塗膜で抑制し、Al−Zn合金めっき鋼板の優れた耐食性を活用できる塗装鋼板に関する。
【0002】
【従来技術及び問題点】
Al−Zn合金めっき鋼板は、Alに由来する耐熱性,耐食性及びZnに由来する犠牲防食作用を兼ね備え、従来の溶融Znめっき鋼板に比較して無塗装で数倍〜十数倍の耐食性を呈する。優れた耐食性を活用し、無塗装のままで或いは美観付与の塗装を施した後で屋根材,壁材等の建材として一部で使用されている。
Al−Zn合金めっき層は、優れた耐食性を呈するものの、軟質のZnリッチ相と硬質のAlリッチ相が混在した不均質組織になっているため、Znリッチ相/Alリッチ相の界面に応力が集中しやすい。そのため、Al−Zn合金めっき鋼板を加工すると、Znリッチ相/Alリッチ相の界面を起点とする亀裂が発生し、亀裂を介して露出した下地鋼が腐食しやすくなる。
めっき層を均質化する熱処理(特開平9−316618号公報)で亀裂の発生をある程度防止できるが、均質化しためっき層ではZnリッチ相の犠牲防食作用が損なわれ、耐食性が劣化する場合がある。
【0003】
【課題を解決するための手段】
本発明は、優れた耐食性に有効な不均質組織を損なうことなく、鋼板表面に設ける表層塗膜の改善によって加工時に発生しがちなめっき層の亀裂を防止し、加工部耐食性を改善した塗装鋼板を提供することを目的とする。
【0004】
本発明の塗装鋼板は、その目的を達成するため、Al:50〜60質量%を含むAl−Zn合金めっき鋼板を基材とし、基材表面に設けた塗膜の少なくとも表層塗膜が伸び率100%以上,100%伸ばしたときの引張荷重が塗膜幅10mm当り1N以上の熱硬化性樹脂塗膜であることを特徴とする。
表層塗膜には、高分子ポリエステル等も使用可能であるが、ガラス転温度Tgの高いポリエステルの配合により塗膜強度を高めた膜厚25μm以上のウレタン塗膜が好ましく、外装建材等で要求される耐光性を付与できる。
【0005】
【作用】
硬質Alリッチ相と軟質Znリッチ相との混合組織からなるAl−Zn合金めっき層を形成しためっき鋼板に曲げ,深絞り等の加工を施すと、Znリッチ相/Alリッチ相の界面に応力が集中し、亀裂が発生する。曲げ曲率や絞り比が大きくなるほど亀裂幅が大きくなり、亀裂を介した下地鋼の露出面積が広がる。本発明者等は、加工を受けたAl−Zn合金めっき層の亀裂発生メカニズムを考慮し、応力分散,応力緩和を図るため表層塗膜の伸び,強度を利用することに想到した。伸び,強度のある表層塗膜によりAl−Zn合金めっき層の亀裂が抑えられることは次のように推測される。
【0006】
たとえば、Al−Zn合金めっき鋼板10を曲げ加工すると、曲げ部では下地鋼11の塑性変形に伴って塗膜12も伸びる(図1)。伸び率の小さな塗膜12では下地鋼11の塑性変形に追従できずに破断することがあるが、伸び率の大きな塗膜12は下地鋼11の塑性変形に十分追従し、曲げ加工後にも連続塗膜として下地鋼11を覆う。他方、下地鋼11と塗膜12との間にあるAl−Zn合金めっき層13では、軟質Znリッチ相13aと硬質Alリッチ相13bとの界面に応力が集中して界面に亀裂13cが発生する(図2)。亀裂13cの幅は、加工度の大きな曲げ部外側ほど大きくなる。
【0007】
Al−Zn合金めっき層13の上に形成した伸び率,塗膜強度の大きな表層塗膜14は、曲げ加工時に下地鋼11の塑性変形に追従して連続塗膜のまま伸びるが、塗膜伸びに伴ってAl−Zn合金めっき層13を下地鋼11に押し付ける方向の圧縮力Fが働く(図3)。圧縮力Fが加えられる条件下でAl−Zn合金めっき層13が曲げ応力を受けるため、曲げ応力がめっき層13全体で受け止められ、Znリッチ相/Alリッチ相の界面への応力集中が緩和される。その結果、めっき層13の亀裂発生が抑制される。仮に、亀裂が発生しても下地鋼11の表面に達する亀裂13c(図2)にまで成長しない。したがって、曲げ加工後にも亀裂を介した下地鋼11の露出がなく、Al−Zn合金めっき層13本来の優れた防食機能が維持される。
【0008】
表層塗膜14の伸び率,塗膜強度がAl−Zn合金めっき層の亀裂抑制に有効であるとの推論で、塗膜伸び率,塗膜強度と亀裂抑制との関係を調査・検討した結果、塗膜伸び率を100%以上に調整すると180度曲げによっても曲げ部外側で表層塗膜14が破断せず、塗膜を100%伸ばした状態で塗膜幅10mm当り引張荷重が1N以上の塗膜強度に調整するときめっき層13の亀裂が効果的に抑制されることが判った。
【0009】
塗膜伸び率は一般的に樹脂のガラス転温度Tgに応じて異なり、ガラス転温度Tgが低いほど高い伸び率を示す。ガラス転温度Tgの低いポリエステルをベース樹脂に使用しているウレタン塗膜では、300%に達する伸び率を呈するものもある。しかし、ガラス転温度Tgが低い表層塗膜であっても、塗膜強度が低いと成形時にAl−Zn合金めっき層を拘束する圧縮力Fが不足する。そこで、ウレタン塗料ではガラス転温度Tgの低いポリエステルとガラス転温度Tgの高いポリエステルとの配合によってガラス転温度Tgを好ましくは5〜15℃の範囲に調整し、塗膜伸び率,塗膜強度をバランスさせる。
【0010】
ガラス転温度Tgの高いポリエステルの配合は、塗膜伸び率を低下させるものの、100%以上の塗膜伸び率を確保することは容易であり、亀裂抑制に有効な圧縮力Fが加工時に得られる。硬質ポリエステルは、表層塗膜を硬質化し耐疵付き性,耐候性の向上にも有効である。
具体的には、ガラス転温度Tgの低いポリエステル樹脂とイソシアネート硬化剤からなるウレタン塗料から成膜される塗膜は、ガラス転温度Tgの高いポリエステル樹脂の配合量で塗膜性状を調整でき(表1)、膜厚によっても塗膜伸び率,塗膜強度を調整できる(表2)。また、ガラス転温度Tgの高いポリエステル樹脂を25質量%配合したウレタン塗膜では、塗膜の伸びと共に引張荷重が増し二次曲線関係になる。塗膜の伸びと共に引張荷重が高くなる傾向は熱硬化型樹脂の特徴であり、高分子ポリエステル等、他の熱硬化型樹脂でも同様である。引張荷重と塗膜伸びの二次関数的な関係は、塗膜伸びに伴って分子密度が上昇して塗膜が硬質化することに起因するものと推察される。
【0011】

Figure 0004102176
【0012】
Figure 0004102176
【0013】
【実施の形態】
本発明で塗装原板に使用するAl−Zn合金めっき鋼板は、Al含有量:50〜60質量%のAl−Zn合金めっき層が鋼板表面に形成されているめっき鋼板である。Al−Zn合金めっき層は、優れた耐食性を付与するものの、硬質粒子,軟質粒子が混在した金属組織のため加工等の際に亀裂が発生しやすい。加工性に劣る欠点は、Al−Zn合金めっき層上に塗膜伸び率の高いウレタン,高分子ポリエステル等の表層塗膜を設けることにより改善できる。
【0014】
塗膜伸び率の高い熱硬化型樹脂としては、ウレタン,高分子ポリエステルが挙げられる。
ウレタンは、ポリエステルをイソシアネートで架橋したイソシアネート硬化型ポリエステル樹脂である。主樹脂となるポリエステルは、分子量が高すぎると耐候性が劣るので、数平均分子量が3000〜1000の範囲にある低ポリエステル,中ポリエステルが好ましい。
高分子ポリエステルは、ポリエステルをメラミンで架橋した樹脂であり、数平均分子量1000〜20000の範囲にあるものが好ましい。高分子ポリエステルの伸び率,塗膜強度は、主樹脂単体の構造をコントロールし、或いは伸び率が異なる樹脂を配合することによって調整される。ただし、分子構造や硬化剤によって若干の変化があるものの分子量の高いポリエステル樹脂ほど耐候性が劣るので、耐食性,耐候性が要求される外装建材としての用途を考慮するとウレタン樹脂の方が好ましい。
【0015】
表層塗膜の伸び率,強度は、塗料樹脂組成物のガラス転温度Tg,膜厚によって調整できる。ガラス転温度Tgが異なる複数のポリエステル樹脂から塗膜の主樹脂を調製する際に各ポリエステル樹脂の配合量にガラス転温度Tgを調整でき、それに応じて塗膜伸び率,塗膜強度も調整できる。なお、塗膜の伸び率は、破断するまで塗膜を引っ張ったときの伸びを当初の塗膜長さに対する割合で示す。
たとえば、ガラス転温度Tgの低いポリエステル樹脂の配合量が多くなるほど伸び率が向上し,ガラス転温度Tgの高いポリエステル樹脂の配合量が多くなるほど塗膜強度が向上する。具体的には、ウレタン塗料に硬質ポリエステルを配合した系では、ガラス転温度Tgの高いポリエステルの増量に応じて軟化開始温度が高くなるが、50質量%の高ガラス転温度Tgのポリエステルを配合した場合でも塗膜伸び率100%以上で、塗膜を100%伸ばしたときの引張荷重1N以上を確保できる(表1)。また、表層塗膜を厚膜化することによっても、塗膜伸び率100%以上,引張荷重1N以上が達成される(表2)。
【0016】
表層塗膜の伸び率を100%以上,引張荷重を1N以上に調整するとき、塗装鋼板を高加工しても表層塗膜が破断することなく、しかも表層塗膜によってAl−Zn合金めっき層に圧縮力Fが加えられるためZnリッチ相/Alリッチ相の界面に集中する応力が緩和される。その結果、後述の実施例でも明らかなように、Al−Zn合金めっき層に亀裂が発生しがたく、仮に亀裂が発生した場合でもめっき層の表層に留まり下地鋼に達する亀裂とならない。他方、伸び率が100%に達しない塗膜では、曲げ部外側等、高度の加工を受けた部位で塗膜破断が生じやすく、加工後の塗膜性状が劣化する。塗膜強度が引張荷重1N未満では、加工時にめっき層が受ける圧縮力Fが不足し、Znリッチ相/Alリッチ相の界面を起点とする亀裂が下地鋼に達するまで成長しやすくなる。
【0017】
なお、表層塗膜の形成に先立って、必要に応じて塗装原板に塗装前処理を施し、下塗り塗膜,中塗り塗膜等を形成することもできる。塗装前処理としては、たとえばアルカリ脱脂→湯洗→水洗→乾燥→塗布型クロメート処理→乾燥の工程が採られる。腐食雰囲気に曝される外装建材としての用途では、エポキシ,ポリエステル等の下塗り塗膜を設けることが好ましく、長期耐久性の上ではエポキシ樹脂が下塗り塗膜のベース樹脂に使用される。更に長期耐久性,耐疵付き性等を改善するため、中塗り塗膜を設ける場合もある。中塗りには、ウレタン、高分子ポリエステル等をベースとする塗料が使用される。
【0018】
【実施例1】
片面当りめっき付着量75g/m2でAl:55質量%を含むAl−Zn合金めっき層が形成された板厚0.5mmの溶融Al−Zn合金めっき鋼板をゼンジミア方式の連続溶融めっきラインで製造した。
Al−Zn合金めっき鋼板をアルカリ脱脂した後、湯洗,水洗により洗浄し、乾燥した。次いで、塗布型クロメート処理液(サーフコートNRC300NS:日本ペイント株式会社製)をロールコーターで塗布し、100℃で乾燥させ、全Cr付着量:40mg/m2のクロメート皮膜を形成した。
【0019】
クロメート皮膜の上に、クロム酸ストロンチウムを不揮発分にして25質量%配合したエポキシ又はポリエステル系樹脂の下塗り塗料を塗装し、210℃で乾燥・焼付けすることにより、プライマ塗膜を形成した。
更に、プライマ塗膜の上にウレタン系の熱硬化型樹脂塗料を塗布し、100%以上の塗膜伸び率,引張荷重(オートグラフを用い遊離塗膜を100%伸ばしたときの荷重を塗膜幅10mm当りで示した値)1N以上が得られる乾燥膜厚の表層塗膜を形成した(本発明例1〜8)。熱硬化性樹脂塗料にガラス転温度Tgの高いポリエステルを配合することにより、表層塗膜の強度を調整した。
比較のため、同様なクロメート皮膜,エポキシ又はポリエステル樹脂系下塗り塗膜を形成した後、伸び率が100%に達しない乾燥膜厚の表層塗膜(比較例1〜)及び引張荷重1N未満の表層塗膜(比較例〜6)を設けた塗装鋼板を用意した。
【0020】
Figure 0004102176
【0021】
各塗装鋼板から試験片を切り出し、加工性試験及び加工部耐食性試験に供した。
〔加工性試験〕
サイズ50mm×50mmの試験片を使用し、試験片の圧延方向と直角に試験面を外にして直径2mmの棒の回りに約1秒かけて180度折り曲げた。折曲げに際し、曲げ部内側に試験片と同じ厚さの板を所定枚数挟み込み、万力を用いて急速に締め付けた。曲げ部内側に何も挟み込まずに締め付けたものを0T曲げ(密着曲げ)、同じ厚さの板をn枚挟み込んで締め付けたものをnT曲げとした。曲げ部外側にある塗膜を倍率20倍の視野で観察し、割れが検出できなかった塗膜を◎,軽微な割れが発生した塗膜を○,中程度の割れが発生した塗膜を△,著しい亀裂が発生した塗膜を×として加工性を評価した。
【0022】
〔加工部耐食性試験〕
圧延方向と直交方向に50mm,平行方向に20mmの長さで塗装めっき鋼板から切り出した試験片を使用し、加工性試験と同様な方法で0T曲げ及び2T曲げ加工した後、切断端面及び裏面を塗料で補修した。幅65mm,高さ150mmの樹脂板の面に対して垂直,幅方向に対して平行に試験片をシリコーン系接着剤で貼り付け、試験サンプルを用意した。
試験サンプルを1000時間の塩水噴霧試験(JIS K−5600−7−1)に供し、錆及び膨れの発生を評価した。白錆発生が検出されなかった加工部を◎、加工部全長さに対して白錆の発生率が10%以下を○,10〜30%を△,30%を超える白錆が発生した加工部を×として加工部の耐白錆性を評価した。塗膜膨れが発生していない加工部を◎,加工部全長さに対して膨れの発生率が10%以下を○,10〜30%を△,30%を超えるフクレが発生した加工部を×として加工部の耐膨れ性を評価した。
【0023】
表4の調査結果にみられるように、本発明例1〜8の塗装めっき鋼板は、加工性及び加工部耐食性共に優れ、加工試験後の塗膜割れや加工部耐食性試験後の白錆,塗膜膨れ等が検出されなかった。この結果から、溶融Al−Zn合金めっき鋼板を基材とし、伸び率100%以上,引張荷重1N以上の表層塗膜を形成することにより、高加工を受けた部位でも塗膜破断やめっき層の亀裂がなく、優れた加工部耐食性を呈した。
【0024】
他方、塗膜伸び率100%未満の表層塗膜を形成した比較例1〜4の塗装めっき鋼板では、塗膜伸び率に応じて若干の差があるものの、0T曲げ加工部,2T曲げ加工部何れも塗膜が破断していた。塗膜強度が引張荷重1N未満の表層塗膜を形成した比較例5〜6の塗装めっき鋼板では、下地鋼に達する亀裂がめっき層に生じており、亀裂を起点とする腐食が検出された。
この対比結果は、伸び率が100%以上,塗膜強度が引張荷重1N以上の表層塗膜を形成することにより加工部の塗膜破断や腐食発生が抑制されることを意味する。
【0025】
Figure 0004102176
【0026】
【実施例2】
実施例1と同じAl−Zn合金めっき鋼板を塗装原板に使用し、エポキシ系プライマ塗膜を介しウレタン塗料の塗布・焼付けで表層塗膜を形成した。ガラス転位温度Tgの高いポリエステルを25質量%配合したウレタン塗料を用い、塗布量の調整により表層塗膜の乾燥膜厚を5〜35μmの間で変化させた。
得られた塗装鋼板を実施例1と同様に0T曲げ加工した後、曲げ部外側の断面を観察した。図5〜9の観察結果にみられるように、表層塗膜の厚膜化に応じてAl−Zn合金めっき層の亀裂が少なくなっており、下地鋼に達する亀裂が膜厚25μmで大幅に低減し、膜厚35μmでほぼ皆無となった。膜厚25μm以上は、表2から伸び率100%以上,引張荷重1N以上の表層塗膜であることが判る。
【0027】
【発明の効果】
以上に説明したように、塗膜伸びが率100%以上,塗膜強度が引張荷重1N以上の表層塗膜をAl−Zn合金めっき鋼板の表面に設けた塗装鋼板では、高加工しても塗膜破断が生じることなく加工後にも良好な表面状態の塗膜が維持される。しかも、加工時に基材の塑性変形に追従する表層塗膜によって圧縮力がAl−Zn合金めっき層に加えられるため、Znリッチ相/Alリッチ相の界面に集中しがちな応力が緩和され、めっき層の亀裂も抑制される。その結果、加工後においても美麗な表面が維持され、Al−Zn合金めっき層本来の優れた耐食性を呈する製品として広範な分野で使用される。
【図面の簡単な説明】
【図1】 塗装Al−Zn合金めっき鋼板を曲げ加工した曲げ部断面の模式図
【図2】 めっき層に亀裂が発生した塗装Al−Zn合金めっき鋼板の曲げ部断面の模式図
【図3】 亀裂発生が表層塗膜の圧縮力で抑えられることを説明する模式図
【図4】 ウレタン塗膜の伸び率と引張荷重との関係を示すグラフ
【図5】 エポキシプライマ塗膜の上に膜厚5μmのウレタン塗膜を設けた塗装Al−Zn合金めっき鋼板の0T曲げ部断面を示す顕微鏡写真
【図6】 エポキシプライマ塗膜の上に膜厚10μmのウレタン塗膜を設けた塗装Al−Zn合金めっき鋼板の0T曲げ部断面を示す顕微鏡写真
【図7】 エポキシプライマ塗膜の上に膜厚15μmのウレタン塗膜を設けた塗装Al−Zn合金めっき鋼板の0T曲げ部断面を示す顕微鏡写真
【図8】 エポキシプライマ塗膜の上に膜厚25μmのウレタン塗膜を設けた塗装Al−Zn合金めっき鋼板の0T曲げ部断面を示す顕微鏡写真
【図9】 エポキシプライマ塗膜の上に膜厚30μmのウレタン塗膜を設けた塗装Al−Zn合金めっき鋼板の0T曲げ部断面を示す顕微鏡写真
【符号の説明】
10:Al−Zn合金めっき鋼板 11:下地鋼 12:塗膜 13:Al−Zn合金めっき層 13a:軟質Znリッチ相 13b:硬質Alリッチ相 13c:めっき層の亀裂 14:表層塗膜[0001]
[Industrial application fields]
The present invention relates to a coated steel sheet that can suppress cracks that tend to occur in an Al—Zn alloy plated layer by processing with a coating film and that can utilize the excellent corrosion resistance of the Al—Zn alloy plated steel sheet.
[0002]
[Prior art and problems]
The Al-Zn alloy-plated steel sheet has heat resistance, corrosion resistance derived from Al, and sacrificial anticorrosive action derived from Zn, and exhibits corrosion resistance several times to several tens of times without coating compared to conventional hot-dip Zn-plated steel sheets. . Utilizing excellent corrosion resistance, some are used as building materials, such as roofing materials and wall materials, without being painted or after being painted with beauty.
Although the Al-Zn alloy plating layer exhibits excellent corrosion resistance, it has a heterogeneous structure in which a soft Zn-rich phase and a hard Al-rich phase are mixed, so stress is applied to the interface between the Zn-rich phase and the Al-rich phase. Easy to concentrate. For this reason, when an Al—Zn alloy-plated steel sheet is processed, cracks starting from the interface of the Zn-rich phase / Al-rich phase are generated, and the underlying steel exposed through the cracks is easily corroded.
Although heat treatment for homogenizing the plating layer (Japanese Patent Laid-Open No. 9-316618) can prevent cracking to some extent, the sacrificial anticorrosive action of the Zn-rich phase is impaired in the homogenized plating layer, and the corrosion resistance may deteriorate. .
[0003]
[Means for Solving the Problems]
The present invention is a coated steel sheet that prevents cracking of the plating layer that tends to occur during processing by improving the surface coating film provided on the surface of the steel sheet without impairing the heterogeneous structure effective for excellent corrosion resistance, and improves the corrosion resistance of the processed part The purpose is to provide.
[0004]
In order to achieve the purpose of the coated steel sheet of the present invention, Al: Zn alloy-plated steel sheet containing Al: 50 to 60% by mass is used as a base material, and at least the surface coating film of the coating film provided on the base material surface has an elongation percentage. The thermosetting resin coating film is characterized in that the tensile load when stretched by 100% or more or 100% is 1 N or more per 10 mm of the coating film width.
The surface coating, but may also be used polymers such as polyester, film strength of more than the film thickness 25μm with enhanced urethane coating film formulation of high glass transition temperature Tg polyesters are preferable, requests exterior building materials Light resistance can be imparted.
[0005]
[Action]
When a plated steel sheet with an Al-Zn alloy plating layer composed of a mixed structure of a hard Al-rich phase and a soft Zn-rich phase is subjected to bending or deep drawing, stress is applied to the Zn-rich phase / Al-rich phase interface. Concentrate and crack. As the bending curvature and the drawing ratio increase, the crack width increases, and the exposed area of the base steel through the crack increases. The present inventors considered the crack generation mechanism of the processed Al—Zn alloy plating layer, and came up with the idea of using the elongation and strength of the surface coating film in order to achieve stress dispersion and stress relaxation. It is presumed that the crack of the Al—Zn alloy plating layer is suppressed by the stretched and strong surface coating as follows.
[0006]
For example, when the Al—Zn alloy-plated steel sheet 10 is bent, the coating film 12 extends along the plastic deformation of the base steel 11 at the bent portion (FIG. 1). The coating film 12 with a small elongation rate may break without being able to follow the plastic deformation of the base steel 11, but the coating film 12 with a large elongation sufficiently follows the plastic deformation of the base steel 11 and is continuous even after bending. The base steel 11 is covered as a coating film. On the other hand, in the Al—Zn alloy plating layer 13 between the base steel 11 and the coating film 12, stress concentrates at the interface between the soft Zn-rich phase 13a and the hard Al-rich phase 13b, and a crack 13c is generated at the interface. (FIG. 2). The width of the crack 13c increases toward the outer side of the bent portion where the degree of processing is larger.
[0007]
The surface coating film 14 having a high elongation rate and coating strength formed on the Al—Zn alloy plating layer 13 follows the plastic deformation of the base steel 11 during bending and extends as a continuous coating film. Along with this, a compressive force F acts in the direction of pressing the Al—Zn alloy plating layer 13 against the base steel 11 (FIG. 3). Since the Al—Zn alloy plating layer 13 receives bending stress under the condition where the compressive force F is applied, the bending stress is received by the entire plating layer 13 and stress concentration at the interface between the Zn rich phase / Al rich phase is relaxed. The As a result, the occurrence of cracks in the plating layer 13 is suppressed. Even if a crack occurs, it does not grow to the crack 13c (FIG. 2) reaching the surface of the base steel 11. Therefore, the base steel 11 is not exposed through the crack even after bending, and the original excellent anticorrosion function of the Al—Zn alloy plating layer 13 is maintained.
[0008]
The result of investigating and examining the relationship between the elongation rate of coating film, coating strength, and crack suppression, inferring that the elongation rate and coating strength of surface coating film 14 are effective for crack suppression of Al-Zn alloy plating layer When the elongation percentage of the coating film is adjusted to 100% or more, the surface coating film 14 does not break outside the bent portion even by 180-degree bending, and the tensile load is 1 N or more per 10 mm coating film width in a state where the coating film is stretched 100%. It has been found that cracks in the plating layer 13 are effectively suppressed when adjusting the coating strength.
[0009]
Coating growth rate generally depends on the glass transition temperature Tg of the resin, showing a high elongation lower the glass transition temperature Tg. The urethane coating having a low glass transition temperature Tg polyesters are used in the base resin, some exhibit elongation reaches 300%. However, the glass transition temperature Tg is a lower surface layer coating, the compressive force F is insufficient coating film strength to restrain the lower the Al-Zn alloy plating layer at the time of molding. Therefore, preferably the glass transition temperature Tg by blending with high low polyester and glass transition temperature Tg of the glass transition temperature Tg polyester urethane paint was adjusted in the range of 5 to 15 ° C., the coating film elongation coating Balance film strength.
[0010]
Blending the high glass transition temperature Tg polyester, although lowering the coating film elongation, it is easy to secure a coating film elongation above 100%, resulting effective compressive force to crack suppression F is in processing It is done. Hard polyester hardens the surface coating film and is effective in improving wrinkle resistance and weather resistance.
Specifically, the coating film is formed from a urethane coating consisting of lower polyester resins and isocyanate curing agent glass transition temperature Tg can adjust the coating properties by the amount of high polyester resin glass transition temperature Tg (Table 1) The coating film elongation rate and the coating film strength can also be adjusted by the film thickness (Table 2). Further, the urethane coating formulated with higher polyester resin glass transition temperature Tg 25 wt%, a tensile load along with elongation of the coating film is increased becomes quadratic curve relation. The tendency for the tensile load to increase with the elongation of the coating film is a characteristic of thermosetting resins, and the same applies to other thermosetting resins such as polymer polyesters. It is inferred that the quadratic function relationship between the tensile load and the coating film elongation is caused by the molecular density increasing with the coating film elongation and the coating film becoming hard.
[0011]
Figure 0004102176
[0012]
Figure 0004102176
[0013]
Embodiment
The Al—Zn alloy-plated steel sheet used for the coating original sheet in the present invention is a plated steel sheet in which an Al—Zn alloy plating layer having an Al content of 50 to 60% by mass is formed on the steel sheet surface. Although the Al—Zn alloy plating layer imparts excellent corrosion resistance, cracks are likely to occur during processing or the like because of the metal structure in which hard particles and soft particles are mixed. The disadvantage of being inferior in workability can be improved by providing a surface coating film such as urethane or polymer polyester having a high coating film elongation on the Al—Zn alloy plating layer.
[0014]
Examples of the thermosetting resin having a high coating film elongation include urethane and polymer polyester.
Urethane is an isocyanate curable polyester resin obtained by crosslinking polyester with isocyanate. Since the polyester used as the main resin has poor weather resistance when the molecular weight is too high, low polyesters and medium polyesters having a number average molecular weight in the range of 3000 to 1000 are preferred.
The high molecular polyester is a resin obtained by crosslinking polyester with melamine, and preferably has a number average molecular weight of 1000 to 20000. The elongation rate and coating film strength of the polymer polyester are adjusted by controlling the structure of the main resin alone or by blending resins having different elongation rates. However, although the weather resistance of a polyester resin having a higher molecular weight is inferior in spite of slight changes depending on the molecular structure and curing agent, the urethane resin is more preferable in consideration of the use as an exterior building material that requires corrosion resistance and weather resistance.
[0015]
Elongation of the surface layer coating film strength can be adjusted glass transition temperature Tg of the coating resin composition, the film thickness. The amount of the polyester resin in the glass transition temperature Tg to prepare a main resin of the coating from different polyester resins can adjust the glass transition temperature Tg, the coating film elongation accordingly, the coating film strength Can be adjusted. In addition, the elongation rate of a coating film shows elongation when a coating film is pulled until it fractures, as a ratio with respect to the initial coating film length.
For example, it improved as the elongation amount of low polyester resin glass transition temperature Tg is increased, thereby improving the film strength as the amount of high polyester resin glass transition temperature Tg is increased. Specifically, in a system obtained by blending hard polyester urethane coating, although initial softening temperature becomes higher in accordance with increase of the high glass transition temperature Tg polyester, 50% by weight of polyester high glass transition temperature Tg Even if it mix | blends, with the coating-film elongation rate of 100% or more, the tensile load of 1 N or more when a coating film is extended 100% is securable (Table 1). Further, by increasing the thickness of the surface coating film, a coating film elongation of 100% or more and a tensile load of 1 N or more can be achieved (Table 2).
[0016]
When adjusting the elongation rate of the surface coating film to 100% or more and the tensile load to 1N or more, the surface coating film does not break even when the coated steel sheet is processed to a high degree, and the surface coating film forms an Al-Zn alloy plating layer. Since the compressive force F is applied, the stress concentrated on the interface between the Zn rich phase / Al rich phase is relieved. As a result, as will be apparent from the examples described later, cracks hardly occur in the Al—Zn alloy plating layer, and even if cracks occur, they remain on the surface of the plating layer and do not reach the base steel. On the other hand, in a coating film whose elongation does not reach 100%, coating film breakage is likely to occur at sites that have undergone a high degree of processing, such as the outside of the bent portion, and the coating film properties after processing deteriorate. When the coating film strength is less than 1 N tensile load, the compressive force F received by the plating layer during processing is insufficient, and cracks starting from the Zn-rich phase / Al-rich phase interface tend to grow until reaching the base steel.
[0017]
Prior to the formation of the surface coating film, a coating pre-treatment can be applied to the coating original plate as necessary to form an undercoating film, an intermediate coating film, or the like. As the pretreatment for coating, for example, a process of alkaline degreasing → washing with water → washing with water → drying → coating chromate treatment → drying is employed. For use as an exterior building material exposed to a corrosive atmosphere, it is preferable to provide an undercoat film such as epoxy or polyester, and epoxy resin is used as the base resin of the undercoat film for long-term durability. Furthermore, in order to improve long-term durability, scratch resistance, etc., an intermediate coating film may be provided. For the intermediate coating, a paint based on urethane, polymer polyester or the like is used.
[0018]
[Example 1]
Manufactured a 0.5 mm thick hot-dip Al-Zn alloy-plated steel sheet with an Al-Zn alloy plating layer containing Al: 55 mass% at a coating weight of 75 g / m 2 per side on a Sendzimir type continuous hot-dip plating line did.
The Al-Zn alloy-plated steel sheet was degreased with alkali, washed with hot water and water, and dried. Next, a coating type chromate treatment solution (Surfcoat NRC300NS: manufactured by Nippon Paint Co., Ltd.) was applied with a roll coater and dried at 100 ° C. to form a chromate film with a total Cr adhesion amount of 40 mg / m 2 .
[0019]
On the chromate film, an undercoat paint of epoxy or polyester resin containing 25% by mass of strontium chromate in a nonvolatile content was applied, dried and baked at 210 ° C. to form a primer film.
Furthermore, a urethane-based thermosetting resin coating is applied on the primer coating, and the coating elongation is 100% or more and the tensile load (the load when the free coating is extended 100% using an autograph is applied to the coating. A value shown per width of 10 mm) A surface coating film having a dry film thickness of 1 N or more was formed (Invention Examples 1 to 8). By blending high glass transition temperature Tg polyester thermosetting resin coating material was adjust the intensity of the surface coating.
For comparison, after forming a similar chromate film, epoxy or polyester resin-based undercoat film, the surface layer film (Comparative Examples 1 to 4 ) having a dry film thickness that does not reach 100% and a tensile load of less than 1 N The coated steel plate which provided the surface layer coating film (Comparative Examples 5-6 ) was prepared.
[0020]
Figure 0004102176
[0021]
A test piece was cut out from each coated steel sheet and subjected to a workability test and a processed part corrosion resistance test.
[Workability test]
A test piece having a size of 50 mm × 50 mm was used, and the test surface was perpendicular to the rolling direction of the test piece, and the test piece was bent 180 degrees around a 2 mm diameter rod for about 1 second. In bending, a predetermined number of plates having the same thickness as the test piece were sandwiched inside the bent portion and fastened using a vise. What was clamped without pinching anything inside the bent part was 0T bend (contact bend), and what was clamped by sandwiching n sheets of the same thickness was called nT bend. Observe the coating film on the outside of the bending part with a field of view of 20 times magnification, ◎ for coatings where cracks could not be detected, ○ for coatings with minor cracks, and △ for coatings with moderate cracks The workability was evaluated with x indicating a coating film in which significant cracks occurred.
[0022]
[Processed part corrosion resistance test]
Using a test piece cut from a coated steel sheet with a length of 50 mm in the direction perpendicular to the rolling direction and 20 mm in the parallel direction, and after 0T bending and 2T bending by the same method as the workability test, Repaired with paint. A test sample was prepared by attaching a test piece with a silicone adhesive in a direction perpendicular to the surface of a resin plate having a width of 65 mm and a height of 150 mm and parallel to the width direction.
The test sample was subjected to a 1000 hour salt spray test (JIS K-5600-7-1) to evaluate the occurrence of rust and blistering. Machining parts where no white rust was detected were marked with ◎, white rust occurrence rate was 10% or less, and 10-30% was marked with respect to the total length of the machining area, and machining areas with white rust exceeding 30%. The white rust resistance of the processed part was evaluated as x. ◎ for processed parts with no coating bulging, ○ for bulging occurrence rate of 10% or less, △ for 10-30%, and processed part with over 30% bulge The blistering resistance of the processed part was evaluated.
[0023]
As can be seen from the investigation results in Table 4, the coated plated steel sheets of Examples 1 to 8 of the present invention are excellent in both workability and processed part corrosion resistance, and are coated with cracks after processing test and white rust and coated after processed part corrosion resistance test. Film swelling or the like was not detected. From this result, by using a molten Al-Zn alloy-plated steel sheet as a base material and forming a surface coating film having an elongation of 100% or more and a tensile load of 1 N or more, the coating film breakage or the plating layer can be obtained even at sites subjected to high processing. There was no crack, and excellent corrosion resistance of the processed part was exhibited.
[0024]
On the other hand, in the coated plated steel sheets of Comparative Examples 1 to 4 in which a surface coating film having a coating film elongation rate of less than 100% was formed, although there was a slight difference depending on the coating film elongation rate, the 0T bending part and the 2T bending part In all cases, the coating film was broken. In the coated plated steel sheets of Comparative Examples 5 to 6 in which the coating film strength formed a surface coating film having a tensile load of less than 1 N, cracks reaching the base steel occurred in the plated layer, and corrosion starting from the cracks was detected.
This comparison result means that the formation of a surface coating film having an elongation of 100% or more and a coating film strength of 1 N or more of tensile load suppresses coating film breakage and corrosion occurrence in the processed part.
[0025]
Figure 0004102176
[0026]
[Example 2]
The same Al—Zn alloy-plated steel plate as in Example 1 was used as a coating original plate, and a surface coating film was formed by applying and baking a urethane coating through an epoxy primer coating. A urethane coating containing 25% by mass of polyester having a high glass transition temperature Tg was used, and the dry film thickness of the surface coating film was changed between 5 and 35 μm by adjusting the coating amount.
The obtained coated steel sheet was subjected to 0T bending in the same manner as in Example 1, and then the cross section outside the bent portion was observed. As can be seen from the observation results in FIGS. 5 to 9, cracks in the Al—Zn alloy plating layer are reduced according to the increase in the thickness of the surface coating film, and the crack reaching the base steel is greatly reduced at a film thickness of 25 μm. However, almost no film was formed at a film thickness of 35 μm. It can be seen from Table 2 that a film thickness of 25 μm or more is a surface coating film having an elongation of 100% or more and a tensile load of 1 N or more.
[0027]
【The invention's effect】
As explained above, the coated steel sheet provided with a surface coating film on the surface of the Al-Zn alloy-plated steel sheet having a coating film elongation rate of 100% or more and a coating strength of 1N or more is applied even if it is highly processed. A film having a good surface state is maintained even after processing without film breakage. Moreover, since a compressive force is applied to the Al-Zn alloy plating layer by the surface layer coating that follows the plastic deformation of the base material during processing, the stress that tends to concentrate at the interface between the Zn-rich phase / Al-rich phase is alleviated, and plating Layer cracking is also suppressed. As a result, a beautiful surface is maintained even after processing, and the product is used in a wide range of fields as a product exhibiting excellent corrosion resistance inherent to the Al—Zn alloy plating layer.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross section of a bent portion obtained by bending a coated Al—Zn alloy plated steel sheet. FIG. 2 is a schematic diagram of a cross section of a bent portion of a coated Al—Zn alloy plated steel sheet in which a crack is generated in a plating layer. Schematic diagram explaining that crack generation is suppressed by the compressive force of the surface coating film. [FIG. 4] A graph showing the relationship between the elongation percentage of the urethane coating film and the tensile load. [FIG. 5] Film thickness on the epoxy primer coating film. Micrograph showing cross section of 0T bend of coated Al-Zn alloy plated steel sheet provided with 5 μm urethane coating. [FIG. 6] Painted Al—Zn alloy provided with 10 μm thick urethane coating on epoxy primer coating. Micrograph showing a 0T bend section of a plated steel sheet. [Fig. 7] Micrograph showing a 0T bend section of a coated Al-Zn alloy-plated steel sheet having a 15 μm thick urethane coating on an epoxy primer coating. 8] Micrograph showing cross section of 0T bending part of coated Al-Zn alloy plated steel sheet with 25μm thick urethane coating on Poxy Primer coating. [Fig.9] 30μm thick urethane coating on epoxy primer coating. Micrograph showing cross section of 0T bending part of coated Al-Zn alloy plated steel sheet
DESCRIPTION OF SYMBOLS 10: Al-Zn alloy plating steel plate 11: Base steel 12: Coating film 13: Al-Zn alloy plating layer 13a: Soft Zn rich phase 13b: Hard Al rich phase 13c: Crack of plating layer 14: Surface coating film

Claims (1)

Al:50〜60質量%を含むAl−Zn合金めっき鋼板を基材とし、基材表面に設けた塗膜の少なくとも表層塗膜が、ガラス転移温度Tgの高いポリエステルとガラス転移温度T g の低いポリエステルとが配合されたポリエステル成分が反応したウレタン塗膜であり、そのガラス転移温度T g は5〜15℃の範囲に調整され、かつ、膜厚25μm以上で、伸び率100%以上、100%伸ばしたときの引張荷重が塗膜幅10mm当り1N以上であることを特徴とする加工部耐食性に優れた塗装鋼板。Al: an Al-Zn alloy-plated steel substrates comprising 50-60 wt%, at least a surface layer coating of the coating film provided on the substrate surface, low high polyester and glass transition temperature T g glass transition temperature Tg a urethane coating polyester component and the polyester is blended has reacted, the glass transition temperature the T g is adjusted to a range of 5 to 15 ° C., and a thickness of 25μm or more, elongation of 100% or more, 100% painted steel sheet excellent in processability portion corrosion resistance and a tensile load when stretched is coating width 10mm per 1N than on.
JP2002353481A 2002-12-05 2002-12-05 Painted steel sheet with excellent corrosion resistance Expired - Lifetime JP4102176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353481A JP4102176B2 (en) 2002-12-05 2002-12-05 Painted steel sheet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353481A JP4102176B2 (en) 2002-12-05 2002-12-05 Painted steel sheet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2004181860A JP2004181860A (en) 2004-07-02
JP4102176B2 true JP4102176B2 (en) 2008-06-18

Family

ID=32754763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353481A Expired - Lifetime JP4102176B2 (en) 2002-12-05 2002-12-05 Painted steel sheet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4102176B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931673B2 (en) * 2007-04-05 2012-05-16 日新製鋼株式会社 Painted steel sheet with excellent corrosion resistance
JP5398161B2 (en) * 2008-03-31 2014-01-29 日新製鋼株式会社 Clear painted steel plate with excellent corrosion resistance
CN114250408B (en) * 2020-09-21 2023-02-28 上海梅山钢铁股份有限公司 Hot-dip aluminum-zinc embossed steel plate with yield strength of 280MPa and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004181860A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JPH0374908B2 (en)
KR910002492B1 (en) Highly corrosion-resistant multi-layer coated steel sheets
JP4931673B2 (en) Painted steel sheet with excellent corrosion resistance
JP2007002288A (en) Plated steel sheet for coating substrate, method for producing the same, and coated steel sheet
JP4102176B2 (en) Painted steel sheet with excellent corrosion resistance
KR102081372B1 (en) Coated steel sheet having high corrosion resistance and method for manufacturing the same
JP2002047579A (en) Surface-treated metallic material excellent in black appearance
JPH11156999A (en) Matte coated metallic sheet having excellent resistance to film scoring
JPH06128713A (en) Production of coated aluminum plated steel sheet excellent in corrosion resistance and workability
JP3963683B2 (en) Aqueous surface treatment agent for plated metal plate, surface treated metal plate and method for producing the same
JP4916467B2 (en) Painted stainless steel sheet for roof and exterior and its manufacturing method
JP3856183B2 (en) High hardness transparent fluororesin coated stainless steel sheet and manufacturing method
JP4125950B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP2020019152A (en) Coated metal plate
JP6880296B2 (en) Coated galvanized steel sheet
JP6880297B2 (en) Coated galvanized steel sheet
JPH11129388A (en) Precoating metal plate with excellent flaw resistance, processability and durability, and its manufacture
JP6772943B2 (en) Painted steel plate
JP2003277903A (en) Precoated galvanized steel sheet having excellent workability and corrosion resistance of worked portion
JP2000017223A (en) Fluororesin coating material and precoated metal sheet
JP3603601B2 (en) Method for producing hot-dip Al-Zn-based alloy-plated steel sheet having excellent crack resistance and corrosion resistance
JPH0815583B2 (en) Pre-coated steel sheet excellent in workability and corrosion resistance and method for producing the same
KR100550832B1 (en) A thin, water-borne, high-corrosion resisting organic coating material to be coated and adhered polyethylene foam, polystylene foam, and polyurethane foam in zinc/zinc-aluminum coated steel sheet, and method for producing the said coated steel sheets therewith
JP2696466B2 (en) Organic composite coated steel sheet
JP2004197166A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250