JP4101898B2 - Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide - Google Patents

Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide Download PDF

Info

Publication number
JP4101898B2
JP4101898B2 JP02073097A JP2073097A JP4101898B2 JP 4101898 B2 JP4101898 B2 JP 4101898B2 JP 02073097 A JP02073097 A JP 02073097A JP 2073097 A JP2073097 A JP 2073097A JP 4101898 B2 JP4101898 B2 JP 4101898B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
mesh
particle size
fractionated
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02073097A
Other languages
Japanese (ja)
Other versions
JPH09268015A (en
Inventor
俊氏 小島
和明 藤田
Original Assignee
ノバルティスアニマルヘルス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノバルティスアニマルヘルス株式会社 filed Critical ノバルティスアニマルヘルス株式会社
Priority to JP02073097A priority Critical patent/JP4101898B2/en
Publication of JPH09268015A publication Critical patent/JPH09268015A/en
Application granted granted Critical
Publication of JP4101898B2 publication Critical patent/JP4101898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本願発明は、化成二酸化マンガン(以下、CMDと略称する)、その製法及び該CMDを酸化剤として用いる酸化方法に関する。
【0002】
【従来の技術】
最近、乾電池用の二酸化マンガンが酸化剤としても優れた性能を有することが注目され、その用途としても広く使用されている。それらは、電解二酸化マンガン(lectrolic anganese ioxide、以下、EMDと略称する)と化成二酸化マンガン(CMD)とに大別される。
【0003】
EMDは天然の炭酸マンガン鉱石又は天然の二酸化マンガン鉱石を800〜1100℃で焙焼して得られた酸化マンガン(MnO)微粉末を希硫酸に溶解して得た硫酸マンガン溶液を電気分解することにより得られる。現在日本で生産されたEMDのほとんどが乾電池用として用いられ、330メッシュに分画した粒度の小さな製品が市販されている。EMDの結晶は単結晶であり、結晶構造が扁平なγ−タイプであることが特徴である。
【0004】
CMD(hemical anganese ioxide)は、化学的に合成された二酸化マンガンである。天然の二酸化マンガンを400乃至800℃で低温焙焼して得られた三二酸化マンガン(Mn23 )を400メッシュに微粉砕後、反応容器内で希硫酸水溶液と混合攪拌すると、三二酸化マンガン中の酸化マンガンは硫酸水溶液に溶解して除かれるので二酸化マンガンが不溶解結晶として得られる。この結晶を分画することなく水洗、乾燥することによって得られる。
【0005】
この硫酸による酸化マンガン(MnO)の溶解=浸出は不均化反応と呼ばれることから、CMDの製造法は不均化法という名称もつけられている。
【0006】
現在日本で生産されたCMDは殆どが400メッシュに分画され乾電池用として市販されいる。
【0007】
上述したように、EMD及びCMDは乾電池用のみに用途及び製造が限られているため、他の有用な用途又は製造法の開発が要望されている。
【0008】
本願発明は、新規なCMD、その製法及び該CMDを酸化剤として用いる酸化方法の開発に関する。
【0009】
本発明のCMDは種々の工業的な酸化反応に使用され得るが、例えば、ミルベマイシン類の5位の水酸基の酸化反応が挙げられる。
【0010】
乾電池用のEMDがミルベマイシンの5位の水酸基を酸化して中間体として重要な5−オキソミルベマイシンを得る方法において、酸化剤として優れた活性を有することが特開平1−197487号公報に開示されている。
【0011】
また、CMDが、いくつかの天然物の合成の際のアリルアルコール等の酸化反応に乾電池用CMDを使用している[テトラヘドロンレターズ 第33巻、4187−4190頁(1992年)。テトラへドロン 第48巻、No.357251−7264頁(1992年)]。
【0012】
これらの乾電池用の二酸化マンガンによる酸化は、少量の粒度の小さな二酸化マンガンと基質を溶解した溶媒をコルベン等の反応容器中で撹拌することよって行われている。しかし、この方法では、少し反応容器の規模が大きくしたり、工業的な反応釜を使用したりすると、攪拌に伴う攪拌羽根の破損、反応物の取出しや濾過の際の処理の困難等の問題が生じ、別の反応方法の開発が望まれていた。そこで、乾電池用の二酸化マンガンをカラムに詰め、基質を溶解した溶媒を循環する方法が上記問題を解決する方法として考えられたが、カラムに詰める二酸化マンガンの乾電池用のように粒度が小さいと溶媒が良好に循環しないという問題があり、これらの問題を解決する方法が望まれていた。
【0013】
【発明が解決しようとする課題】
上述の状況から、本願発明が解決しようとする課題は、カラムに詰めるための適当な粒度を持ち、強力な酸化作用を有する二酸化マンガン及びその製造法を見いだすことである。
【0014】
【課題を解決する手段】
課題を解決するために種々に二酸化マンガンについて研究した結果、本願発明者等は新規に70乃至36メッシュ又は36乃至16メッシに分画した粒度の大きなCMDがカラムに詰める二酸化マンガンとして適当であり、かつ強力な酸化作用を有することを見いだし、また、それらの製造法を確立し本発明を完成した。
【0015】
即ち、本願発明は、新規な粒度を有し、かつ強力な酸化作用を有する新規なCMDに及び乾電池用CMD製造法を改良した該CMDの製造法に関する。
【0016】
以下に詳細に説明する。
【0017】
ここで、上記の400メッシュに分画された乾電池用のCMDはCMD1 と称する。
【0018】
本願発明の70乃至36メッシュ又は36乃至16メッシュに分画された大粒の二酸化マンガンのうち、36乃至16メッシュのCMDは天然の二酸化マンガンを上記と同温度で低温焙焼して得られた三二酸化マンガン(Mn23 )を32乃至10メッシュに分画してカラムに充填し、希硫酸水溶液をカラムの上部又は下部から循環すると、酸化マンガンが溶解して除かれ、二酸化マンガンのみが残存する。水洗、乾燥後36乃至16メッシュに分画することによって得られる。70乃至36メッシュに分画されたCMDは62乃至32メッシュに分画された三二酸化マンガンを上記と同条件で処理して得られる。このようにして得られたCMDをCMD2 と称する。
【0019】
CMD1 とCMD2 の差異は、CMD2 にあっては最終粒度が70乃至36メッシュ又は36乃至16メッシュになるよう、焙焼工程直後に分画操作を挿入し、しかも不均化反応以降の最終段階で再び分画操作を挿入していることである。また、反応容器がCMD1 の場合は回分式機械攪拌式であり、CMD2 はカラム方式であることである。
【0020】
カラムに適当な粒度の二酸化マンガンを充填し、基質を溶解した溶媒を循環することによる酸化反応において、基質として一般式(I)で表されるマクロライド抗生物質ミルベマイシン類を出発物質とする5−オキソミルベマイシン誘導体を製造する酸化反応を例として用い、二酸化マンガンの好適な粒度の選択及び酸化作用の評価を行った。
【0021】
【化1】

Figure 0004101898
【0022】
上記式において、RがメチルのときミルベマイシンA3 、Rがエチル基のときミルベマイシンA4 、イソプロピルのときミルベマイシンDと称される重要なミルベマイシン類である。
【0023】
【発明の実施の形態】
本願発明の実施方法は、70乃至36メッシュ、36乃至16メッシュに分画したCMDを詰めたカラムに基質を溶解した溶媒を循環させることにより実施される。
基質として使用されるミルベマイシン類は、精製したミルベマイシン類の単一物又は混合物が用いられる。例えば、特開平1−197487号公報に開示された方法で精製して得られたミルベマイシンA3 +A4 混合物又は醗酵ブロスから抽出した粗ミルベマイシンA3 +A4 混合物を再結晶やシリカゲルカラムクロマトグラフィーで精製したミルベマイシンA3 +A4 混合物が用いられる。
【0024】
反応温度は、一般に−10乃至50℃の範囲で行われるが、好適には、0乃至10℃であり、特に好適には0乃至5℃である。
【0025】
溶媒は、アセトン、メチルエチルケトンのようなケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフランのようなエーテル類;塩化メチレンのようなハロゲン化炭化水素;酢酸エチルのようなエステル類が用いられ、好適には、ハロゲン化炭化水素であり、更に好適には、塩化メチレンである。
【0026】
二酸化マンガンの使用量は、基質の2乃至20倍重量であり得、好適には、5乃至10倍重量である。
【0027】
二酸化マンガンの粒度は、70乃至36メッシュ、36乃至16メッシュであり、好適には、36乃至16メッシュである。
【0028】
【実施例】
【0029】
【実施例1】
36乃至16メッシュに分画したCMD 2 の製造
内径(φ)30cm×高さ160cmのカラム反応槽に32乃至10メッシュに分画した三二酸化マンガン(Mn23 )65kg及び水110kgを入れ、別途、水90kgを入れた貯水槽より水をカラム反応槽の下部より供給しながら循環させる。カラム反応槽を80乃至90℃に加温し30分循環後、80乃至90℃加温下に硫酸を加え2規定硫酸水溶液に調整し、3時間循環後、更に硫酸を加え4規定硫酸水溶液に調整後3時間循環し、反応を終了する。生成した硫酸マンガン水溶液を除去後、水洗し、水洗液を除去する。次いでアンモニア水を循環させ、pH=5〜6に中和後、アンモニア水を除去する。残留二酸化マンガン(CMD2 )をカラム反応槽より取り出し乾燥すると31kgの36−16メッシュに分画したCMD2 が得られる。
【0030】
【実施例2】
70乃至36メッシュに分画したCMD 2 の製造
実施例1と同一反応条件下で反応を行い、62乃至32ッシュに分画した三二酸化マンガン(Mn23 )65kgから31kgの70乃至36メッシュに分画したCMD2 が得られる。
【0031】
【実施例3】
カラムに詰める二酸化マンガン粒度の決定
カラムに詰める二酸化マンガン粒度の決定は、一定粒度の二酸化マンガンを積めたカラムに基質を溶解すべき溶媒を通過させて得られる、以下の1)及び2)を求め、それらの数値より決定した。
【0032】
1)U;カラム内の溶媒の平均流速。1秒間当たりのカラム内の流量をカラムの断面積で除した値。
2)1時間当たりカラムを通過する溶媒の容積が二酸化マンガンの容積量の10倍であることを目安としている。そのとき必要な二酸化マンガンの圧力損失(そのときのカラムにかかる圧力)。△p(SV=10)
数値が小さい程好適である。
【0033】
その結果を表1に示す。
【0034】
粒度の小さな400又は330メッシュのCMD又はEMDでは△p(SV=10)が大きな圧力(6.3及び7.9)かかっていることが判る。従って、反応に用いるには不適であると判断した。また、70乃至36又は36乃至20メッシュのCMDでは△p(SV=10)が小さな圧力(約0.6又は0.1)しかかかっていないことが判る。
【0035】
【表1】
Figure 0004101898
【0036】
【実施例4】
[最適な5−オキソミルベマイシンの製造に置ける二酸化マンガンの粒度の選択]
内径2cmφ、長さ25cmのカラムに50gの二酸化マンガンを詰め、ミルベマイシンA3 及びミルベマイシンA4 混合物(含量比=2:8)10gを塩化メチレン100mlに溶解し分液ロートに入れる。該分液ロートをカラムに接続し、溶液を一定速度でカラムを通過させ、酸化反応を行った。収率は、反応液の経時的なサンプリングを行い高速液体クロマトグラフィーにより求めた。標品は特開昭63−22541号公報に開示されたものを使用した。収率がそれ以上に上昇しない時点を反応の終点とし、終点における収率及び途中の反応収率も求め表2に表した。 反応開始より反応の終点までの時間が短いほど酸化力(酸化活性)が強く、時間が長いほど弱いことを示す。反応開始より反応の終点までの時間の長短により酸化力を評価した。この結果より、
【0037】
【表2】
Figure 0004101898
【0038】
結果:400メッシュに分画されたCMD及びEMDは溶媒が通過しにくいため、反応が進まず有意な収率が得られなかった。また、70乃至36マッシュ、又は36乃至16メッシュに分画されたCMDはEMDに比較して優れた酸化作用を有することが判明した。
【0039】
【実施例5】
5−オキソミルベマイシンの製造
36乃至20メッシュに調製したCMD2 、30kgを内径22cm高さ150cmのカラム反応槽に詰め、ミルベマイシンA3 及びミルベマイシンA4 混合物(含量比=2:8)6kgを塩化メチレン65kgに溶解した溶液を、0〜10℃に冷却下に、上部より注入し循環させた。経時的収率を液体クロマトグラフィーにより求め、99.7%を示した時点(4.5時間後)で反応を止めると、5−オキソミルベマイシン誘導体5.65kg(収率94%)が得られた。
【0040】
【発明の効果】
カラムに酸化剤として二酸化マンガンを充填し、基質を溶解した溶媒を循環することによる酸化反応において、本願発明の新規な方法で製造した70乃至36メッシュ又は36乃至16メッシュに分画したCMDは優れた酸化作用を示し、カラム充填用として適当であり、工業的規模で使用可能であることを確認した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to chemical manganese dioxide (hereinafter abbreviated as CMD), a production method thereof, and an oxidation method using the CMD as an oxidizing agent.
[0002]
[Prior art]
Recently, it has been noted that manganese dioxide for dry batteries has excellent performance as an oxidizing agent, and is widely used as its application. They electrolytic manganese dioxide (E lectrolic M anganese D ioxide, hereinafter, EMD as abbreviated) is roughly classified into a chemical manganese dioxide (CMD).
[0003]
EMD electrolyzes a manganese sulfate solution obtained by dissolving manganese oxide (MnO) fine powder obtained by roasting natural manganese carbonate ore or natural manganese dioxide ore at 800-1100 ° C. in dilute sulfuric acid. Is obtained. Currently, most of the EMDs produced in Japan are used for dry batteries, and products with a small particle size fractionated to 330 mesh are commercially available. The EMD crystal is a single crystal, and is characterized by a flat γ-type crystal structure.
[0004]
CMD (C hemical M anganese D ioxide ) is chemically synthesized manganese dioxide. Manganese sesquioxide (Mn 2 O 3 ) obtained by low-temperature roasting of natural manganese dioxide at 400 to 800 ° C. is finely pulverized to 400 mesh and mixed with a dilute sulfuric acid aqueous solution in a reaction vessel. The manganese oxide therein is dissolved and removed in an aqueous sulfuric acid solution, so that manganese dioxide is obtained as an insoluble crystal. This crystal can be obtained by washing with water and drying without fractionation.
[0005]
Since dissolution of the manganese oxide (MnO) with sulfuric acid = leaching is called a disproportionation reaction, the manufacturing method of CMD is also named as a disproportionation method.
[0006]
Currently, most CMDs produced in Japan are fractionated to 400 mesh and are commercially available for dry batteries.
[0007]
As described above, since EMD and CMD are limited in use and production only for dry batteries, development of other useful uses or production methods is desired.
[0008]
The present invention relates to the development of a novel CMD, its production method and an oxidation method using the CMD as an oxidizing agent.
[0009]
The CMD of the present invention can be used for various industrial oxidation reactions, and examples thereof include an oxidation reaction of the hydroxyl group at the 5-position of milbemycins.
[0010]
JP-A-1-197487 discloses that an EMD for a dry battery has an excellent activity as an oxidizing agent in a method for obtaining 5-oxomilbemycin which is important as an intermediate by oxidizing the hydroxyl group at the 5-position of milbemycin. Yes.
[0011]
In addition, CMD uses dry cell CMD for oxidation reaction of allyl alcohol or the like in the synthesis of some natural products [Tetrahedron Letters 33, 4187-4190 (1992). Tetrahedron Vol. 48, No. 357251-7264 (1992)].
[0012]
Oxidation with manganese dioxide for these dry batteries is carried out by stirring a small amount of small manganese dioxide and a solvent in which a substrate is dissolved in a reaction vessel such as Kolben. However, with this method, if the reaction vessel is slightly larger in scale or an industrial reaction kettle is used, problems such as breakage of the stirring blades during stirring, difficulty in processing during removal of the reactants and filtration, etc. Therefore, development of another reaction method has been desired. Therefore, a method of packing manganese dioxide for dry batteries in a column and circulating a solvent in which the substrate was dissolved was considered as a method for solving the above problem. However, if the particle size is small as in the case of dry batteries of manganese dioxide packed in a column, the solvent However, there has been a problem of not circulating well, and a method for solving these problems has been desired.
[0013]
[Problems to be solved by the invention]
From the above situation, the problem to be solved by the present invention is to find manganese dioxide having an appropriate particle size for packing in a column and having a strong oxidizing action, and a method for producing the same.
[0014]
[Means for solving the problems]
As a result of various studies on manganese dioxide in order to solve the problem, the inventors of the present application are suitable as manganese dioxide newly packed in a column with CMD having a large particle size fractionated to 70 to 36 mesh or 36 to 16 mesh, In addition, they have been found to have a strong oxidizing action, and their production method has been established to complete the present invention.
[0015]
That is, the present invention relates to a novel CMD having a novel particle size and a strong oxidizing action, and a method for producing the CMD obtained by improving the CMD production method for dry batteries.
[0016]
This will be described in detail below.
[0017]
Here, the CMD for dry batteries fractionated into 400 mesh is referred to as CMD 1 .
[0018]
Of the large-sized manganese dioxide fractionated into 70 to 36 mesh or 36 to 16 mesh of the present invention, 36 to 16 mesh CMD is obtained by low temperature roasting of natural manganese dioxide at the same temperature as above. Manganese dioxide (Mn 2 O 3 ) is fractionated to 32 to 10 mesh and packed into a column. When dilute sulfuric acid aqueous solution is circulated from the top or bottom of the column, manganese oxide is dissolved and removed, leaving only manganese dioxide. To do. After washing and drying, it is obtained by fractionation to 36 to 16 mesh. CMD fractionated to 70 to 36 mesh is obtained by treating manganese trioxide fractionated to 62 to 32 mesh under the same conditions as described above. The CMD obtained in this manner is referred to as CMD 2.
[0019]
The difference between CMD 1 and CMD 2 is that in CMD 2 a fractionation operation is inserted immediately after the roasting process so that the final particle size is 70 to 36 mesh or 36 to 16 mesh, and after the disproportionation reaction That is, the fractionation operation is inserted again at the final stage. When the reaction vessel is CMD 1 , it is a batch type mechanical stirring type, and CMD 2 is a column type.
[0020]
In the oxidation reaction by filling the column with manganese dioxide of an appropriate particle size and circulating a solvent in which the substrate is dissolved, the starting material is a macrolide antibiotic milbemycin represented by the general formula (I) as a substrate. Using an oxidation reaction for producing an oxomilbemycin derivative as an example, selection of a suitable particle size of manganese dioxide and evaluation of oxidation action were performed.
[0021]
[Chemical 1]
Figure 0004101898
[0022]
In the above formula, these are important milbemycins called milbemycin A 3 when R is methyl, milbemycin A 4 when R is ethyl, and milbemycin D when R is isopropyl.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention is carried out by circulating a solvent in which a substrate is dissolved in a column packed with CMD fractionated into 70 to 36 mesh and 36 to 16 mesh.
As the milbemycins used as the substrate, a single or a mixture of purified milbemycins is used. For example, a milbemycin A 3 + A 4 mixture obtained by purification by the method disclosed in JP-A-1-197487 or a crude milbemycin A 3 + A 4 mixture extracted from a fermentation broth is purified by recrystallization or silica gel column chromatography. A milbemycin A 3 + A 4 mixture is used.
[0024]
The reaction temperature is generally in the range of −10 to 50 ° C., preferably 0 to 10 ° C., particularly preferably 0 to 5 ° C.
[0025]
Solvents include ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; halogenated hydrocarbons such as methylene chloride; esters such as ethyl acetate; Hydrocarbon, more preferably methylene chloride.
[0026]
The amount of manganese dioxide used can be 2 to 20 times the weight of the substrate, preferably 5 to 10 times the weight.
[0027]
The particle size of manganese dioxide is 70 to 36 mesh, 36 to 16 mesh, and preferably 36 to 16 mesh.
[0028]
【Example】
[0029]
[Example 1]
CMD 2 fractionated to 36-16 mesh Production of 65 kg of manganese trioxide (Mn 2 O 3 ) and 110 kg of water fractionated into 32 to 10 mesh in a column reaction vessel having an inner diameter (φ) of 30 cm × height of 160 cm, and separately added 90 kg of water. The water is circulated while supplying water from the lower part of the column reaction tank. Heat the column reaction vessel to 80 to 90 ° C and circulate for 30 minutes, then add sulfuric acid under heating at 80 to 90 ° C to adjust to 2N sulfuric acid aqueous solution. After adjustment, the mixture is circulated for 3 hours to complete the reaction. After removing the produced manganese sulfate aqueous solution, it is washed with water to remove the water washing solution. Next, aqueous ammonia is circulated, and after neutralizing to pH = 5-6, the aqueous ammonia is removed. Residual manganese dioxide (CMD 2 ) is removed from the column reactor and dried to obtain 31 kg of CMD 2 fractionated into 36-16 mesh.
[0030]
[Example 2]
CMD 2 fractionated to 70-36 mesh Production of CMD 2 which was reacted under the same reaction conditions as in Example 1 and fractionated from 65 kg of manganese sesquioxide (Mn 2 O 3 ) into 62 to 32 ash to 31 kg of 70 to 36 mesh. Is obtained.
[0031]
[Example 3]
Determination of the manganese dioxide particle size packed in the column The determination of the manganese dioxide particle size packed in the column is obtained by passing a solvent in which the substrate is dissolved through a column loaded with manganese dioxide of a certain particle size, the following 1) and 2) was determined and determined from these values.
[0032]
1) U; Average flow rate of solvent in the column. Value obtained by dividing the flow rate in the column per second by the cross-sectional area of the column.
2) As a guide, the volume of solvent passing through the column per hour is 10 times the volume of manganese dioxide. Pressure loss of manganese dioxide required at that time (pressure applied to the column at that time). Δp (SV = 10)
The smaller the value, the better.
[0033]
The results are shown in Table 1.
[0034]
It can be seen that Δp (SV = 10) is applied with a large pressure (6.3 and 7.9) in CMD or EMD having a small particle size of 400 or 330 mesh. Therefore, it was judged to be unsuitable for use in the reaction. Further, it can be seen that in a CMD of 70 to 36 or 36 to 20 mesh, Δp (SV = 10) is only applied with a small pressure (about 0.6 or 0.1).
[0035]
[Table 1]
Figure 0004101898
[0036]
[Example 4]
[Selection of Manganese Dioxide Particle Size for Optimal 5-Oxomilbemycin Production]
A column having an inner diameter of 2 cmφ and a length of 25 cm is packed with 50 g of manganese dioxide, and 10 g of a mixture of milbemycin A 3 and milbemycin A 4 (content ratio = 2: 8) is dissolved in 100 ml of methylene chloride and placed in a separatory funnel. The separatory funnel was connected to the column, and the solution was passed through the column at a constant speed to carry out an oxidation reaction. The yield was determined by high performance liquid chromatography after sampling the reaction solution over time. As the sample, one disclosed in JP-A-63-22541 was used. The time point at which the yield did not increase any more was taken as the end point of the reaction, and the yield at the end point and the reaction yield in the middle were also calculated and shown in Table 2. The shorter the time from the start of the reaction to the end of the reaction, the stronger the oxidizing power (oxidation activity), and the longer the time, the weaker. The oxidizing power was evaluated by the length of time from the start of the reaction to the end point of the reaction. From this result,
[0037]
[Table 2]
Figure 0004101898
[0038]
Result: Since CMD and EMD fractionated into 400 meshes hardly pass through the solvent, the reaction did not proceed and a significant yield was not obtained. Further, it was found that CMD fractionated into 70 to 36 mash or 36 to 16 mesh has an excellent oxidizing action as compared with EMD.
[0039]
[Example 5]
Production of 5-oxomilbemycin 30 kg of CMD 2 prepared to 36 to 20 mesh was packed in a column reaction tank having an inner diameter of 22 cm and a height of 150 cm, and 6 kg of a mixture of milbemycin A 3 and milbemycin A 4 (content ratio = 2: 8) was added to methylene chloride. The solution dissolved in 65 kg was injected and circulated from the top while cooling to 0 to 10 ° C. The yield over time was determined by liquid chromatography, and when the reaction was stopped at 99.7% (after 4.5 hours), 5.65 kg of 5-oxomilbemycin derivative (yield 94%) was obtained. .
[0040]
【The invention's effect】
The CMD fractionated into 70 to 36 mesh or 36 to 16 mesh produced by the novel method of the present invention is excellent in the oxidation reaction by filling the column with manganese dioxide as the oxidizing agent and circulating the solvent in which the substrate is dissolved. It was confirmed that it is suitable for column packing and can be used on an industrial scale.

Claims (9)

天然の二酸化マンガン(MnO)鉱石を400℃乃至800℃の範囲で、焙焼した後、62乃至10メッシュの任意の粒度に分画した三二酸化マンガン(Mn)をカラムに充填し、希硫酸水溶液をカラムの上部又は下部から循環することによって酸化マンガン(MnO)を溶解して除いた後、生成した残存二酸化マンガンを70乃至16メッシュの任意の粒度に分画することを特徴とする、6kg以上の基質を溶媒に溶解した溶液を循環させることによる、工業的規模の基質の酸化反応に酸化剤として用いられる化成二酸化マンガンの製造方法。After natural manganese dioxide (MnO 2 ) ore is roasted in the range of 400 ° C. to 800 ° C., manganese trioxide (Mn 2 O 3 ) fractionated to an arbitrary particle size of 62 to 10 mesh is packed into the column. In addition, manganese oxide (MnO) is dissolved and removed by circulating a dilute sulfuric acid aqueous solution from the upper part or the lower part of the column, and then the generated residual manganese dioxide is fractionated to an arbitrary particle size of 70 to 16 mesh. A method for producing chemical manganese dioxide used as an oxidizing agent in an oxidation reaction of a substrate on an industrial scale by circulating a solution in which a substrate of 6 kg or more is dissolved in a solvent . 天然の二酸化マンガン(MnO )鉱石を焙焼した後、62乃至32メッシュの粒度に分画した三二酸化マンガン(Mn)をカラムに充填し、希硫酸水溶液によって酸化マンガン(MnO)を溶解して除いた後、生成した残存二酸化マンガンを70乃至36メッシュの粒度に分画する、請求項1記載の化成二酸化マンガンの製造方法。 After roasting natural manganese dioxide (MnO 2 ) ore, manganese trioxide (Mn 2 O 3 ) fractionated to a particle size of 62 to 32 mesh is packed into the column, and manganese oxide (MnO) is added with dilute sulfuric acid aqueous solution. The method for producing chemical manganese dioxide according to claim 1, wherein after the dissolution and removal, the produced residual manganese dioxide is fractionated to a particle size of 70 to 36 mesh. 天然の二酸化マンガン(MnO )鉱石を焙焼した後、32乃至10メッシュ粒度に分画した三二酸化マンガン(Mn)をカラムに充填し、希硫酸水溶液によって酸化マンガン(MnO)を溶解して除いた後、生成した残存二酸化マンガンの粒度を36乃至16メッシュの粒度に分画する、請求項1記載の化成二酸化マンガンの製造方法。 After roasting natural manganese dioxide (MnO 2 ) ore , the column is filled with manganese trioxide (Mn 2 O 3 ) fractionated to 32 to 10 mesh particle size, and manganese oxide (MnO) is dissolved by dilute sulfuric acid aqueous solution The method for producing chemical manganese dioxide according to claim 1, wherein after the removal, the particle size of the produced residual manganese dioxide is fractionated to a particle size of 36 to 16 mesh. 請求項1記載の化成二酸化マンガンをカラムに充填することを特徴とする、6kg以上の基質を溶媒に溶解した溶液を循環させることによる、工業的規模の基質の酸化方法。 A method for oxidizing a substrate on an industrial scale by circulating a solution obtained by dissolving 6 kg or more of a substrate in a solvent, wherein the column is filled with the chemical manganese dioxide according to claim 1 . 化成二酸化マンガンが70乃至36メッシュの粒度に分画された化成二酸化マンガンである、請求項4記載の酸化方法。 Chemical manganese dioxide is fractionated chemical manganese dioxide to 70 to 36 mesh particle size, according to claim 4 oxidation process according. 化成二酸化マンガンが36乃至16メッシュの粒度に分画された化成二酸化マンガンである、請求項4記載の酸化方法。 Chemical manganese dioxide is fractionated chemical manganese dioxide to 36 to 16 mesh particle size, according to claim 4 oxidation process according. 基質がミルベマイシン類である、請求項4乃至6のいずれか一項記載の酸化方法。 The oxidation method according to any one of claims 4 to 6, wherein the substrate is milbemycins. ミルベマイシン類がミルベマイシンA及びA混合物である、請求項7記載の酸化方法。Milbemycins are milbemycin A 3 and A 4 mixture, oxidizing method of claim 7 wherein. 請求項7又は8記載の酸化方法を製造工程に含むことを特徴とする、5−オキソミルベマイシン誘導体の製造方法 Characterized by comprising an oxidation process according to claim 7 or 8, wherein the production process, the production method of 5-oxo-milbemycin derivatives.
JP02073097A 1996-02-02 1997-02-03 Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide Expired - Fee Related JP4101898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02073097A JP4101898B2 (en) 1996-02-02 1997-02-03 Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1731396 1996-02-02
JP8-17313 1996-06-13
JP02073097A JP4101898B2 (en) 1996-02-02 1997-02-03 Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide

Publications (2)

Publication Number Publication Date
JPH09268015A JPH09268015A (en) 1997-10-14
JP4101898B2 true JP4101898B2 (en) 2008-06-18

Family

ID=26353812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02073097A Expired - Fee Related JP4101898B2 (en) 1996-02-02 1997-02-03 Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide

Country Status (1)

Country Link
JP (1) JP4101898B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586481B (en) * 2018-05-14 2020-03-24 浙江海正药业股份有限公司 Extraction and crystallization process of 5-keto-milbemycin fermentation liquor

Also Published As

Publication number Publication date
JPH09268015A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
CN112390841B (en) Purification method of progesterone
CN106632288A (en) Method for preparing empagliflozin
CN113214128A (en) Preparation method of small-particle-size benzoyl peroxide
CN109232470A (en) A kind of new process synthesizing ainothiazoly loximate
JP4101898B2 (en) Method for producing novel chemical conversion manganese dioxide useful as oxidizing agent and method for oxidizing substrate using chemical conversion manganese dioxide
CN110452284B (en) Preparation method of 28-high brassinolide
US3965178A (en) Method for preparing tetrabutylammonium bromide
CN106928260A (en) A kind of double-core caged rare earth samarium (III) organic coordination compound and its preparation method and application
CN105753733A (en) AHU377 crystal form and preparation method and uses thereof
CN103819489B (en) A kind of preparation method of benzhydryl s-oxopenicillanate
CN108822047B (en) Synthesis method of natural 2-acetylpyrazine
CN107573301B (en) Preparation method of tricyclazole intermediate
CN109970834A (en) A kind of preparation method of hydrocortisone sodium succinate
CN111690824A (en) Titanium-tungsten-containing raw material acidolysis titanium extraction and method for acidolysis titanium extraction of titanium-containing raw material
CN218530890U (en) Preparation system containing compound with double disulfide structure
US3959453A (en) Method for manufacture of single crystals β-PbO2 and slender single crystals of β-PbO2 produced thereby
KR19980042700A (en) Method for preparing ruthenium (III) acetate solution
CN111848554B (en) Synthetic method of sofosbuvir intermediate impurity
CN108863839B (en) Alkali metal salt of tetranitraminoethane, preparation method thereof and high-energy material
CN113351255B (en) Co complex catalyst for preparing isobutyric acid by oxidizing isobutyraldehyde and application thereof
CN112940062B (en) Preparation method of 16-dehydroprogesterone
CN110283109B (en) Method for industrially preparing racecadotril
CN107245043A (en) A kind of preparation method that 3 methyl mercapto propyl alcohol are prepared from 3 methylthiopropionaldehydes
CN109796520A (en) A kind of extracting method of Nosiheptide fine work
JPH09301966A (en) Production of glycidyl methacrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070905

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071031

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees