JP4100819B2 - Mold cracking test method and test apparatus therefor - Google Patents

Mold cracking test method and test apparatus therefor Download PDF

Info

Publication number
JP4100819B2
JP4100819B2 JP11705199A JP11705199A JP4100819B2 JP 4100819 B2 JP4100819 B2 JP 4100819B2 JP 11705199 A JP11705199 A JP 11705199A JP 11705199 A JP11705199 A JP 11705199A JP 4100819 B2 JP4100819 B2 JP 4100819B2
Authority
JP
Japan
Prior art keywords
sand
test
sand mold
mold
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11705199A
Other languages
Japanese (ja)
Other versions
JP2000301288A (en
Inventor
文幸 小川
暢人 野々垣
博美 冨重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd, Toyota Motor Corp filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP11705199A priority Critical patent/JP4100819B2/en
Publication of JP2000301288A publication Critical patent/JP2000301288A/en
Application granted granted Critical
Publication of JP4100819B2 publication Critical patent/JP4100819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、砂型を用いた鋳造、特に非鉄系鋳造において、砂型の割れないし亀裂に起因する鋳造欠陥の発生を予測する手段として有用な型割れ試験方法及びその試験装置に関する。
【0002】
【従来の技術】
従来、アルミニウム合金・マグネシウム合金・銅合金等の非鉄系や鋳鋼・鋳鉄等の鉄系の砂型鋳造では、主としてレジンコーテッドサンドで作製した中子や主型、所謂、砂型が用いられている。しかし、この種の鋳造には、しばしば鋳造時に生じた砂型の割れ部ないし亀裂部( 以下、型割れという) に溶湯が侵入して鋳バリを形成するという、型割れに起因する鋳造欠陥の発生がみられる。
【0003】
【発明が解決しようとする課題】
このような型割れに起因する鋳造欠陥( 以下、型割れ欠陥という) の発生を予測するための試験方法としては、熱膨張差による砂型歪みを利用した熱間亀裂試験方法( JACT試験法SM−9) 、具体的には、砂型材料で成型した円板( 直径130mm×厚み5mm) の外周部と、その円板に偏心して設けた円孔 (直径65mm) の外端部との間に形成されたブリッジ部( 幅5mm) を有する円板状砂型試験片を作製した後、該円板状砂型試験片のブリッジ部の反対側(幅広部)をバーナーで加熱して、前記ブリッジ部の割れるまでの時間を測定する方法が知られている。しかし、この試験方法では、鋳鉄など溶湯温度が高い鉄系鋳造では、型割れ欠陥と測定結果の間にある程度の相関性がみられるものの、型割れ欠陥を正確に予測し、それを回避する試験方法としては不充分であり、特に、アルミニウム合金など溶湯温度が低い非鉄系鋳造では、両者間に相関は全くみられないという欠点があり、鋳造欠陥を予測する試験方法として採用することができなかった。
【0004】
本発明は、このような事情に基づきなされたものであり、砂型を用いる鋳造、特に非鉄系鋳造において、砂型の割れないし亀裂に起因する鋳造欠陥の発生を正確に予測できる型割れ試験方法及びその試験装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、前記目的を達成すべく鋭意検討を重ねた結果、砂型試験片を溶湯、特にアルミニウム合金溶湯中に浸漬した際に、該砂型試験片、すなわち砂型が溶湯の高熱の影響を受けて変質・変形して砂型に割れないし亀裂(以下、砂型の割れ等という)が生じることがあるが、その砂型の割れ等に起因して生じる振動を振動センサ(圧電計、ひずみ計など)で感知して電気量の変化(電圧、電流など)に変換して、表示することにより、鋳造時の型割れ欠陥の発生を予測できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、振動センサ4を取り付けた試験片固定用治具2に砂型試験片1を固定した後、砂型試験片1を金属溶湯中7に浸漬保持し、砂型試験片1から生じる振動を振動センサ4で感知して電気量の変化として変換表示することを特徴とする型割れ試験方法である。
【0007】
また、本発明は、振動を電気量の変化に変換する振動センサ4を取り付けた砂型試験片固定用治具2、該砂型試験片1を挿入する金属溶湯用容器10、電気量の変化の表示部6を有することを特徴とする型割れ試験装置である。
【0008】
【発明の実施の形態】
以下、本発明方法の実施態様について図面を参照しながら説明する。図1は、本発明の試験装置の基本構成を示す図であり、溶融金属浴へ砂型試験片を浸漬して、本発明の試験方法により測定している状態を示す概略図である。また、図2は試験用砂型材料2で作製した砂型試験片1を本発明方法に適用して得られた電圧ピーク(電気量の変化の極大値)P1 、P2 、P3 、P4 の出現を示すチャート図である。図1において、1は砂型試験片、2は砂型試験片1を把持固定するための保持用治具であり、その保持具外面上部には振動センサ4と固定アーム3が取り付けられている。更に、振動センサ4はリード線8(センサコード)を介してアンプ5に接続され、アンプ5はリード線8aを介してレコーダー6に接続されている。本発明方法の一実施態様によれば、溶融金属浴7中の砂型試験片1から発生する振動は、振動センサ4により例えば電圧に変換され、アンプ5で増幅され、レコーダー6により電圧の変化として記録される。すなわち、砂型試験片に割れとか亀裂が生じると同時に発生する振動の強さは振動センサにより感知されて振動センサにより電圧ピーク(P1 、P2 、P3 、P4 )に変換されチャートに記録される。かくして、得られた電圧ピークの有無、ピークの出現回数および強弱を勘案すれば型割れ欠陥の発生度合いを定量的に正確に把握することができる。この測定結果を砂型材料の研究開発、選択に活用することができ、鋳造時の型割れ欠陥の発生を未然に正確に予測することができ、実際の鋳造でのトラブルの発生を事前に防止できる。
【0009】
溶湯に砂型試験片を浸漬する手段は、溶湯浴用容器10の所定深さ位置に砂型試験片を保持し、その後、溶湯を注ぐ形式が実際の鋳造を反映しているともいえるが、溶湯浴を予め準備し、その後、保持具を下降させ、あるいは保持具の支持腕を軸を中心として下方に回転させて、浸漬することもできる。
【0010】
ここで、前記砂型試験片の作製には、主として加熱珪砂にフェノール樹脂系結合剤と硬化剤( 例えば、ヘキサメチレンテトラミンなど) を被覆して成る熱硬化性のレジンコーテッドサンドが使用されるが、そのほか常温の珪砂に被覆したフェノール樹脂系粘結剤を硬化触媒( 例えば、アミン系化合物、有機又は無機エステル系化合物、炭酸ガスなど) で硬化させる通気硬化性又は常温自硬性の混練砂でも差し支えない( 以下、これらを砂型材料ともいう) 。
【0011】
また、試験片形状は特に限定されないが、好ましくは棒状試験片( 例えば、直径20〜30mm×長さ100〜300mm) である。実際に製作された砂型に対応の例えば中空形状・実砂型からの切り出し形状のほか板状・角柱などとすることもできる。また、試験片保持用治具は、砂型から発生する振動を伝えやすい材質( 例えば、鉄及び銅合金) で砂型試験片と嵌合可能の構造を有し、更にはネジ9、9aなどで嵌合部分を固定できるものが好ましいが特に限定されるものではない。
【0012】
振動センサは、振動即ち砂型試験片の割れ、亀裂などの兆候を示す振動(歪)を把握して電気量(電圧、電流)の変化量に変えることができるものであれば特に限定されないが、好ましくは圧電素子タイプ(例えば、キーエンス社製高感度タイプGH−313a)である。また、必要に応じて電気量を増幅するするためアンプユニットを採用できるが、表示に必要な増幅ができるものであればどのようなものでも採用でき、例えばキーエンス社製ACタイプGA−245が利用できる。電気量の変化(例えば電圧ピーク)を表示する手段も各種採用できる(例えばプリンター、CRT)。プリンターにチャートを出力する場合、そのレコーダーとしては日本電子化学社製pantos U−638 UNlCORDERなどが例示されるが、これらに限定されるものではない。
【0013】
次に、溶融金属に対する本発明方法の適合性については特に限定されないが、測定結果と鋳造結果の相関性を考慮すればアルミニュウム合金に代表される非鉄系金属が好ましい。また、溶融金属浴中への砂型試験片( 長さ方向) の浸漬深さおよび浸漬時間は、特に制限されないが、浸漬深さは測定結果のバラツキの点から砂型試験片の中央部、浸せき時間は砂型試験片が熱崩壊を生じない時間、例えば10秒間程度が好ましい。
【0014】
本発明の装置及び方法に基いて砂型の試験をする場合、溶融金属浴は実際に鋳造する金属と一致させることが試験結果と実際の鋳造結果との一致性を高める上で望ましい。
【0015】
試験用砂型材料1及び2を用いて、本発明の試験方法と従来の試験方法とを対比することにより、本発明をさらに詳細に説明するが、本発明はこれらの説明内容により限定されるものではない。
【0016】
[試験用砂型材料1の調製]
実験用ワールミキサー内で、約140℃に余熱した再生珪砂100重量部にノボラック型フェノール樹脂1.3重量部を溶融被覆した後、ヘキサメチレンテトラミン0.29重量部と冷却水1.5重量部を加え、更にステアリン酸カルシュウム0.1重量部を添加してレジンコーテッドサンドを調製した。このレジンコーテッドサンドは、曲げ強度( JACT試験法SM−1) が406N/cm2 であった。
【0017】
[従来の熱間亀裂試験方法による測定]
上記試験用砂型材料1のレジンコーテッドサンドを用いて従来法である熱間亀裂試験方法(JACT試験方法SM−9)による試験片を作製し、同法により割れ時間を測定したところ4.8秒(試験回数n=3の平均時間)であった。
【0018】
[本発明の試験方法による測定]
約250℃に温調された金型内に前記試験用砂型材料1のレジンコーテッドサンドを加圧充填し、2分間焼成して丸棒砂型試験片1(直径22mm×長さ200mm)を作製した。次いで、図1に示す円筒状鉄製保持用治具2(内径23mm)に丸棒砂型試験片1を挿入し、ネジ止め固定した後、丸棒砂型試験片1を約700℃のアルミニウム合金溶湯中に長さ方向中央部まで垂直に浸漬し、10秒間保持して測定を終えた。レコーダー6を介して得られたチャートには、砂型試験片1から発生する振動を変換表示する電圧ピークの出現は見られなかった。引き続き同様の試験を二回繰り返したが、同じ結果であることから、鋳造時に型割れ欠陥は発生しないものと推測した。
【0019】
[鋳造試験]
前記試験用砂型材料1のレジンコーテッドサンドを用いてシリンダーヘッド用中子を造型した後、低圧鋳造法によりアルミニウム合金を注湯して20個(n=20)のシリンダーヘッド( 鋳物) を得た。これらの鋳物は総て切断して内部を観察したが型割れ欠陥は全く確認されなかった。
【0020】
以上の結果を表1の試験用砂型材料1の欄に示す。
【0021】
[試験用砂型材料2の調製]
試験用砂型材料1において、ヘキサメチレンテトラミンの添加量を0.20重量部に変更した以外は試験用砂型材料1と同様にして試験用砂型材料2のレジンコーテッドサンドを調製した。このレジンコーテッドサンドは、曲げ強度が386N/mm2 であった。
【0022】
[従来の熱間亀裂試験方法による測定]
上記試験用砂型材料2のレジンコーテッドサンドを用いて従来法である熱間亀裂試験方法(JACT試験方法SM−9)による試験片を作製し、同法により割れ時間を測定したところ4.5秒(試験回数n=3の平均時間)であった。
【0023】
[本発明の試験方法による測定]
前記試験用砂型材料1のレジンコーテッドサンドを試験用砂型材料2のレジンコーテッドサンドに変えた以外は、前記本発明の試験方法と同様の方法により、砂型試験片1から発生する振動を変換表示したところ、砂型試験片から発生する振動を示す電圧ピークが平均4個出現した(試験回数n=3)。
【0024】
[鋳造試験]
前記試験用砂型材料2のレジンコーテッドサンドを用いてシリンダーヘッド用中子を造型した後、低圧鋳造法によりアルミニウム合金を注湯して20個のシリンダーヘッド( 鋳物) を得た。これらの鋳物は総て切断して内部を観察したところ全てにおいて型割れ欠陥が確認された。
【0025】
以上の結果を表1の試験用砂型材料2の欄に示す。
【0026】
【表1】

Figure 0004100819
【0027】
表1のとおり、従来の熱間亀裂試験方法によると、砂型の割れ又は亀裂の指標となるブリッジ部の割れる時間は、試験用砂型材料1では平均4.8秒であり、試験用砂型材料2では平均4.5秒であり、殆ど差はないといってよい。一方本発明の試験方法によると、砂型の割れ又は亀裂の指標となる電圧ピークの出現回数は、3回の試験測定において、試験用砂型材料1では0回であり、試験用砂型材料2では平均4回であった。これに対して、実際の鋳造結果をみると、型割れ欠陥の発生は、試験用砂型材料1では全く無く、試験用砂型材料2では20個(全数)であった。
【0028】
この結果より、従来の熱間亀裂試験方法によっては、実際の鋳造時の、砂型の型割れ及び亀裂の発生を予測することはできないことが明らかであり、一方本願発明の試験方法によると、試験結果と実際の鋳造結果とが完全に一致しており、本願発明の方法により、実際の鋳造時の、砂型の型割れ及び亀裂の発生を正確に予測することができるものといえる。
【0029】
【発明の効果】
以上のとおり、鋳造時、特にアルミニウム合金鋳造において、従来の熱間亀裂試験方法では、鋳造時の型割れ欠陥の発生が予測困難であるのに対し、本発明試験方法(装置)では、試験方法による結果と鋳造結果とが極めて高い相関性を有し、鋳造時の型割れ欠陥の発生を確度よく予測できるのみならず、次ぎのような効果を提供することができる。
(1)砂型材料の有する型割れ欠陥の発生度合い( 危険性) を鋳造試験なしに定量的に把握でき、実際の鋳造時の型割れ及び亀裂の発生を未然に防止できる。
(2)型割れ欠陥に影響する砂型材料の要因を定量的に把握できることから開発スピードを速めることができる。
【図面の簡単な説明】
【図1】本発明の試験装置の構成を示す図であり、溶融金属浴へ砂型試験片を浸漬して、本発明の試験方法により測定をしている状態を示す概略図である。
【図2】試験用砂型材料1で作製した砂型試験片を本発明方法に適用して得られた電圧ピークP1 、P2 、P3 、P4 の出現を示すチャート図である。
【符号の説明】
1…棒状砂型試験片
2…保持用治具
4…振動センサ
7…溶融金属浴[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold crack test method and test apparatus useful as a means for predicting the occurrence of casting defects caused by sand mold cracks or cracks in casting using a sand mold, particularly non-ferrous casting.
[0002]
[Prior art]
Conventionally, in iron-based sand mold casting such as aluminum alloy / magnesium alloy / copper alloy and iron-based sand mold casting such as cast steel / cast iron, cores and main molds made of resin-coated sand, so-called sand molds, are used. However, in this type of casting, the occurrence of casting defects due to mold cracking, in which molten metal intrudes into the cracks or cracks (hereinafter referred to as mold cracks) of the sand mold often formed during casting to form cast burrs. Is seen.
[0003]
[Problems to be solved by the invention]
As a test method for predicting the occurrence of such casting defects (hereinafter referred to as mold crack defects) due to mold cracking, a hot crack test method (JACT test method SM-) using sand mold strain due to a difference in thermal expansion is used. 9) Specifically, it is formed between the outer periphery of a disc (diameter 130 mm × thickness 5 mm) molded from sand mold material and the outer end of a circular hole (diameter 65 mm) provided eccentrically on the disc. A disc-shaped sand mold test piece having a bridge portion (width 5 mm) is formed, and then the bridge portion of the disc-shaped sand mold test piece (the wide portion) is heated with a burner to break the bridge portion. A method for measuring the time until is known. However, with this test method, in iron-based castings such as cast iron where the molten metal temperature is high, there is a certain degree of correlation between mold cracking defects and measurement results, but tests that accurately predict and avoid mold cracking defects. The method is inadequate, especially in non-ferrous castings where the molten metal temperature is low, such as aluminum alloys, there is a disadvantage that there is no correlation between them, and it cannot be adopted as a test method for predicting casting defects. It was.
[0004]
The present invention has been made based on such circumstances, and a mold crack test method capable of accurately predicting the occurrence of casting defects caused by sand mold cracks or cracks in casting using a sand mold, particularly non-ferrous casting, and the method thereof An object is to provide a test apparatus.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that when a sand mold test piece is immersed in a molten metal, particularly an aluminum alloy molten metal, the sand mold test piece, i.e., the sand mold is affected by the high heat of the molten metal. The sand mold may crack or crack (hereinafter referred to as a sand mold crack) due to alteration and deformation, and vibration caused by the sand mold crack is detected by a vibration sensor (piezoelectric meter, strain gauge, etc.). It was found that the occurrence of a mold cracking defect during casting can be predicted by sensing and converting to a change in electric quantity (voltage, current, etc.) and displaying it, and the present invention has been completed.
[0006]
That is, according to the present invention, after the sand mold test piece 1 is fixed to the test piece fixing jig 2 to which the vibration sensor 4 is attached, the sand mold test piece 1 is dipped and held in the molten metal 7, and the vibration generated from the sand mold test piece 1. Is detected by the vibration sensor 4 and converted and displayed as a change in the amount of electricity.
[0007]
The present invention also includes a sand-type test piece fixing jig 2 to which a vibration sensor 4 for converting vibration into a change in electric quantity is attached, a molten metal container 10 into which the sand-type test piece 1 is inserted, and a change in electric quantity. A mold cracking test apparatus characterized by having a portion 6.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the method of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a basic configuration of a test apparatus of the present invention, and is a schematic diagram showing a state in which a sand-type test piece is immersed in a molten metal bath and measured by the test method of the present invention. Further, FIG. 2 shows voltage peaks (maximum values of change in the amount of electricity) P 1 , P 2 , P 3 , P 4 obtained by applying the sand-type test piece 1 made of the test sand-type material 2 to the method of the present invention. FIG. In FIG. 1, 1 is a sand mold test piece, 2 is a holding jig for holding and fixing the sand mold test piece 1, and a vibration sensor 4 and a fixed arm 3 are attached to the upper part of the outer surface of the holder. Further, the vibration sensor 4 is connected to the amplifier 5 via a lead wire 8 (sensor code), and the amplifier 5 is connected to the recorder 6 via a lead wire 8a. According to one embodiment of the method of the present invention, vibration generated from the sand-type test piece 1 in the molten metal bath 7 is converted into, for example, voltage by the vibration sensor 4, amplified by the amplifier 5, and changed as voltage by the recorder 6. To be recorded. That is, the strength of the vibration generated at the same time as a crack or crack occurs in the sand-type test piece is detected by the vibration sensor, converted into a voltage peak (P 1 , P 2 , P 3 , P 4 ) by the vibration sensor and recorded on the chart. Is done. Thus, by taking into consideration the presence or absence of the obtained voltage peak, the number of appearances of the peak, and the strength, the degree of occurrence of the mold cracking defect can be grasped quantitatively and accurately. This measurement result can be used for research and development and selection of sand mold materials, and it is possible to accurately predict the occurrence of mold cracking defects during casting, and to prevent problems in actual casting in advance. .
[0009]
The means for immersing the sand mold test piece in the molten metal can be said to hold the sand mold test piece at a predetermined depth position of the molten bath container 10 and then pour the molten metal reflecting the actual casting. It is also possible to immerse by preparing in advance and then lowering the holder or rotating the support arm of the holder downward about the axis.
[0010]
Here, for the production of the sand-type test piece, a thermosetting resin-coated sand formed by coating a heated silica sand with a phenol resin binder and a curing agent (for example, hexamethylenetetramine) is used. In addition, it is possible to use air-curing or room-temperature self-hardening kneaded sand in which phenolic resin-based binder coated on silica sand at room temperature is cured with a curing catalyst (for example, amine compounds, organic or inorganic ester compounds, carbon dioxide, etc.). (Hereafter, these are also called sand mold materials).
[0011]
The shape of the test piece is not particularly limited, but is preferably a rod-like test piece (for example, a diameter of 20 to 30 mm × a length of 100 to 300 mm). For example, a hollow shape or a cut shape from a real sand mold corresponding to a sand mold actually manufactured, a plate shape or a prism can be used. The test piece holding jig is made of a material that easily transmits vibration generated from the sand mold (for example, iron and copper alloy) and can be fitted to the sand mold test piece, and is further fitted with screws 9, 9a, etc. Although what can fix a joint part is preferable, it is not specifically limited.
[0012]
The vibration sensor is not particularly limited as long as the vibration sensor can grasp vibration (strain) indicating a sign such as a crack of a sand-type test piece and a crack and change the amount of change in electric quantity (voltage, current). A piezoelectric element type (for example, high sensitivity type GH-313a manufactured by Keyence Corporation) is preferable. In addition, an amplifier unit can be used to amplify the amount of electricity as necessary, but any unit that can perform amplification necessary for display can be used. For example, AC type GA-245 manufactured by Keyence Corporation is used. it can. Various means for displaying a change in the amount of electricity (for example, a voltage peak) can also be employed (for example, a printer, CRT). In the case of outputting a chart to a printer, examples of the recorder include pantos U-638 UNCORDER manufactured by JEOL Ltd., but are not limited thereto.
[0013]
Next, the suitability of the method of the present invention for molten metal is not particularly limited, but non-ferrous metals represented by aluminum alloys are preferred in consideration of the correlation between measurement results and casting results. Also, the immersion depth and immersion time of the sand mold specimen (length direction) in the molten metal bath are not particularly limited, but the immersion depth is the center of the sand mold specimen, the immersion time from the point of variation in the measurement results. Is preferably a time during which the sand-type test piece does not cause thermal collapse, for example, about 10 seconds.
[0014]
When testing sand molds based on the apparatus and method of the present invention, it is desirable to match the molten metal bath with the actual casting metal in order to increase the consistency between the test results and the actual casting results.
[0015]
The present invention will be described in more detail by comparing the test method of the present invention with the conventional test method using sand mold materials 1 and 2, but the present invention is limited by these descriptions. is not.
[0016]
[Preparation of sand mold material 1 for testing]
In a laboratory whirl mixer, 100 parts by weight of regenerated silica sand preheated to about 140 ° C. was melt-coated with 1.3 parts by weight of novolac-type phenolic resin, and then 0.29 parts by weight of hexamethylenetetramine and 1.5 parts by weight of cooling water. Further, 0.1 parts by weight of calcium stearate was added to prepare a resin-coated sand. This resin-coated sand had a bending strength (JACT test method SM-1) of 406 N / cm 2 .
[0017]
[Measurement by conventional hot crack test method]
A test piece by the hot crack test method (JACT test method SM-9), which is a conventional method, was prepared using the resin-coated sand of the sand mold material 1 for testing, and the cracking time was measured by the same method to find 4.8 seconds. (The number of tests n = average time of 3).
[0018]
[Measurement by the test method of the present invention]
A resin-coated sand of the test sand mold material 1 was pressurized and filled in a mold temperature-controlled at about 250 ° C., and fired for 2 minutes to prepare a round bar sand mold test piece 1 (diameter 22 mm × length 200 mm). . Next, after inserting the round bar sand type test piece 1 into the cylindrical iron holding jig 2 (inner diameter 23 mm) shown in FIG. 1 and fixing it with screws, the round bar sand type test piece 1 is placed in a molten aluminum alloy at about 700 ° C. The sample was immersed vertically up to the center in the length direction and held for 10 seconds to complete the measurement. The chart obtained via the recorder 6 did not show the appearance of a voltage peak for converting and displaying the vibration generated from the sand-type test piece 1. The same test was repeated twice, but the same result was assumed, and it was assumed that no mold cracking defect occurred during casting.
[0019]
[Casting test]
After molding the core for the cylinder head using the resin-coated sand of the test sand mold material 1, 20 alloy heads (castings) were obtained by pouring aluminum alloy by a low pressure casting method. . All of these castings were cut and the inside was observed, but no mold cracking defect was confirmed.
[0020]
The above results are shown in the column of sand mold material for test 1 in Table 1.
[0021]
[Preparation of sand mold material 2 for test]
Resin-coated sand of test sand mold material 2 was prepared in the same manner as test sand mold material 1 except that the amount of hexamethylenetetramine added in test sand mold material 1 was changed to 0.20 parts by weight. This resin-coated sand had a bending strength of 386 N / mm 2 .
[0022]
[Measurement by conventional hot crack test method]
A test piece by the hot crack test method (JACT test method SM-9), which is a conventional method, was prepared using the resin-coated sand of the above sand mold material 2 for testing, and the crack time was measured by the same method to find 4.5 seconds. (The number of tests n = average time of 3).
[0023]
[Measurement by the test method of the present invention]
Except for changing the resin-coated sand of the test sand mold material 1 to the resin-coated sand of the test sand mold material 2, the vibration generated from the sand mold test piece 1 is converted and displayed by the same method as the test method of the present invention. However, an average of four voltage peaks indicating vibrations generated from the sand-type test pieces appeared (test number n = 3).
[0024]
[Casting test]
After forming a core for a cylinder head using the resin-coated sand of the test sand mold material 2, 20 cylinder heads (castings) were obtained by pouring aluminum alloy by a low pressure casting method. When all these castings were cut and the inside was observed, mold crack defects were confirmed in all of them.
[0025]
The above results are shown in the column of sand mold material for test 2 in Table 1.
[0026]
[Table 1]
Figure 0004100819
[0027]
As shown in Table 1, according to the conventional hot crack test method, the cracking time of the bridge portion, which is an index of sand mold cracks or cracks, is 4.8 seconds on average in the test sand mold material 1, and the test sand mold material 2 Then, the average is 4.5 seconds, and it can be said that there is almost no difference. On the other hand, according to the test method of the present invention, the number of occurrences of a voltage peak serving as an index of sand mold cracks or cracks is zero for the test sand mold material 1 and three times for the test sand mold material 2, and average for the test sand mold material 2 4 times. On the other hand, in the actual casting results, the occurrence of mold cracking defects was not found in the test sand mold material 1 and was 20 in the test sand mold material 2 (total number).
[0028]
From this result, it is clear that the conventional hot crack test method cannot predict the occurrence of sand mold cracks and cracks during actual casting, whereas according to the test method of the present invention, The results and the actual casting results are completely consistent, and it can be said that the occurrence of sand mold cracks and cracks during actual casting can be accurately predicted by the method of the present invention.
[0029]
【The invention's effect】
As described above, the occurrence of mold cracking defects during casting is difficult to predict in the conventional hot crack test method during casting, particularly in aluminum alloy casting, whereas in the test method (apparatus) of the present invention, the test method is used. The results of the above and the casting results have a very high correlation, so that not only can the occurrence of mold cracking defects during casting be predicted accurately, but also the following effects can be provided.
(1) The degree of occurrence (danger) of mold cracking defects in sand mold materials can be grasped quantitatively without a casting test, and the occurrence of mold cracks and cracks during actual casting can be prevented.
(2) The development speed can be increased because the factors of the sand mold material affecting the mold cracking defect can be quantitatively grasped.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a test apparatus of the present invention, and is a schematic diagram showing a state in which a sand-type test piece is immersed in a molten metal bath and measurement is performed by the test method of the present invention.
FIG. 2 is a chart showing the appearance of voltage peaks P 1 , P 2 , P 3 , and P 4 obtained by applying a sand mold test piece made of the test sand mold material 1 to the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bar-shaped sand type test piece 2 ... Holding jig 4 ... Vibration sensor 7 ... Molten metal bath

Claims (2)

振動センサ4を取り付けた試験片固定用治具2に砂型試験片1を固定した後、砂型試験片1を金属溶湯中7に浸漬保持し、砂型試験片1から生じる振動を振動センサ4で感知して電気量の変化として変換表示することを特徴とする型割れ試験方法。After the sand mold test piece 1 is fixed to the test specimen fixing jig 2 to which the vibration sensor 4 is attached, the sand mold test specimen 1 is dipped and held in the molten metal 7, and vibration generated from the sand mold test specimen 1 is detected by the vibration sensor 4. Then, a mold cracking test method characterized by converting and displaying as a change in electric quantity. 振動を電気量の変化に変換する振動センサ4を取り付けた砂型試験片固定用治具2、該砂型試験片1を挿入する金属溶湯用容器10、電気量の変化の表示部6を有することを特徴とする型割れ試験装置。It has a sand-type test piece fixing jig 2 to which a vibration sensor 4 for converting vibration into a change in electric quantity is attached, a molten metal container 10 into which the sand-type test piece 1 is inserted, and an indicator 6 for changing the electric quantity. A characteristic mold cracking tester.
JP11705199A 1999-04-23 1999-04-23 Mold cracking test method and test apparatus therefor Expired - Fee Related JP4100819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11705199A JP4100819B2 (en) 1999-04-23 1999-04-23 Mold cracking test method and test apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11705199A JP4100819B2 (en) 1999-04-23 1999-04-23 Mold cracking test method and test apparatus therefor

Publications (2)

Publication Number Publication Date
JP2000301288A JP2000301288A (en) 2000-10-31
JP4100819B2 true JP4100819B2 (en) 2008-06-11

Family

ID=14702219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11705199A Expired - Fee Related JP4100819B2 (en) 1999-04-23 1999-04-23 Mold cracking test method and test apparatus therefor

Country Status (1)

Country Link
JP (1) JP4100819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630677A (en) * 2013-12-02 2014-03-12 中建材中岩科技有限公司 Experimental device and method for testing grouting speed and filling degree of open joint repairing material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162477B2 (en) * 2013-05-14 2017-07-12 ウェスタン・ミシガン・ユニバーシティ・リサーチ・ファウンデイションWestern Michigan University Research Foundation Thermal erosion tester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630677A (en) * 2013-12-02 2014-03-12 中建材中岩科技有限公司 Experimental device and method for testing grouting speed and filling degree of open joint repairing material
CN103630677B (en) * 2013-12-02 2015-07-01 中建材中岩科技有限公司 Experimental device and method for testing grouting speed and filling degree of open joint repairing material

Also Published As

Publication number Publication date
JP2000301288A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
Khandelwal et al. Effect of binder composition on the shrinkage of chemically bonded sand cores
US9121803B2 (en) Thermal distortion tester
Thole et al. Measurement of elastic modulus of PUNB bonded sand as a function of temperature
JP4100819B2 (en) Mold cracking test method and test apparatus therefor
US5609198A (en) Apparatus for measuring the properties of mold materials
Wan et al. Research on testing method of resin sand high temperature compressive strength
EP3311157B1 (en) Apparatus and method for analysis of molten metals
KR102050951B1 (en) Thermal erosion tester
US8056604B2 (en) Process for preparing a test casting and test casting prepared by the process
US2491512A (en) Process for testing molding sand and apparatus therefor
JP2020146713A (en) Method of evaluating hold-on force and method of evaluating shrinkage
Łągiewka Determination of thermophysical properties for selected molding sands
González et al. Characteristics of phenolic-urethane cold box sand cores for aluminum casting
JPH09311100A (en) Method for estimating life of material and method for estimating thermal fatigue life of material
Zych et al. Gas generation properties of materials used in the sand mould technology–modified research method
Ramrattan Non-standard tests for process control in chemically bonded sands
Major-Gabryś et al. Measurement of molding sand elasticity
Mocek Multiparameter assessment of the gas forming tendency of foundry sands with alkyd resins
Zych et al. Kinetics of gases emission from surface layers of sand moulds
JPS6035885Y2 (en) Cast iron graphite shape furnace test equipment
Mocek et al. Kinetics of Gas Emission from Heated Moulding Sands Together with the On-line Assessment of H2and O2Fractions-New Investigation Method
BR102016008767A2 (en) FOUNDRY SAND
Zych et al. Thermal Volumetric Analysis (TVA): A New Test Method of the Kinetics of Gas Emissions from Moulding Sands and Protective Coatings Heated by Liquid Alloy Additional information is available at the end of the chapter
US4320651A (en) Hot deformation testing method and apparatus
SU262477A1 (en) DEVICE FOR DEFINITION OF STRENGTH OF QUICK-HARD SANDS MIXTURES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees