JP4101695B2 - Tool for thermocompression bonding and manufacturing method thereof - Google Patents

Tool for thermocompression bonding and manufacturing method thereof Download PDF

Info

Publication number
JP4101695B2
JP4101695B2 JP2003127700A JP2003127700A JP4101695B2 JP 4101695 B2 JP4101695 B2 JP 4101695B2 JP 2003127700 A JP2003127700 A JP 2003127700A JP 2003127700 A JP2003127700 A JP 2003127700A JP 4101695 B2 JP4101695 B2 JP 4101695B2
Authority
JP
Japan
Prior art keywords
crimping
tool
film
thermocompression bonding
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003127700A
Other languages
Japanese (ja)
Other versions
JP2004335627A (en
Inventor
規充 向江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2003127700A priority Critical patent/JP4101695B2/en
Publication of JP2004335627A publication Critical patent/JP2004335627A/en
Application granted granted Critical
Publication of JP4101695B2 publication Critical patent/JP4101695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、フリップチップと搭載基盤の圧着、液晶ドライバと液晶ガラス板の圧着など加熱圧着を行う際に使用する加熱圧着用ツール及びその製造方法に関し、詳しくは、その圧着面の改良に関するものである。
【0002】
【従来の技術】
加熱圧着用ツールには、圧着面にダイヤモンド膜をコーティングしたものがあるが、従来の加熱圧着用ツールでは、耐熱性樹脂膜を形成したままの状態にて使用するために、平面度が充分でなく、また付着した溶融合金を除去する際の耐摩耗性は向上できるものの、根本原因である溶融合金の付着は防止することができず、加熱圧着用ツールの維持管理費が増大し、不経済なものとなる欠点があった。
また、特許文献1に示すように、圧着ツールの表面にフッ素樹脂コーティングを施して、半田などの溶融金属の付着を防止する技術が開示されている。しかし、コーティングされた圧着面は平面度が充分に高くなく、近年求められている高精度の圧着には不十分である。また、フッ素樹脂コーティング後のフッ素樹脂被膜の表面には、化学的に不安定な反応基を有するので金属溶着の対策を行わないと、半田などの溶融金属の付着を防止するには充分でなく、使用直後より溶着が目立つようになる。
【特許文献1】
特開平07−302818号公報
【0003】
【発明が解決しようとする課題】
本発明は、上記状況に鑑みてなされたもので、圧着面の平面度を上げるとともに、加熱時に半田や樹脂などとの溶着を防いだ加熱圧着用ツール及びその製造方法を提供し、加熱溶融接着の安定化、経済性の向上を図ることを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するための本発明に係る加熱圧着用ツールの構成は、フリップチップ上に配設された接続端子と基板とを接合する加熱圧着用ツールや、液晶ドライバと液晶ガラス板との接合に使用する加熱圧着用ツールなどにおいて、耐熱耐付着性樹脂膜を圧着ツールの圧着面に形成したことを特徴とするものである。本発明に係る加熱圧着用ツールは、シルク印刷技術などを用いて耐熱耐付着性樹脂膜を圧着ツールの圧着面に形成する加熱圧着用ツールであって、塗着したフッ素樹脂またはシリコン樹脂を固化し、その表面に加工を行ったことを特徴とするものである。
耐熱耐付着性の被膜は、溶融金属や樹脂と反応性が極めて小さく濡れない、本発明に示すフッ素樹脂またはシリコン樹脂のいずれかが最も適している。
また、本発明は形成された樹脂の表面を除去していることを特徴とする。除去することにより、被膜形成時の化学的に不安定な被膜表面の付着性反応基が除かれ、他の材料と付着しにくくなり、被膜の面状態を均一にすると共にその平面度を向上させることができる。ツールの平面度は接合加工の精度や、速度に直接影響するために、高ければ高いほどよい。また、被膜表面の除去方法としては水などの冷却媒体を被膜に吹き付けながらの平面研削、平面研磨すれば、付着性の反応基が被膜表面に形成されず好適である。
【0005】
さらに、その皮膜の面粗度は算術平均粗さがRa10μm以下(JIS規格1994年度版)である必要がある。面粗度がこれより粗ければ、被膜と溶融金属、樹脂との接触面積が大きくなり、溶融金属、樹脂が溶融、冷却の際に面の凹凸に合わせて変形して冷却ムラが起こりやすくなる。
【0006】
加熱圧着用ツールでは、圧着面に耐熱性樹脂膜が形成され、溶融金属や樹脂と濡れない性質が圧着作業面に生じることになり、圧着ツールの加熱圧着作業時、溶融金属や樹脂が圧着作業面に付着しなくなる。加熱圧着用ツールの製造方法では、シルク印刷技術を利用することによって、耐熱性樹脂膜が圧着ツールの所定の領域に、均一化された膜厚で形成される。
【0007】
【発明の実施の形態】
本発明の加熱圧着用ツールは表面の少なくとも圧着部にフッ素樹脂もしくはシリコン樹脂の耐熱性樹脂膜を有す。
フッ素樹脂は、ポリエチレンの分子構造における単量体であるエチレンの四つの水素が全部、または三つだけフッ素となるものである。従って、フッ素樹脂には、例えば、PTFE(ポリ4フッ化エチレン)も含まれる。
また、シリコン樹脂は樹脂や溶融金属などの融点以上(使用温度以上)での耐熱性を持つものであれば、その種類は特に問わない。
このように、圧着面にフッ素樹脂からなる耐熱耐付着性樹脂膜が形成された圧着ツールでは、圧着作業面に溶融金属をはじく性質が生じることになり、圧着ツールの加熱圧着作業時、溶融金属や樹脂が圧着作業面に付着しなくなる。
本発明に用いる耐熱耐付着性樹脂膜は、圧着ツール基材にプリント配線板などの製造に用いられるシルク印刷技術によって形成することができる。その後に加熱乾燥を行い固化させることにより、表面にフッ素樹脂を得ることができる。なお、耐熱耐付着性樹脂膜の形成方法としては、上述のシルク印刷技術による他、蒸着によって形成する方法などでであってもよく、その方法は問わない。
また、圧着ツールの基材としては、鉄材、ステンレス材料、窒化珪素、炭化珪素、窒化アルミ、酸化アルミ、酸化珪素など、用途に応じてさまざまな材料から選択することができ、それらを表面にコーティングした材料も同様に好適する。
次に、得られた耐熱耐付着性樹脂被膜表面に加工を加える。加工はダイヤモンド砥石などを用いた研削加工、セラミックスやダイヤモンドの砥粒を用いた砥粒加工などが好適し、その場合の平面度は従来のコーティングのみでは得られなかった圧着面に対して0.1μ以下も可能である。この加工により、本発明の加熱圧着用ツールは充分な平面度を得ることができ、より精密な接合に対応できる。
除去する厚さは0.05μm以上の必要がある。0.05μm未満であれば反応基が表面に残る可能性がある。
また、本発明に示す耐熱耐付着樹脂被膜が圧着面に形成された圧着ツールは、圧着作業面に半田などの溶融金属と濡れない性質が生じることになり、溶融金属が圧着作業面に付着しなくなる。
以下実施例により、より詳細に本発明を説明する。
【0008】
【実施例】
(実施例1)
窒化アルミを主原料とする、フリップチップ用圧着ツールに耐熱耐付着性樹脂被膜として、シルク印刷技術によってPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)膜を形成した。その後に50℃の大気中にて加熱乾燥を行い固化させることにより表面にPFA膜を得ることができた。膜の厚さは約30μmであった。
次に、得られた耐熱耐付着樹脂被膜表面に加工を加えた。加工はカップ形状のダイヤモンド砥石を有す平面研削盤で行い、砥石は#1000番のものを用いた。研削加工後に膜厚を測定したところ、約20μmであった。
この圧着ツールを、フリップチップ用圧着ツールに装着し稼働し、温度を250℃まで上げた状態で加熱圧着したところ、平面度が高いために良好な接合を行うことができた。加熱圧着した面は、算術平均粗さがRa0.3μmであり平面度は圧着面の8mm×8mmの大きさに対して0.02μmであった。また、使用時の半田の溶着も全く起きなかった。
【0009】
(比較例1)
実施例1と同様にして圧着ツール試料を作製し、PFA膜表面の加工は行わなかった。
実施例1と同様の実験を行った結果、面粗さは算術平均粗さRa1.0μmと良好であったが、平面度は22μmであり、圧着面に均等に圧力を加えることはできず、精度の高い圧着はできなかった。
【0010】
(比較例2)
実施例1と同様の試料にPFAの膜を形成していない試料を作製した。
窒化アルミ部の加工により、平面度は0.05μmと優れていたが、接合の際に半田がツールの圧着面に付着し、頻繁に除去する必要が生じた。
【0011】
(比較例3)
実施例1と同様にして圧着ツール試料を作製し、PFA膜表面の加工を高速度鋼製のスローアウェーチップを複数装着したフライス盤にて行なった。
実施例1と同様の実験を行った結果、面粗さは算術平均粗さRa12μmと粗い面であった。圧着面に均等に圧力を加えることはできず、その結果、精度の高い圧着はできなかった。
【0012】
(実施例2)
窒化珪素を主原料とする、液晶ドライバ用圧着ツールに、耐熱耐溶着樹脂被膜としてPTFE(ポリ4フッ化エチレン)の蒸着膜を形成した。その後に80℃の大気中にて加熱乾燥を行い固化させることにより表面にPTFE膜を得ることができた。膜の厚さは約10μmであった。
次に、得られたPTFE膜に加工を加えた。加工は炭化珪素砥粒にて砥粒研削を行った。研削加工後に膜厚を測定したところ、約5μmであった。
この圧着ツールを、液晶ドライバ用圧着ツールとして装着し、温度を265℃まで上げた状態で、液晶ドライバとガラス基板を両者間の半田により加圧圧着したところ、圧着ツール平面度が高いために良好な接合を行うことができた。面粗さは算術平均粗さRa0.6μmと良好であり、また、平面度は圧着面の50mm×3mmの大きさに対して2.0μmとやはり良好であった。
使用時のPTFEの溶着も全く起きなかった。
【0013】
(実施例3)
窒化珪素を主原料とするACF(異方導電性フィルム)貼り付け用圧着ツールに、耐熱耐付着性樹脂被膜としてシリコン樹脂の蒸着膜を形成した。その後に50℃の大気中にて加熱乾燥を行い固化させることにより表面にシリコン樹脂膜を得ることができた。膜の厚さは約10μmであった。
次に、得られたシリコン樹脂膜に加工を加えた。加工は炭化珪素砥粒にて砥粒研削を行った。研削加工後に膜厚を測定したところ、約5μmであった。
この圧着ツールを、ACFをガラス基板に貼り付けるための圧着ツールとして装着し、温度を200℃まで上げた状態で、ACFを融かし、ガラス基板と加熱圧着したところ、平面度が高いために良好な接合を行うことができた。平面度は圧着面の50mm×3mmの大きさに対して2.5μmであった。算術平均粗さはRa0.02μmと良好であり、また、圧着ツールへのACFの溶着も全く起きなかった。
【0014】
【発明の効果】
以上詳細に説明したように、本発明に係る加熱圧着用ツールによれば、平面度が極めて高く、精密な接合が可能であり、また、従来のフッ素樹脂被膜を有する加熱圧着用ツールと比較しても、溶融金属や樹脂が圧着作業面に付着しないので、圧着作業面と半導体素子との平行度が良好であり、押圧力が均一に作用し、加熱溶融接着を安定化させることができる。
この技術は特にフリップチップの基板への接合や、ACFの圧着、液晶ドライバの接合などに好適する。
[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a thermocompression bonding tool used when performing thermocompression bonding such as crimping of a flip chip and a mounting base, and crimping of a liquid crystal driver and a liquid crystal glass plate, and a manufacturing method thereof. is there.
[0002]
[Prior art]
Some thermocompression bonding tools are coated with a diamond film on the crimping surface. However, conventional thermocompression bonding tools are used with the heat resistant resin film still formed, so that the flatness is sufficient. In addition, although the wear resistance when removing the adhered molten alloy can be improved, the adhesion of the molten alloy, which is the root cause, cannot be prevented, and the maintenance cost of the thermocompression bonding tool increases, which is uneconomical. There was a drawback that would be
Moreover, as shown in Patent Document 1, a technique for preventing adhesion of molten metal such as solder by applying a fluororesin coating on the surface of a crimping tool is disclosed. However, the coated crimping surface does not have a sufficiently high flatness, and is insufficient for the highly accurate crimping required in recent years. Also, since the surface of the fluororesin film after coating with fluororesin has chemically unstable reactive groups, it is not sufficient to prevent adhesion of molten metal such as solder without taking measures against metal welding. The welding becomes noticeable immediately after use.
[Patent Document 1]
Japanese Patent Laid-Open No. 07-302818
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a tool for thermocompression bonding that increases the flatness of the crimping surface and prevents welding with solder, resin, etc. during heating, and a method for manufacturing the same, and heat-melt bonding The purpose is to stabilize and improve economic efficiency.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the thermocompression bonding tool according to the present invention is composed of a thermocompression bonding tool for bonding a connection terminal and a substrate disposed on a flip chip, and a bonding between a liquid crystal driver and a liquid crystal glass plate. In the thermocompression bonding tool used in the above, a heat-resistant and adhesion-resistant resin film is formed on the crimping surface of the crimping tool. The thermocompression bonding tool according to the present invention is a thermocompression bonding tool for forming a heat-resistant and adhesion-resistant resin film on the pressure-bonding surface of a crimping tool using a silk printing technique or the like, and solidifies the coated fluororesin or silicon resin. However, the surface is processed.
As the heat-resistant and adhesion-resistant coating, either a fluororesin or a silicon resin shown in the present invention, which is extremely low in reactivity with molten metal and resin and does not wet, is most suitable.
Further, the present invention is characterized in that the surface of the formed resin is removed. By removing, the reactive reactive group on the chemically unstable film surface at the time of film formation is removed, making it difficult to adhere to other materials, making the surface state of the film uniform and improving its flatness be able to. The flatness of the tool has a higher effect because it directly affects the accuracy and speed of the joining process. In addition, as a method for removing the coating surface, it is preferable to perform surface grinding or surface polishing while spraying a cooling medium such as water on the coating, since an adhesive reactive group is not formed on the coating surface.
[0005]
Further, the surface roughness of the film must have an arithmetic average roughness Ra of 10 μm or less (JIS standard 1994 version). If the surface roughness is rougher than this, the contact area between the coating and the molten metal or resin becomes large, and the molten metal or resin melts and deforms in accordance with the unevenness of the surface during cooling, and cooling unevenness is likely to occur. .
[0006]
In the tool for thermocompression bonding, a heat-resistant resin film is formed on the crimping surface, and a property that does not get wet with the molten metal or resin occurs on the crimping work surface. It will not adhere to the surface. In the method for manufacturing a thermocompression bonding tool, a heat-resistant resin film is formed in a predetermined region of the pressure bonding tool with a uniform film thickness by using a silk printing technique.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The thermocompression bonding tool of the present invention has a heat-resistant resin film of fluororesin or silicon resin at least on the surface of the crimping part.
A fluororesin is one in which all or only four hydrogen atoms of ethylene, which is a monomer in the molecular structure of polyethylene, become fluorine. Accordingly, the fluororesin includes, for example, PTFE (polytetrafluoroethylene).
In addition, the type of silicon resin is not particularly limited as long as it has heat resistance above the melting point (use temperature or higher) of resin or molten metal.
In this way, in a crimping tool having a heat-resistant and adhesive resin film made of a fluororesin formed on the crimping surface, a property of repelling the molten metal occurs on the crimping work surface. Or resin does not adhere to the crimping work surface.
The heat-resistant and adhesion-resistant resin film used in the present invention can be formed on a crimping tool base material by a silk printing technique used for manufacturing a printed wiring board or the like. A fluororesin can be obtained on the surface by subsequent heat drying and solidification. In addition, as a formation method of a heat-resistant adhesion-resistant resin film, the method of forming by vapor deposition other than the above silk printing technique may be used, and the method is not ask | required.
In addition, the base material of the crimping tool can be selected from various materials such as iron, stainless steel, silicon nitride, silicon carbide, aluminum nitride, aluminum oxide, and silicon oxide. The materials made are likewise suitable.
Next, processing is applied to the surface of the obtained heat and adhesion resistant resin coating. The processing is preferably grinding using a diamond grindstone or the like, and abrasive processing using ceramics or diamond abrasive grains. The flatness in that case is 0. 1μ or less is also possible. By this processing, the thermocompression bonding tool of the present invention can obtain sufficient flatness and can cope with more precise joining.
The thickness to be removed needs to be 0.05 μm or more. If it is less than 0.05 μm, the reactive group may remain on the surface.
In addition, the crimping tool in which the heat-resistant and anti-adhesive resin coating shown in the present invention is formed on the crimping surface has a property that the crimping work surface does not get wet with molten metal such as solder, and the molten metal adheres to the crimping work surface. Disappear.
Hereinafter, the present invention will be described in more detail by way of examples.
[0008]
【Example】
Example 1
A PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) film was formed as a heat-resistant and adhesion-resistant resin film on a flip-chip crimping tool made mainly of aluminum nitride by a silk printing technique. Then, a PFA film could be obtained on the surface by heating and drying in air at 50 ° C. to solidify. The thickness of the film was about 30 μm.
Next, processing was applied to the surface of the obtained heat and adhesion resistant resin coating. Processing was performed with a surface grinder having a cup-shaped diamond grindstone, and the grindstone # 1000 was used. When the film thickness was measured after grinding, it was about 20 μm.
When this crimping tool was mounted and operated on a flip-chip crimping tool and the temperature was raised to 250 ° C., it was hot-pressed, and because of its high flatness, good bonding could be achieved. The heat-bonded surface had an arithmetic average roughness Ra of 0.3 μm and a flatness of 0.02 μm with respect to the size of 8 mm × 8 mm of the pressure-bonded surface. Also, no solder welding occurred during use.
[0009]
(Comparative Example 1)
A crimping tool sample was prepared in the same manner as in Example 1, and the PFA film surface was not processed.
As a result of conducting the same experiment as in Example 1, the surface roughness was good with an arithmetic average roughness Ra of 1.0 μm, but the flatness was 22 μm, and pressure could not be evenly applied to the pressure-bonding surface. High precision crimping was not possible.
[0010]
(Comparative Example 2)
A sample in which a PFA film was not formed on the same sample as in Example 1 was prepared.
Due to the processing of the aluminum nitride part, the flatness was excellent at 0.05 μm, but the solder adhered to the crimping surface of the tool at the time of joining, and it was necessary to remove it frequently.
[0011]
(Comparative Example 3)
A crimping tool sample was prepared in the same manner as in Example 1, and the PFA film surface was processed on a milling machine equipped with a plurality of high-speed steel throwaway tips.
As a result of conducting the same experiment as in Example 1, the surface roughness was a rough surface with an arithmetic average roughness Ra of 12 μm. Pressure could not be applied evenly to the crimping surface, and as a result, highly precise crimping was not possible.
[0012]
(Example 2)
A vapor-deposited film of PTFE (polytetrafluoroethylene) was formed as a heat-resistant and welding-resistant resin film on a liquid crystal driver crimping tool mainly composed of silicon nitride. Thereafter, a PTFE film could be obtained on the surface by heating and drying in the air at 80 ° C. to solidify. The thickness of the film was about 10 μm.
Next, the obtained PTFE membrane was processed. Processing was performed by abrasive grinding with silicon carbide abrasive grains. When the film thickness was measured after grinding, it was about 5 μm.
When this crimping tool is mounted as a crimping tool for liquid crystal drivers and the temperature is raised to 265 ° C., the liquid crystal driver and the glass substrate are pressure-bonded by soldering between them. Can be joined. The surface roughness was as good as arithmetic average roughness Ra 0.6 μm, and the flatness was as good as 2.0 μm with respect to the size of 50 mm × 3 mm of the pressure-bonding surface.
No PTFE welding occurred during use.
[0013]
(Example 3)
A vapor-deposited film of silicon resin was formed as a heat-resistant and adhesive-resistant resin film on a pressure bonding tool for attaching ACF (anisotropic conductive film) using silicon nitride as a main material. Then, a silicon resin film could be obtained on the surface by heating and drying in the air at 50 ° C. to solidify. The thickness of the film was about 10 μm.
Next, the obtained silicon resin film was processed. Processing was performed by abrasive grinding with silicon carbide abrasive grains. When the film thickness was measured after grinding, it was about 5 μm.
This crimping tool is installed as a crimping tool for attaching ACF to a glass substrate. When the temperature is raised to 200 ° C., the ACF is melted and thermocompression bonded to the glass substrate. Good bonding could be performed. The flatness was 2.5 μm with respect to the size of 50 mm × 3 mm of the crimping surface. The arithmetic average roughness was as good as Ra 0.02 μm, and no ACF was welded to the crimping tool.
[0014]
【The invention's effect】
As described above in detail, according to the thermocompression bonding tool according to the present invention, the flatness is extremely high, precise bonding is possible, and compared with the conventional thermocompression bonding tool having a fluororesin coating. However, since the molten metal or resin does not adhere to the crimping work surface, the parallelism between the crimping work surface and the semiconductor element is good, the pressing force acts uniformly, and the heat-melt adhesion can be stabilized.
This technique is particularly suitable for bonding a flip chip to a substrate, ACF pressure bonding, liquid crystal driver bonding, and the like.

Claims (2)

部品を加熱圧着するための圧着面とその圧着面を加熱するための加熱部とを有する加熱圧着用ツールにおいて、
その圧着面に表面の付着性反応基を有する層が除かれた耐熱耐付着性のフッ素樹脂またはシリコン樹脂のいずれかの皮膜を有し、
その皮膜の算術平均面粗さがRa10μm以下であることを特徴とする加熱圧着用ツール。
And crimping surface for heat pressing the part, the thermocompression bonding tool having a heating portion for heating the bonding surface,
It has a film of either heat-resistant and adhesive-resistant fluorine resin or silicon resin from which the layer having an adhesive reactive group on the surface is removed on its pressure-bonding surface,
A tool for thermocompression bonding, wherein the film has an arithmetic average surface roughness Ra of 10 μm or less.
部品を圧着するための圧着面と、その圧着面を加熱するための加熱部とを有する加熱圧着ツールの圧着面に耐熱耐付着性のフッ素樹脂またはシリコン樹脂を被覆した後、平面研削または平面研磨によりその表面層を少なくとも0.05μm以上除去し、その算術平均面粗さをRa10μm以下にすることを特徴とする加熱圧着用ツールの製造方法。
以上
After heat-resistant and adhesive fluorine resin or silicon resin is coated on the crimping surface of a thermocompression bonding tool having a crimping surface for crimping a component and a heating part for heating the crimping surface, surface grinding or surface polishing The surface layer is removed by at least 0.05 μm or more, and the arithmetic average surface roughness is Ra 10 μm or less.
more than
JP2003127700A 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof Expired - Fee Related JP4101695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127700A JP4101695B2 (en) 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127700A JP4101695B2 (en) 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004335627A JP2004335627A (en) 2004-11-25
JP4101695B2 true JP4101695B2 (en) 2008-06-18

Family

ID=33504105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127700A Expired - Fee Related JP4101695B2 (en) 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4101695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062921A1 (en) * 2022-09-20 2024-03-28 株式会社村田製作所 Press head, press apparatus, semiconductor manufacturing apparatus, and electronic component manufacturing apparatus

Also Published As

Publication number Publication date
JP2004335627A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US7338842B2 (en) Process for exposing solder bumps on an underfill coated semiconductor
US6084775A (en) Heatsink and package structures with fusible release layer
US20080165502A1 (en) Patterned metal thermal interface
WO2012040373A2 (en) Diamond particle mololayer heat spreaders and associated methods
JP6099453B2 (en) Electronic component mounting substrate and manufacturing method thereof
US20090122491A1 (en) Universal patterned metal thermal interface
US20030020159A1 (en) Heat-conducting adhesive compound and a method for producing a heat-conducting adhesive compound
WO2007084572A2 (en) Thermal interconnect and interface systems, methods of production and uses thereof
WO2017188273A1 (en) Ceramic circuit board and method for manufacturing same
US20010016372A1 (en) Mounting method and apparatus of bare chips
US20050250245A1 (en) Semiconductor chip arrangement and method
JP4101695B2 (en) Tool for thermocompression bonding and manufacturing method thereof
US20030071264A1 (en) Method and apparatus for bonding substrates
JPH06283537A (en) Forming method of rough surfaced bump, packaging method of semiconductor device having the bump and semiconductor unit
US6386957B1 (en) Workpiece holder for polishing, method for producing the same, method for polishing workpiece, and polishing apparatus
CN103182853A (en) Thermal head, printer, and method of manufacturing thermal head
US20060261133A1 (en) Method and device for producing a bondable area region on a carrier
JP2002280705A (en) Method of forming circuit on composite substrate and composite substrate
JP2812304B2 (en) Repair method for flip-chip type semiconductor device
CN100423218C (en) Method for gluing a circuit component to a circuit substrate
JP2001131737A (en) Sputtering target and method of grinding
JP4325816B2 (en) IC chip connection method
JP3540864B2 (en) Method of forming fine bumps
CN109454557B (en) Polishing pad dresser and method of manufacturing the same
JPH04115865A (en) Adhesion method for work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees