JP4100933B2 - Highly phosphorescent triphenylene derivative - Google Patents

Highly phosphorescent triphenylene derivative Download PDF

Info

Publication number
JP4100933B2
JP4100933B2 JP2002051024A JP2002051024A JP4100933B2 JP 4100933 B2 JP4100933 B2 JP 4100933B2 JP 2002051024 A JP2002051024 A JP 2002051024A JP 2002051024 A JP2002051024 A JP 2002051024A JP 4100933 B2 JP4100933 B2 JP 4100933B2
Authority
JP
Japan
Prior art keywords
triphenylene
group
triphenylene derivative
derivative
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002051024A
Other languages
Japanese (ja)
Other versions
JP2003252880A (en
Inventor
英之 松本
荘一郎 久新
陵二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002051024A priority Critical patent/JP4100933B2/en
Publication of JP2003252880A publication Critical patent/JP2003252880A/en
Application granted granted Critical
Publication of JP4100933B2 publication Critical patent/JP4100933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、高収率でリン光を発光するトリフェニレン誘導体に関し、より詳細には、アルキルシリル基を有するトリフェニレン誘導体に関する。
【0002】
【従来の技術】
現在までの無機蛍光性物質は粉末状で入手できるのみであり、加工性及び光透過性に乏しいため、透明なフィルム状に成形することは困難であった。高分子バインダーに混和させることにより、加工性は増大するものの、光透過性は乏しい。また、有機蛍光性及びリン光性物質はそのケイ光及びリン光強度が不十分であり、良好な光強度を確保することが困難であった。
有機リン光性物資としてトリフェニレンが知られており、有機ダイオードの感光性物質(特表2001-516150)など様々な用途に用いられている。
【0003】
【発明が解決しようとする課題】
本発明者らは、このようなトリフェニレンを研究する過程において、トリフェニレンの置換基としてアルキルシリル基を導入する合成法を確立し、このようにして合成したアルキルシリル基を有するトリフェニレンが極めて強いリン光を発生することを見出し、本発明を完成させた。このアルキルシリル基を有するトリフェニレンは、従来の強リン光性物質に比べ、リン光の転換率が極めて高く、また有機溶媒に可溶なため、加工性が著しく増大するなどの利点を有することが分かった。
【0004】
【課題を解決するための手段】
本発明者は、分子内にアルキルシリル基を導入したトリフェニレン化合物類が、良好な加工性と極めて高いリン光強度を示すことを見いだした。
即ち、本発明は、トリフェニレン骨格に、一般式−SiR(式中、Rはそれぞれ水素原子、アルキル基、ビニル基又はアリル基を表し、Rのうち少なくとも2個はアルキル基である。)で表されるシリル基を有するトリフェニレン誘導体である。このトリフェニレン誘導体は下式

Figure 0004100933
(式中、R’は前記シリル基を表す。)で表されることが好ましい。
本発明は更に、上記のトリフェニレン誘導体が混入された透明プラスチックであり、この透明プラスチックはフィルム状であることが好ましい。
【0005】
【発明の実施の形態】
本発明のトリフェニレン誘導体は、トリフェニレン骨格に、一般式−SiR(式中、Rはそれぞれ水素原子、アルキル基、ビニル基又はアリル基を表し、Rのうち少なくとも2個はアルキル基である。)で表されるアルキルシリル基を有する。
トリフェニレンを置換するアルキルシリル基の数に制限は無く、1〜12個まで可能であるが、好ましくは6個以下であり、より好ましくは2,3,6,7,10,11位に計6個のアルキルシリル基を有する。
アルキルシリル基は、一般式−SiRで表され、このRは、それぞれ同じであっても異なってもよく、水素原子、アルキル原子、ビニル基、又はアリル基であるが、このケイ素に結合する3個のRのうち少なくとも2個、即ち、2個又は3個はアルキル基であり、残りのRは、水素原子、ビニル基、アリル基となる。またこのアルキル基の炭素数は3以下、特にメチル基であることが好ましい。
【0006】
本発明のトリフェニレン誘導体の製法に特に制限はないが、以下のようにして合成することができる。まずトリフェニレンのアルキルシリル基を付したい位置をハロゲン、特にBrで置換する。また、導入したいシリル基に相当するハロシランを用意する。このハロゲン化トリフェニレンをテトラヒドロフラン等の溶媒中で、金属マグネシウムを用いて化学量論量の上記ハロシランと反応させると、分子内にシリル置換基が所望個数導入されたトリフェニレン誘導体を得ることができる。この反応式の例を下式に示す(例:2,3,6,7,10,11−ヘキサアルキルシリルトリフェニレン)。
Figure 0004100933
【0007】
ここで用いるハロシランとしては、様々なアルキル基及びハロゲン原子を有するものが使用できるが、アルキル置換基としては、水素原子、メチル基、エチル基、プロピル基、オクチル基、デシル基、ドデシル基、イソプロピル基、t−ブチル基、ビニル基、フェニル基などの有機置換基が好適である。また、ハロゲン原子は、塩素及び臭素のどちらも使いうるが、入手の容易さから塩素化物を使用することが望ましい。
このようなトリフェニレン誘導体は通常クロマトグラフィーにより単離して、無色結晶性固体として得ることができる。
【0008】
本発明のトリフェニレン誘導体の母体化合物である無置換トリフェニレンはヘキサン、アルコール、アセトンなどの汎用有機溶媒に対して極めて難溶であり、融点が197℃とかなり高く、ポリマーなどにブレンドするにはかなり問題点がある。一方、本発明のトリフェニレン誘導体はヘキサン、ペンタン、トルエン、ベンゼン、ジクロロメタン、クロロホルム、テトラヒドロフラン、ジエチルエーテル、アセトン、酢酸エチル等の有機溶媒に容易に溶解し、メタノール、エタノール等の極性有機溶媒に難溶であり、水にはまったく溶解しない。このように有機溶媒に溶解性が高く、融点も低いため、塗布作業やブレンド作業などが容易だと考えられる。また空気中の酸素とはまったく反応しない。
この化合物は後述のように300〜350nmの紫外域に吸収帯を有する。紫外光や太陽光などの適当な光源を用いて、この領域に光照射すると、この化合物は極めて強いリン光を示す。その量子収率は77Kでほぼ1であり、室温においても充分に強い青白いリン光を示す。
【0009】
本発明のトリフェニレン誘導体を透明プラスチックに混入させるとりん光強度の高いプラスチックを作製することができる。ここで透明プラスチックとして、ポリカーボネート樹脂、ポリエステル系樹脂、メタクリル系樹脂、スチレン系樹脂、ポリ塩化ビニル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂等の透明性樹脂材料が挙げられるが、これらに限定されるものではなく、これらを単独又は2種以上混合して使用してもよい。また、本発明のトリフェニレン誘導体を透明プラスチックに混入させる方法については当該分野で公知の方法を用いることができる。
【0010】
【発明の効果】
本発明のトリフェニレン誘導体は、市販原料から一段階で容易に目的物質を調製できる。また、従来の物質に比べてリン光強度が著しく大きい。極めて安定な物質であり、取り扱いが容易で、耐熱性、耐光性、耐候性が高い。溶媒に可溶であり、加工性が高い。このようなトリフェニレン誘導体は、リン光性物質、エレクトロルミネッセンス材料(液晶ディスプレイ等)として用いることができる。
【0011】
【実施例】
以下、実施例にて本発明を例証するが、本発明を限定することを意図するものではない。
窒素雰囲気下、ジムロート氏式冷却管、滴下漏斗及び攪拌子を備えた容量が100mlの3口フラスコに削り状マグネシウム(和光純薬製)228mg、ヘキサブロモトリフェニレン996mg、テトラヒドロフラン(東京化成工業製)28.5mlを収め、滴下漏斗からジメチルクロロシラン(東京化成工業製)1.33gを滴下し、室温で3日間攪拌した。ここで用いたヘキサブロモトリフェニレンは、Tetrahedron, 38巻、863−867頁、1982年に記載されている手法を用いて、ニトロベンゼン溶媒中、トリフェニレン、鉄粉末及び臭素から調製した。
反応混合物から溶媒及び副生した塩化マグネシウムを除き、順相カラムクロマトグラフィー(シリカゲル、溶離液:ヘキサン)及び逆相高速液体クロマトグラフィーによって分取精製し、2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンを収率3%で得た。
【0012】
この物質の同定は、質量スペクトル(日本電子JMS−SX102)、核磁気共鳴スペクトル(日本電子α500核磁気共鳴分光計を用いて測定した。)及び赤外スペクトル(島津 FTIR8700赤外分光計を用いて測定した。)にて行い、最終的にX線結晶構造解析(リガクAFC-7S 四軸型単結晶X線回折計を用いて測定した。)によりその構造を確定した。これらのスペクトルを図1〜5に示す。
プロトン核磁気共鳴スペクトル(図2)における化学シフト 0.52 ppm の一重線はメチル基の水素に相当し、5.13 ppm のプロトンはケイ素上の水素原子、9.19 ppm の一重線はトリフェニレンに置換した水素原子に当たる。強度比は6:1:1である。炭素13核磁気共鳴スペクトル(図3)における -2.47 ppm のシグナルはメチル基の炭素原子、129.82, 129.87, 124.82 ppm のシグナルがトリフェニレン骨格の炭素原子に相当する。ケイ素29核磁気共鳴(図4)に出現するピークはジメチルシリル基のケイ素原子である。
この化合物は単斜晶系、空間群P2/cの無色結晶を形成し、トリフェニレン骨格の炭素原子はほぼ同一平面上にある。結晶中においては互い違いに並んだ矢筈状の充填構造を示した。
【0013】
また、日本分光 Ubest-50 紫外可視吸光光度計を用いて、上記で得たヘキサシリルトリフェニレン(2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレン)の紫外吸収スペクトルを測定したところ、300〜350nm に微細構造を伴う吸収帯が出現した。日立F4500 形分光蛍光光度計を用いて、77Kで無置換トリフェニレン及び上記で得たヘキサシリルトリフェニレンのリン光スペクトルを測定したところ(図6)、無置換トリフェニレンはリン光の量子収率(77K)は0.066であったが(John. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience. New York, 123, (1970))、ヘキサシリルトリフェニレンは約1であり、極端に強い。ケイ光スペクトルから求めたヘキサシリルトリフェニレンのケイ光量子収率は室温で約0.05であった。
【図面の簡単な説明】
【図1】2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンの質量スペクトルである。
【図2】2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンのプロトンNMRスペクトルである。
【図3】2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンのC13NMRスペクトルである。
【図4】2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンのSi29NMRスペクトルである。
【図5】2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンのIRスペクトルである。
【図6】2,3,6,7,10,11−ヘキサキス(ジメチルシリル)トリフェニレンの紫外可視スペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a triphenylene derivative that emits phosphorescence with a high yield, and more particularly to a triphenylene derivative having an alkylsilyl group.
[0002]
[Prior art]
Until now, inorganic fluorescent substances are only available in powder form, and since they are poor in processability and light transmittance, it has been difficult to form into a transparent film form. By mixing with a polymer binder, the processability is increased, but the light transmittance is poor. Further, organic fluorescent and phosphorescent substances have insufficient fluorescence and phosphorescence intensity, and it has been difficult to ensure good light intensity.
Triphenylene is known as an organic phosphorescent material, and is used in various applications such as organic diode photosensitive materials (special table 2001-516150).
[0003]
[Problems to be solved by the invention]
In the process of studying such triphenylene, the present inventors established a synthesis method in which an alkylsilyl group is introduced as a substituent of triphenylene, and triphenylene having an alkylsilyl group synthesized in this way has extremely strong phosphorescence. The present invention has been completed. This triphenylene having an alkylsilyl group has an advantage that the conversion rate of phosphorescence is extremely high as compared with conventional strong phosphorescent substances, and because it is soluble in an organic solvent, the processability is remarkably increased. I understood.
[0004]
[Means for Solving the Problems]
The present inventor has found that triphenylene compounds having an alkylsilyl group introduced in the molecule exhibit good processability and extremely high phosphorescence intensity.
That is, in the present invention, a triphenylene skeleton has a general formula —SiR 3 (wherein R represents a hydrogen atom, an alkyl group, a vinyl group, or an allyl group, and at least two of R are alkyl groups). It is a triphenylene derivative having a silyl group represented. This triphenylene derivative has the formula
Figure 0004100933
(Wherein, R ′ represents the silyl group).
The present invention is further a transparent plastic mixed with the above triphenylene derivative, and the transparent plastic is preferably in the form of a film.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The triphenylene derivative of the present invention has a general formula -SiR 3 in the triphenylene skeleton (wherein R represents a hydrogen atom, an alkyl group, a vinyl group, or an allyl group, and at least two of R are alkyl groups). It has the alkylsilyl group represented by these.
The number of alkylsilyl groups for replacing triphenylene is not limited, and can be 1 to 12, but is preferably 6 or less, more preferably 6 in the 2,3,6,7,10,11 positions. Having alkylsilyl groups.
The alkylsilyl group is represented by the general formula —SiR 3 , and each R may be the same or different and is a hydrogen atom, an alkyl atom, a vinyl group, or an allyl group, but is bonded to this silicon. At least two of the three Rs, that is, two or three, are alkyl groups, and the remaining R is a hydrogen atom, a vinyl group, or an allyl group. The alkyl group has 3 or less carbon atoms, particularly preferably a methyl group.
[0006]
Although there is no restriction | limiting in particular in the manufacturing method of the triphenylene derivative of this invention, It can synthesize | combine as follows. First, the position at which the alkylsilyl group of triphenylene is to be attached is substituted with halogen, particularly Br. Also, a halosilane corresponding to the silyl group to be introduced is prepared. When this halogenated triphenylene is reacted with a stoichiometric amount of the halosilane using a magnesium metal in a solvent such as tetrahydrofuran, a triphenylene derivative having a desired number of silyl substituents introduced into the molecule can be obtained. An example of this reaction formula is shown below (example: 2,3,6,7,10,11-hexaalkylsilyltriphenylene).
Figure 0004100933
[0007]
As the halosilane used herein, those having various alkyl groups and halogen atoms can be used. As the alkyl substituent, a hydrogen atom, methyl group, ethyl group, propyl group, octyl group, decyl group, dodecyl group, isopropyl Organic substituents such as a group, t-butyl group, vinyl group, phenyl group are preferred. As the halogen atom, either chlorine or bromine can be used, but it is desirable to use a chlorinated product from the viewpoint of availability.
Such triphenylene derivatives are usually isolated by chromatography and can be obtained as colorless crystalline solids.
[0008]
Unsubstituted triphenylene, which is the base compound of the triphenylene derivative of the present invention, is extremely difficult to dissolve in general-purpose organic solvents such as hexane, alcohol, and acetone, and has a considerably high melting point of 197 ° C. There is a point. On the other hand, the triphenylene derivative of the present invention is easily soluble in organic solvents such as hexane, pentane, toluene, benzene, dichloromethane, chloroform, tetrahydrofuran, diethyl ether, acetone, and ethyl acetate, and hardly soluble in polar organic solvents such as methanol and ethanol. And does not dissolve in water at all. Thus, since it is highly soluble in an organic solvent and has a low melting point, it can be considered that coating and blending operations are easy. It does not react at all with oxygen in the air.
As will be described later, this compound has an absorption band in the ultraviolet region of 300 to 350 nm. When this region is irradiated with light using an appropriate light source such as ultraviolet light or sunlight, the compound exhibits extremely strong phosphorescence. Its quantum yield is almost 1 at 77K, and it shows sufficiently strong pale phosphorescence even at room temperature.
[0009]
When the triphenylene derivative of the present invention is mixed into a transparent plastic, a plastic with high phosphorescence intensity can be produced. Here, examples of the transparent plastic include, but are not limited to, a transparent resin material such as polycarbonate resin, polyester resin, methacrylic resin, styrene resin, polyvinyl chloride resin, polyolefin resin, and polyamide resin. These may be used alone or in combination of two or more. In addition, as a method of mixing the triphenylene derivative of the present invention into a transparent plastic, a method known in the art can be used.
[0010]
【The invention's effect】
The triphenylene derivative of the present invention can be easily prepared from a commercially available raw material in one step. In addition, the phosphorescence intensity is significantly higher than that of conventional substances. It is an extremely stable substance, easy to handle, and has high heat resistance, light resistance, and weather resistance. It is soluble in a solvent and has high processability. Such a triphenylene derivative can be used as a phosphorescent substance or an electroluminescent material (liquid crystal display or the like).
[0011]
【Example】
The following examples illustrate the invention, but are not intended to limit the invention.
In a nitrogen atmosphere, a three-necked flask with a capacity of 100 ml equipped with a Jimroth condenser, a dropping funnel, and a stirrer is 228 mg of shaved magnesium (Wako Pure Chemical Industries), 996 mg of hexabromotriphenylene, tetrahydrofuran (manufactured by Tokyo Chemical Industry Co., Ltd.) 28 .5 ml was placed, 1.33 g of dimethylchlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise from the dropping funnel, and the mixture was stirred at room temperature for 3 days. The hexabromotriphenylene used here was prepared from triphenylene, iron powder, and bromine in a nitrobenzene solvent using the method described in Tetrahedron, 38, 863-867, 1982.
The solvent and by-product magnesium chloride were removed from the reaction mixture, and the mixture was purified by normal phase column chromatography (silica gel, eluent: hexane) and reverse phase high performance liquid chromatography, and then 2, 3, 6, 7, 10, 11 -Hexakis (dimethylsilyl) triphenylene was obtained with a yield of 3%.
[0012]
This substance was identified by mass spectrum (JEOL JMS-SX102), nuclear magnetic resonance spectrum (measured using JEOL α500 nuclear magnetic resonance spectrometer) and infrared spectrum (Shimadzu FTIR8700 infrared spectrometer). The final structure was determined by X-ray crystal structure analysis (measured using a Rigaku AFC-7S four-axis single crystal X-ray diffractometer). These spectra are shown in FIGS.
Chemical shift in proton nuclear magnetic resonance spectrum (Fig. 2) The 0.52 ppm single line corresponds to the hydrogen of the methyl group, the 5.13 ppm proton corresponds to the hydrogen atom on silicon, and the 9.19 ppm single line corresponds to the hydrogen atom substituted with triphenylene. . The intensity ratio is 6: 1: 1. In the carbon-13 nuclear magnetic resonance spectrum (Fig. 3), the -2.47 ppm signal corresponds to the carbon atom of the methyl group, and the 129.82, 129.87, and 124.82 ppm signals correspond to the carbon atom of the triphenylene skeleton. The peak appearing in the silicon 29 nuclear magnetic resonance (FIG. 4) is the silicon atom of the dimethylsilyl group.
This compound forms a monoclinic system, colorless crystals of the space group P2 1 / c, and the carbon atoms of the triphenylene skeleton are substantially on the same plane. In the crystal, an arrow-shaped packing structure arranged alternately was shown.
[0013]
Moreover, the ultraviolet absorption spectrum of the hexasilyltriphenylene (2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene) obtained above was measured using JASCO Ubest-50 UV-Visible Spectrophotometer. However, an absorption band with a fine structure appeared at 300 to 350 nm. Using a Hitachi F4500 spectrofluorometer, the phosphorescence spectrum of unsubstituted triphenylene and hexasilyltriphenylene obtained above was measured at 77K (FIG. 6). Unsubstituted triphenylene was phosphorescent quantum yield (77K) Was 0.066 (John. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience. New York, 123, (1970)), but hexasilyltriphenylene was about 1 and extremely strong. The fluorescence quantum yield of hexasilyltriphenylene determined from the fluorescence spectrum was about 0.05 at room temperature.
[Brief description of the drawings]
FIG. 1 is a mass spectrum of 2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene.
FIG. 2 is a proton NMR spectrum of 2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene.
FIG. 3 is a C13 NMR spectrum of 2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene.
FIG. 4 is an Si 29 NMR spectrum of 2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene.
FIG. 5 is an IR spectrum of 2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene.
FIG. 6 is an ultraviolet-visible spectrum of 2,3,6,7,10,11-hexakis (dimethylsilyl) triphenylene.

Claims (5)

トリフェニレン骨格に、一般式−SiR(式中、Rはそれぞれ水素原子、アルキル基、ビニル基又はアリル基を表し、Rのうち少なくとも2個はアルキル基である。)で表されるアルキルシリル基を有するトリフェニレン誘導体。An alkylsilyl group represented by the general formula —SiR 3 (wherein R represents a hydrogen atom, an alkyl group, a vinyl group, or an allyl group, and at least two of R are alkyl groups) on the triphenylene skeleton. A triphenylene derivative having 下式
Figure 0004100933
(式中、R’は前記アルキルシリル基を表す。)で表される請求項1に記載のトリフェニレン誘導体。
The following formula
Figure 0004100933
The triphenylene derivative according to claim 1, wherein R ′ represents the alkylsilyl group.
前記アルキル基の炭素数が3以下である請求項1又は2に記載のトリフェニレン誘導体。The triphenylene derivative according to claim 1 or 2, wherein the alkyl group has 3 or less carbon atoms. 請求項1〜3のいずれか一項に記載のトリフェニレン誘導体が混入された透明プラスチック。The transparent plastic in which the triphenylene derivative as described in any one of Claims 1-3 was mixed. フィルム状の請求項4に記載の透明プラスチック。The transparent plastic according to claim 4 in the form of a film.
JP2002051024A 2002-02-27 2002-02-27 Highly phosphorescent triphenylene derivative Expired - Lifetime JP4100933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051024A JP4100933B2 (en) 2002-02-27 2002-02-27 Highly phosphorescent triphenylene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051024A JP4100933B2 (en) 2002-02-27 2002-02-27 Highly phosphorescent triphenylene derivative

Publications (2)

Publication Number Publication Date
JP2003252880A JP2003252880A (en) 2003-09-10
JP4100933B2 true JP4100933B2 (en) 2008-06-11

Family

ID=28663109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051024A Expired - Lifetime JP4100933B2 (en) 2002-02-27 2002-02-27 Highly phosphorescent triphenylene derivative

Country Status (1)

Country Link
JP (1) JP4100933B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327526A (en) * 2004-05-13 2005-11-24 Fuji Photo Film Co Ltd Organic electroluminescent element
WO2006038709A1 (en) 2004-10-05 2006-04-13 National University Corporation Gunma University Triphenylene compounds, process for production thereof, and organic electroluminescent devices made by using the same
KR100951310B1 (en) 2007-01-22 2010-04-05 주식회사 엘지화학 Discotic liquid crystal compound, liquid crystal composition comprising the same and optical film using the same liquid crystal composition
JP2010163405A (en) * 2009-01-19 2010-07-29 Univ Of Tokyo Arylated product of hydrooligosilane, luminescence material or electron-transport material containing the same and method for producing the arylated product of hydrooligosilane

Also Published As

Publication number Publication date
JP2003252880A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP5959171B2 (en) PI-conjugated organoboron compound and method for producing the same
US7202374B2 (en) Fullerene derivatives and their metal complexes
Jaeger et al. Chemistry of the 17-electron compound [(. eta. 5-C5Me5) Cr (CO) 3]
Shimizu et al. Synthesis and structure of polysilabridged and doubly bridged allenes
JP4100933B2 (en) Highly phosphorescent triphenylene derivative
Ichinohe et al. Tetrasila-1, 3-butadiene and its transformation to disilenyl anions
Yoshifuji et al. Syntheses and reactivity of novel unsaturated cyclic compounds containing phosphorus atoms
Reger et al. Self-assembly of an organometallic silver (I) 1D architecture supported by three different types of bonding interactions
CN101456876B (en) Polycyclic fused ring type pi-conjugated organic materials
JP4420660B2 (en) Organic borazine compound and process for producing the same
Yamamoto et al. Luminescent rhenium (I)–gold (I) hetero organometallics linked by ethynylphenanthrolines
CN107163071A (en) Boron N doping guan class compounds and preparation method thereof
JP4084364B2 (en) Chiral sensor and chiral sensing method
JP2012176928A (en) Pyrene derivative, production method of pyrene derivative, complex, catalyst, electronic material, light-emitting material and pigment
Tajima et al. The first examples of stable benzenes fused with two three-membered rings: Synthesis and structures of the two stereoisomers of bis (silacyclopropa) benzenes
JPS6363683A (en) (phenyldimethylcarbinyl)silane compound and production thereof
CN110294688A (en) A kind of preparation method for the azido compound that γ-position chlorine replaces
RU2716826C2 (en) Tetraphenyl butadiene-based branched oligoarylsilanes and method for production thereof
JP4635251B2 (en) Organic bismuth compound and process for producing the same
WO2020013087A1 (en) Rare-earth complex, light-emitting material, light-emitting object, light-emitting device, interlayer for laminated glass, laminated glass, windshield for vehicle, wavelength conversion material, and security material
CN118125899A (en) Material with enhanced luminescence induced by mechanochromatic aggregation, preparation method and application thereof
JP4346198B2 (en) Method for producing fulvene derivative
CN118307471A (en) Novel azaphenanthrene structural compound and synthesis method thereof
JPH03167154A (en) Oxalic ester compound and its production and chemiluminescent agent therefrom
CN117903002A (en) Dicyanoethylene based on tetraphenyl ethylene functionalization, preparation method and application thereof, and ink-free writing material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250