JP4100686B2 - Protective film, method for producing protective film, and magnetic recording medium - Google Patents

Protective film, method for producing protective film, and magnetic recording medium Download PDF

Info

Publication number
JP4100686B2
JP4100686B2 JP2003413701A JP2003413701A JP4100686B2 JP 4100686 B2 JP4100686 B2 JP 4100686B2 JP 2003413701 A JP2003413701 A JP 2003413701A JP 2003413701 A JP2003413701 A JP 2003413701A JP 4100686 B2 JP4100686 B2 JP 4100686B2
Authority
JP
Japan
Prior art keywords
film
concentration
protective film
nitrogen
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413701A
Other languages
Japanese (ja)
Other versions
JP2005171329A (en
Inventor
徳久 永田
真樹 宮里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003413701A priority Critical patent/JP4100686B2/en
Publication of JP2005171329A publication Critical patent/JP2005171329A/en
Application granted granted Critical
Publication of JP4100686B2 publication Critical patent/JP4100686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、保護膜、保護膜の製造方法、および磁気記録媒体に関し、特に、耐摺動部材または耐摩耗部材のコーティングに用いられる硬質被膜、および該硬質被膜の製造方法、および該硬質被膜を保護膜として有する磁気記録媒体に関する。   The present invention relates to a protective film, a method for manufacturing a protective film, and a magnetic recording medium, and in particular, a hard film used for coating a sliding-resistant member or an abrasion-resistant member, a method for manufacturing the hard film, and the hard film. The present invention relates to a magnetic recording medium having a protective film.

耐摺動部材または耐摩耗部材のコーティングに用いられる硬質被膜のうち、カーボンを用いたものとしてDLC(ダイヤモンド・ライク・カーボン)膜がある。DLC膜は、表面平滑性に優れ、硬さも大きいことから表面被膜として適している。   Among the hard coatings used for coating the sliding-resistant member or the wear-resistant member, there is a DLC (diamond-like carbon) film that uses carbon. The DLC film is suitable as a surface coating because it has excellent surface smoothness and high hardness.

DLC膜の形成手法としては、スパッタリング法、プラズマCVD法等が用いられてきている。   As a method for forming the DLC film, a sputtering method, a plasma CVD method, or the like has been used.

磁気記録媒体には、磁気記録層を磁気ヘッドの接触、摺動による損傷、および腐食から保護するために、磁気記録層上にDLC膜からなる保護膜が形成されている。   In the magnetic recording medium, a protective film made of a DLC film is formed on the magnetic recording layer in order to protect the magnetic recording layer from damage caused by contact, sliding, and corrosion of the magnetic head.

スパッタリング法、CVD法で形成したDLC膜を比べた場合、CVD法で形成したDLC膜の方が緻密で硬い。これは、CVD法によるDLC膜が、炭化水素ラジカルから形成されるため、水素を介して3次元的な剛性の強い四面体構造をとり易くなっているためと考えられる。このことから、近年、磁気記録媒体の保護膜には、CVD法で形成したDLC膜が用いられている。   When a DLC film formed by sputtering or CVD is compared, the DLC film formed by CVD is denser and harder. This is presumably because the DLC film formed by the CVD method is formed from hydrocarbon radicals, so that it is easy to take a three-dimensional rigid tetrahedral structure through hydrogen. Therefore, in recent years, a DLC film formed by a CVD method has been used as a protective film for magnetic recording media.

磁気記録媒体の保護膜には、磁気記録層を磁気ヘッドの接触、摺動による損傷、および腐食から保護すると同時に、コンタミネーションガスの吸着が少ないことも要求される。CVD法で形成したDLC膜は緻密で硬いため、保護層としては適しているが、そのままではSO等のコンタミネーションガスを吸着しやすい。その理由は、CVD法によるDLC膜の場合、膜表面にも水素が存在するため、そこがコンタミネーションガスの吸着サイトになっているためと考えられる。 The protective film of the magnetic recording medium is required to protect the magnetic recording layer from contact with the magnetic head, damage due to sliding, and corrosion, and at the same time, to reduce the adsorption of contamination gas. Since the DLC film formed by the CVD method is dense and hard, it is suitable as a protective layer, but it easily adsorbs a contamination gas such as SO 2 as it is. The reason is considered that in the case of a DLC film formed by the CVD method, hydrogen is also present on the film surface, which is a contamination gas adsorption site.

特開2002−32907号公報JP 2002-32907 A 特開平9−128732号公報JP-A-9-128732

上記問題を防ぐために、DLC膜に窒素を添加したり(特許文献1)、保護膜を積層したり(特許文献2)する方法がとられてきた。   In order to prevent the above problem, a method of adding nitrogen to the DLC film (Patent Document 1) or laminating a protective film (Patent Document 2) has been taken.

しかしながら、DLC膜に窒素を添加すると、膜硬度が低下してしまい、また、保護膜を積層することは、磁気スペーシングの点からは有利とは言えない。   However, when nitrogen is added to the DLC film, the film hardness decreases, and it is not advantageous from the viewpoint of magnetic spacing to form a protective film.

そこで、本発明の目的は、膜硬度の低下、磁気スペーシングの増加を伴わず、硬質膜でかつコンタミネーションガスが極めて吸着しにくい、保護膜、該保護膜の製造方法、および該保護膜を有する磁気記録媒体を提供することにある。   Accordingly, an object of the present invention is to provide a protective film, a protective film manufacturing method, and the protective film, which are hard films and hardly adsorb contamination gases without decreasing film hardness and increasing magnetic spacing. An object of the present invention is to provide a magnetic recording medium.

本発明は、所定の部材の表面を被覆する保護膜であって、前記所定の部材の表面に設けられた、sp結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなり、前記テトラヘドラル・アモルファス・カーボン膜は、前記sp結合炭素の比と、水素の濃度と、窒素の濃度とを、一定の組成比で配分することによって、前記所定の部材の表面上に、互いに組成比の異なる層が上下に積層されて構成され、前記sp結合炭素の比は、50%以上であって、前記上下に積層された層のうち下方の層の方が高く設定され、前記水素の濃度は、当該保護膜において10at.%以下に設定され、前記窒素の濃度は、前記上方の層において5at.%以上に、前記下方の層において5at.%未満にそれぞれ設定されたことを特徴とする。 The present invention relates to a protective film covering the surface of the predetermined member, the provided on the surface of the predetermined member, it consists tetrahedral amorphous carbon film mainly containing sp 3 bonded carbon, the tetrahedral The amorphous carbon film has different composition ratios on the surface of the predetermined member by allocating the ratio of sp 3 bonded carbon, the concentration of hydrogen, and the concentration of nitrogen at a constant composition ratio. Layers are stacked one above the other, and the ratio of the sp 3 bond carbon is 50% or more, the lower layer among the layers stacked above and below is set higher, and the concentration of hydrogen is In the protective film, 10 at. % Is set in the following, the concentration of the nitrogen, 5at in the upper layer. % At 5% in the lower layer . It is characterized by being set to less than%.

本発明は、所定の部材の表面を被覆する保護膜の製造方法であって、前記所定の部材上に、sp 結合炭素の比と水素の濃度と窒素の濃度とを一定の組成比で配分することによって、互いに組成比の異なる層を上下に積層して形成する工程を具え、これによって、sp 結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなる保護膜を構成し、前記テトラヘドラル・アモルファス・カーボン膜は、前記sp 結合炭素の比は、50%以上であって、前記上下に積層された層のうち下方の層の方が高く設定され、前記水素の濃度は、当該保護膜において10at.%以下に設定され、 前記窒素の濃度は、前記上方の層において5at.%以上に、前記下方の層において5at.%未満にそれぞれ設定されたことを特徴とする。 The present invention relates to a method for manufacturing a protective film covering the surface of a predetermined member, and the ratio of sp 3 bonded carbon, the concentration of hydrogen, and the concentration of nitrogen are distributed on the predetermined member at a constant composition ratio. Thereby forming a protective film composed of a tetrahedral amorphous carbon film mainly composed of sp 3 -bonded carbon. In the amorphous carbon film, the ratio of the sp 3 bond carbon is 50% or more, and the lower layer is set higher among the upper and lower layers, and the concentration of hydrogen is determined by the protection 10 at. %, And the nitrogen concentration is 5 at. % At 5% in the lower layer. It is characterized by being set to less than% .

本発明は、磁気記録媒体であって、基体と、前記基体上に形成された磁気記録層と、前記磁気記録層上に形成された保護膜とからなり、前記保護膜は、sp 結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなり、前記テトラヘドラル・アモルファス・カーボン膜は、前記sp 結合炭素の比と、水素の濃度と、窒素の濃度とを、一定の組成比で配分することによって、前記磁気記録層の表面上に、互いに組成比の異なる層が上下に積層されて構成され、前記sp 結合炭素の比は、50%以上であって、前記上下に積層された層のうち下方の層の方が高く設定され、前記水素の濃度は、当該保護膜において10at.%以下に設定され、前記窒素の濃度は、前記上方の層において5at.%以上に、前記下方の層において5at.%未満にそれぞれ設定されたことを特徴とする。 The present invention is a magnetic recording medium comprising a substrate, a magnetic recording layer formed on the substrate, and a protective film formed on the magnetic recording layer, the protective film comprising sp 3 bonded carbon. The tetrahedral amorphous carbon film distributes the sp 3 bonded carbon ratio, the hydrogen concentration, and the nitrogen concentration at a constant composition ratio. Thus, layers having different composition ratios are stacked on the surface of the magnetic recording layer, and the sp 3 bond carbon ratio is 50% or more, and the layers stacked above and below Of the lower layer is set higher, and the hydrogen concentration is 10 at. %, And the nitrogen concentration is 5 at. % At 5% in the lower layer. It is characterized by being set to less than% .

本発明によれば、膜表面層5および膜内層6からなり、テトラヘドラル・アモルファス・カーボン膜からなる保護膜において、膜表面層5は水素を含まず窒化処理による窒素を含み、膜内層6は水素、窒素を含まず膜表面層5よりもsp結合炭素に富んだ膜から構成したので、硬質膜でコンタミネーションガスが極めて吸着しにくい保護膜を作製することができ、これにより、耐摺動性や耐摩耗性に優れた磁気記録媒体を作製することが可能となる。 According to the present invention, in the protective film comprising the film surface layer 5 and the inner film layer 6 and comprising the tetrahedral amorphous carbon film, the film surface layer 5 does not contain hydrogen but contains nitrogen by nitriding, and the inner film layer 6 contains hydrogen. Since it is composed of a film that does not contain nitrogen and is richer in sp 3 -bonded carbon than the film surface layer 5, it is possible to produce a protective film that is hard and hardly adsorbs contamination gas. It is possible to produce a magnetic recording medium having excellent properties and wear resistance.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。
[第1の例]
本発明の第1の実施の形態を、図1〜図7に基づいて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First example]
A first embodiment of the present invention will be described with reference to FIGS.

(保護膜)
図1は、保護膜の構成例を示す。
本例では、耐摺動部材又は耐摩耗部材の保護膜を、磁気記録媒体に形成した例について説明する。
(Protective film)
FIG. 1 shows a configuration example of the protective film.
In this example, a description will be given of an example in which a protective film for a sliding-resistant member or an abrasion-resistant member is formed on a magnetic recording medium.

磁気記録媒体1は、図1(a)に示すように、基体2と、基体2上に形成された磁気記録層3と、磁気記録層3上に形成された保護膜4とから構成される。   As shown in FIG. 1A, the magnetic recording medium 1 includes a base 2, a magnetic recording layer 3 formed on the base 2, and a protective film 4 formed on the magnetic recording layer 3. .

保護膜4は、sp結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなり、図1(b)に示すように、膜表面層5と膜内層6から構成されている。 The protective film 4 is composed of a tetrahedral amorphous carbon film mainly composed of sp 3 -bonded carbon, and is composed of a film surface layer 5 and an inner film layer 6 as shown in FIG.

膜表面層5および膜内層6には、それぞれ、主成分としてのsp結合炭素の他に、非主成分としての水素および窒素が一定の濃度比で配分されている。sp結合炭素の比は、膜表面層5よりも膜内層6の方が高くなっている。 In the film surface layer 5 and the inner film layer 6, in addition to sp 3 bonded carbon as a main component, hydrogen and nitrogen as non-main components are distributed at a constant concentration ratio. The ratio of sp 3 bonded carbon is higher in the in-film layer 6 than in the film surface layer 5.

図2は、カーボン膜の相図を示す。sp結合炭素の比とは、(sp結合炭素)/(sp結合炭素+sp結合炭素)として定義される。本例では、このsp結合炭素の比は、50%以上である。 FIG. 2 shows a phase diagram of the carbon film. The ratio of sp 3 bonded carbon, is defined as (sp 3 bonded carbon) / (sp 3 bonded carbon + sp 2 bonded carbon). In this example, the ratio of sp 3 bonded carbon is 50% or more.

水素の濃度は、膜表面層5および膜内層6で、それぞれ、10at.%以下の濃度であることが望ましい。   The concentration of hydrogen was 10 at. % Or less is desirable.

窒素の濃度は、膜表面層5では5at.%以上の濃度であり、また、膜内層6では5at.%未満の濃度、望ましくは略ゼロ値に近い値である。   The concentration of nitrogen is 5 at. %, And the inner layer 6 has a concentration of 5 at. The concentration is less than%, desirably a value close to zero.

このように、膜表面層5および膜内層6において、sp結合炭素の比と、水素の濃度と、窒素の濃度とが、一定の組成比で配分されていることに特徴がある。 Thus, the film surface layer 5 and the inner film layer 6 are characterized in that the ratio of sp 3 bonded carbon, the concentration of hydrogen, and the concentration of nitrogen are distributed at a constant composition ratio.

(製造方法)
次に、保護膜4の製造方法について説明する。
図3は、保護膜4の製造工程の1例を示す。
図3(a)の工程では、基体2上に磁気記録層3を形成する。
図3(b)の工程では、磁気記録層3上に、sp結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなる保護膜4(以下、ta−C膜という)を形成する。
図3(c)の工程では、ta−C膜4の表面を窒化処理し、窒素を含有した膜表面層5と、窒素をほとんど有しない膜内層6とを構成する。
(Production method)
Next, a method for manufacturing the protective film 4 will be described.
FIG. 3 shows an example of the manufacturing process of the protective film 4.
In the step of FIG. 3A, the magnetic recording layer 3 is formed on the base 2.
In the step of FIG. 3B, a protective film 4 (hereinafter referred to as a ta-C film) made of a tetrahedral amorphous carbon film containing sp 3 bonded carbon as a main component is formed on the magnetic recording layer 3.
In the step of FIG. 3C, the surface of the ta-C film 4 is nitrided to form a film surface layer 5 containing nitrogen and an inner film layer 6 having almost no nitrogen.

図4は、ta−C膜4を形成するためのフィルタード・カソーディック・アーク(以下、FCAという)装置20の構成例を示す。   FIG. 4 shows a configuration example of a filtered cathodic arc (hereinafter referred to as FCA) apparatus 20 for forming the ta-C film 4.

FCA装置20は、アーク源21と、磁気フィルター22と、成膜チャンバー23とに大別される。   The FCA apparatus 20 is roughly divided into an arc source 21, a magnetic filter 22, and a film forming chamber 23.

アーク源21は、外径76mm、内径70mmのステンレスパイプをアーク源用真空室24の本体として用いた。このアーク源用真空室24は、電気的に接地されている。   As the arc source 21, a stainless steel pipe having an outer diameter of 76 mm and an inner diameter of 70 mm was used as the main body of the arc source vacuum chamber 24. The arc source vacuum chamber 24 is electrically grounded.

アーク源21の陰極25には、純度99.999%、直径30mm、厚さ30mmの円柱状のグラファイト(炭素)を用い、電気的に接地しないようにしてアーク源用真空室24内に設置すると共に、直流アーク電源26に接続されている。陰極25、陽極27、アーク源用真空室24は、アーク放電時の過熱を防ぐために水冷式となっている。また、陰極25の表面に接触させて、アーク放電を開始させるためのストライカー28が設置されている。   The cathode 25 of the arc source 21 is made of cylindrical graphite (carbon) having a purity of 99.999%, a diameter of 30 mm, and a thickness of 30 mm, and is installed in the arc source vacuum chamber 24 without being electrically grounded. At the same time, it is connected to a DC arc power source 26. The cathode 25, anode 27, and arc source vacuum chamber 24 are water-cooled to prevent overheating during arc discharge. In addition, a striker 28 is provided for starting arc discharge in contact with the surface of the cathode 25.

磁気フィルター22は、外径76mm、内径70mm、曲率半径300mmの1/4円弧状ステンレスパイプをコアとして、このコアに線径2mmのポリエステル被覆銅線を巻いた電磁石コイル31により構成されている。電磁石コイル31の単位長さ当たりの巻き数は、1000ターン/mである。   The magnetic filter 22 is composed of an electromagnetic coil 31 in which a 1/4 arc stainless steel pipe having an outer diameter of 76 mm, an inner diameter of 70 mm, and a curvature radius of 300 mm is used as a core, and a polyester-coated copper wire having a wire diameter of 2 mm is wound around the core. The number of turns per unit length of the electromagnet coil 31 is 1000 turns / m.

真空に排気された成膜チャンバー23内には、磁気記録層3まで形成された直径65mmの磁気記録媒体1が成膜基板として設置されている。29はシャッターであり、30はX方向ラスターコイルである。   In the film forming chamber 23 evacuated to vacuum, the magnetic recording medium 1 having a diameter of 65 mm formed up to the magnetic recording layer 3 is installed as a film forming substrate. Reference numeral 29 denotes a shutter, and reference numeral 30 denotes an X direction raster coil.

このようなFCA装置20を用いて、アーク源21のストライカー28によりアーク放電(陰極物質プラズマを形成)を開始する。これにより、図3(b)に示したように、磁気記録媒体1の磁気記録層3上に、膜厚4nmのta−C膜4を成膜することができる(FCA法)。ただし、アーク電圧は30V、アーク電流は120Aとした。   Using such an FCA apparatus 20, arc discharge (formation of cathode material plasma) is started by the striker 28 of the arc source 21. As a result, as shown in FIG. 3B, the ta-C film 4 having a thickness of 4 nm can be formed on the magnetic recording layer 3 of the magnetic recording medium 1 (FCA method). However, the arc voltage was 30 V and the arc current was 120 A.

さらに、このta−C膜4まで形成された磁気記録媒体1を真空に維持したまま、プラズマ処理チャンバー(図示せず)に搬送し、所定の窒素圧力下でグロー放電させてta−C膜4の表面を窒化する(表面窒素プラズマ処理)。これにより、図1(b)に示したように、膜表面層5および膜内層6を形成することができる。   Further, the magnetic recording medium 1 formed up to the ta-C film 4 is conveyed to a plasma processing chamber (not shown) while maintaining a vacuum, and is subjected to glow discharge under a predetermined nitrogen pressure to cause the ta-C film 4. Is nitrided (surface nitrogen plasma treatment). Thereby, as shown in FIG.1 (b), the film | membrane surface layer 5 and the film inner layer 6 can be formed.

(sp結合炭素/水素/窒素の組成比)
次に、このようにして作製した磁気記録媒体1において、膜表面層5と膜内層6に含まれる、sp結合炭素の比、水素の濃度、窒素の濃度を測定した。
(Composition ratio of sp 3 bonded carbon / hydrogen / nitrogen)
Next, in the magnetic recording medium 1 thus manufactured, the ratio of sp 3 bond carbon, the concentration of hydrogen, and the concentration of nitrogen contained in the film surface layer 5 and the inner film layer 6 were measured.

水素前方散乱法(HFS)により求めた深さ1nmまでの膜表面層5における水素の量は、1.1at.%であった。   The amount of hydrogen in the film surface layer 5 up to a depth of 1 nm determined by the hydrogen forward scattering method (HFS) is 1.1 at. %Met.

X線光電子分光法(XPS)のClsピークをピーク分離して求めたsp結合炭素の比は、83%であった。 The ratio of sp 3 -bonded carbon obtained by peak separation of the Cls peak of X-ray photoelectron spectroscopy (XPS) was 83%.

オージェ電子分光法(AES)の深さ方向測定により求めた深さ1nmを超える膜内層6の窒素の量は、0.7at.%であり、深さ1nmまでの膜表面層5の窒素の量は10.4at.%であった。   The amount of nitrogen in the inner layer 6 exceeding 1 nm in depth obtained by measurement in the depth direction of Auger electron spectroscopy (AES) is 0.7 at. %, And the amount of nitrogen in the film surface layer 5 up to a depth of 1 nm is 10.4 at. %Met.

図5は、膜表面層5と膜内層6に含まれる、sp結合炭素の比、水素の濃度、窒素の濃度を、工程毎にまとめたものである。 FIG. 5 summarizes the ratio of sp 3 bonded carbon, the concentration of hydrogen, and the concentration of nitrogen contained in the film surface layer 5 and the inner film layer 6 for each step.

図6は、sp結合炭素の比、水素の濃度、窒素の濃度のデプスプロファイル特性を示す。 FIG. 6 shows the depth profile characteristics of sp 3 bonded carbon ratio, hydrogen concentration, and nitrogen concentration.

この磁気記録媒体1を、所定の温度、湿度で、所定の濃度のSOガス環境下に10時間放置した後、飛行時間型2次イオン質量分析装置(TOF−SIMS)を用いてガス吸着量(SO イオン)を測定したところ、3分当たり、約920カウントであった。 The magnetic recording medium 1 is allowed to stand in a SO 2 gas environment having a predetermined concentration at a predetermined temperature and humidity for 10 hours, and then a gas adsorption amount is measured using a time-of-flight secondary ion mass spectrometer (TOF-SIMS). (SO 3 - ions) was measured per 3 minutes, was about 920 counts.

膜表面層5の深さは、約0.0〜1.0nmの範囲である。膜内層6の深さは、約1.0nm〜4.0nmの範囲である。なお、sp結合炭素の比は、膜内層6でのsp結合炭素の比の平均的な値である。 The depth of the film surface layer 5 is in the range of about 0.0 to 1.0 nm. The depth of the inner layer 6 is in the range of about 1.0 nm to 4.0 nm. The ratio of sp 3 bonded carbon is an average value of the ratio of sp 3 -bonded carbon in the film inner layer 6.

図7に、図6のデプスプロファイル特性の比較例を示す。
飛行時間型2次イオン質量分析装置(TOF−SIMS)を用いてガス吸着量(SO イオン)を測定したところ、3分当たり、約4450カウントであった。
FIG. 7 shows a comparative example of the depth profile characteristics of FIG.
Time-of-flight secondary ion mass spectrometer (TOF-SIMS) gas adsorption amount using the (SO 3 - ions) was measured per 3 minutes, was about 4450 counts.

以上の測定結果から、sp結合炭素の比、水素の濃度、窒素の濃度について比較検討する。 From the above measurement results, the sp 3 bonded carbon ratio, the hydrogen concentration, and the nitrogen concentration will be compared.

sp結合炭素の比は、ta−C膜4の形成工程の後において比較すると、膜表面層5の方が、膜内層6の83%よりも低い値になっている。これは、終端構造のために膜内層6よりも低くなっているためであると考えられる。また、窒化処理工程の後において比較すると、膜表面層5の方が、膜内層6の83%よりもかなり低い値になっている。これは、終端構造に加え、窒化処理の影響で膜内層6よりもさらに低下したためであると考えられる。 The ratio of the sp 3 bond carbon is lower in the film surface layer 5 than in the inner film layer 83 compared to 83% when compared after the step of forming the ta-C film 4. This is considered to be because it is lower than the inner film layer 6 due to the termination structure. Further, when compared after the nitriding treatment step, the film surface layer 5 has a considerably lower value than 83% of the inner film layer 6. This is presumably because the film was further lowered than the inner layer 6 due to the influence of the nitriding treatment in addition to the termination structure.

水素の濃度は、ta−C膜4の形成工程および窒化処理工程の後において濃度差はみられず、膜表面層5および膜内層6の量は共に微量でほぼゼロに近い値となっている。   As for the concentration of hydrogen, there is no difference in concentration after the formation process of the ta-C film 4 and the nitriding treatment process, and the amounts of the film surface layer 5 and the inner layer 6 are both very small and almost zero. .

窒素の濃度は、ta−C膜4の形成工程の後においては、膜表面層5および膜内層6の量に濃度差はみられない。窒化処理工程の後においては、膜内層6での濃度変化はみられないが、膜表面層5が膜内層6よりも高い値10.4at.%となっている。   Regarding the concentration of nitrogen, there is no difference in concentration between the film surface layer 5 and the inner film layer 6 after the step of forming the ta-C film 4. After the nitriding process, the concentration change in the inner layer 6 is not observed, but the film surface layer 5 has a higher value of 10.4 at. %.

(膜表面層/膜内層の層構造)
次に、ta−C膜4を構成する膜表面層5および膜内層6の層構造について考察する。 図5、図6で説明したように、膜内層6でのsp結合炭素の比(83%)は、終端構造および窒化の影響を受ける膜表面層5のsp結合炭素の比(≪83%)に比べてかなり高い値となっている。このようにta−C膜4は、sp結合炭素の比が膜表面層5よりもさらに高く設定された膜内層6を有する構造とされていることから、たとえ膜表面層5が摩耗してもその下には硬質な膜内層6が存在するので、膜硬度を長期間に渡って維持することができる。
(Layer structure of membrane surface layer / inner membrane layer)
Next, the layer structure of the film surface layer 5 and the inner film layer 6 constituting the ta-C film 4 will be considered. 5, as described in FIG. 6, sp 3 ratio of bonded carbon (83%) in the film inner layer 6, the ratio of sp 3 bonded carbon of the membrane surface layer 5 that are affected by termination structures and nitride («83 %) Is considerably higher. Thus, since the ta-C film 4 has a structure having the inner film layer 6 in which the ratio of sp 3 bond carbon is set higher than that of the film surface layer 5, the film surface layer 5 is worn. However, since the hard inner film layer 6 exists below, the film hardness can be maintained over a long period of time.

また、図6、図7から、ガス吸着量(SO イオン)は、比較例の4450カウントに比べて920カウントであることから、コンタミネーションガスが極めて吸着しにくい構造とすることができる。 6 and 7, the gas adsorption amount (SO 3 ions) is 920 counts compared to 4450 counts in the comparative example, so that a structure in which the contamination gas is extremely difficult to adsorb can be obtained.

[第2の例]
本発明の第2の実施の形態を、図8〜図10に基づいて説明する。なお、前述した第1の例と同一部分については、その説明を省略し、同一符号を付す。
[Second example]
A second embodiment of the present invention will be described with reference to FIGS. In addition, about the same part as the 1st example mentioned above, the description is abbreviate | omitted and the same code | symbol is attached | subjected.

本例では、FCA装置20にて、図3(b)のta−C膜4まで形成する際に、所定量の水素を適切なタイミングで添加することにより、深さ1nmまでの膜表面層5の水素の量を種々変化させたサンプルを作製した。   In this example, when the FCA apparatus 20 forms up to the ta-C film 4 in FIG. 3B, a predetermined amount of hydrogen is added at an appropriate timing, so that the film surface layer 5 up to a depth of 1 nm is obtained. Samples with various amounts of hydrogen were prepared.

また、それらのサンプルを図3(c)の表面窒素プラズマ処理する際に、窒素圧力を変え、深さ1nmまでの膜表面層5の窒素の量も種々変化させたサンプルを作製した。ただし、深さ1nmを超える膜内層6の窒素量は、0.7at.%である。   In addition, when these samples were subjected to the surface nitrogen plasma treatment of FIG. 3C, samples in which the nitrogen pressure was changed and the amount of nitrogen in the film surface layer 5 up to a depth of 1 nm were variously changed were produced. However, the amount of nitrogen in the inner layer 6 exceeding 1 nm in depth is 0.7 at. %.

図8は、ガス吸着量(SO イオン、3分当たりのカウント数)を測定した結果を示す。
図8中、水素の量および窒素の量は、膜表面層5の深さ0.0nmにおける値である。
Figure 8 is a gas adsorption amount - shows the results of measurement of (SO 3 ion count per 3 minutes).
In FIG. 8, the amount of hydrogen and the amount of nitrogen are values at a depth of 0.0 nm of the film surface layer 5.

図9は、sp結合炭素の比、水素の濃度、窒素の濃度のデプスプロファイル特性を示す。
この例では、図8における膜表面層5の水素の量が9.8at.%で、窒素の量が5.7at.%のときの測定値を表す。ガス吸着量(SO イオン、3分当たりのカウント数)は、カウント数が1950カウントとなった。
FIG. 9 shows the depth profile characteristics of sp 3 bonded carbon ratio, hydrogen concentration, and nitrogen concentration.
In this example, the amount of hydrogen in the film surface layer 5 in FIG. % And the amount of nitrogen is 5.7 at. It represents the measured value when%. Gas adsorption amount (SO 3 - ions, the number of counts per 3 minutes), the count number becomes 1950 counts.

図10は、図9の比較例としてのデプスプロファイル特性を示す。
この例では、図8における膜表面層5の水素の量が19.6at.%で、窒素の量が10.4at.%のときの測定値を表す。ガス吸着量(SO イオン、3分当たりのカウント数)は、カウント数が2750カウントとなった。
FIG. 10 shows a depth profile characteristic as a comparative example of FIG.
In this example, the amount of hydrogen in the film surface layer 5 in FIG. % And the amount of nitrogen is 10.4 at. It represents the measured value when%. Gas adsorption amount (SO 3 - ions, the number of counts per 3 minutes), the count number becomes 2750 counts.

以上より、膜表面層5においては、水素の量が10at.%以下で、かつ、窒素の量が5at.%以上のときにカウント数が2000未満となった。その結果、膜硬度の低下や、磁気スペーシングの増加を伴わず、硬質膜でかつコンタミネーションガスが吸着しにくい保護膜を作成することができた。   As described above, in the film surface layer 5, the amount of hydrogen is 10 at. % And the amount of nitrogen is 5 at. When the percentage was greater than or equal to%, the count number was less than 2000. As a result, it was possible to produce a protective film that is hard and difficult to adsorb the contamination gas without decreasing the film hardness or increasing the magnetic spacing.

これに対して、膜表面層5の水素の量が10at.%より多く、又は膜表面層5の窒素の量が5at.%未満のときには、カウント数が2000以上となり、良好な保護膜は得られなかった。   On the other hand, the amount of hydrogen in the film surface layer 5 is 10 at. % Or the amount of nitrogen in the film surface layer 5 is 5 at. When it was less than%, the count number was 2000 or more, and a good protective film could not be obtained.

[第3の例]
本発明の第3の実施の形態を、図11〜図13に基づいて説明する。なお、前述した第1の例と同一部分については、その説明を省略し、同一符号を付す。
[Third example]
A third embodiment of the present invention will be described with reference to FIGS. In addition, about the same part as the 1st example mentioned above, the description is abbreviate | omitted and the same code | symbol is attached | subjected.

FCA装置20およびスパッタ装置にて、sp結合炭素の比を種々変化させたサンプルを作製した。なお、sp結合炭素の比は、FCA装置における基板バイアス電圧又はスパッタ装置におけるスパッタパワーを変えるこにより変化させた。
また、第1の例と同様に表面窒素プラズマ処理をした。
Samples with various sp 3 bonded carbon ratios were prepared using the FCA apparatus 20 and the sputtering apparatus. The ratio of sp 3 bonded carbon was changed by changing the substrate bias voltage in the FCA apparatus or the sputtering power in the sputtering apparatus.
Further, the surface nitrogen plasma treatment was performed as in the first example.

図11は、X線光電子分光法(XPS)のClsピークをピーク分離して求めたsp結合炭素の比、および、ボールオンディスク試験による比摩耗量の結果を示す。 FIG. 11 shows the ratio of sp 3 -bonded carbon obtained by peak separation of the Cls peak of X-ray photoelectron spectroscopy (XPS), and the results of specific wear by a ball-on-disk test.

試料1〜4のうち、試料1,2はスパッタ装置においてスパッタパワーを変えて成膜し、試料3,4は本発明のFCA法において基板バイアス電圧を変えて成膜した。また、試料5は、前述した第1の例で作成した磁気記録媒体1である。   Among samples 1 to 4, samples 1 and 2 were formed by changing the sputtering power in the sputtering apparatus, and samples 3 and 4 were formed by changing the substrate bias voltage in the FCA method of the present invention. Sample 5 is the magnetic recording medium 1 prepared in the first example described above.

図12は、sp結合炭素の比、水素の濃度、窒素の濃度のデプスプロファイル特性を示す。
この例は図11の試料3を表し、sp結合炭素の比が55%のときの測定値を示す。比摩耗量は、0.7×10−7mm/N・mとなり、ガス吸着量(SO イオン、3分当たりのカウント数)は、カウント数が920カウントとなった。
FIG. 12 shows the depth profile characteristics of sp 3 bonded carbon ratio, hydrogen concentration, and nitrogen concentration.
This example represents sample 3 in FIG. 11 and shows the measured value when the ratio of sp 3 -bonded carbon is 55%. Specific wear amount, 0.7 × 10 -7 mm 3 / N · m , and the gas adsorption amount (SO 3 - ions, the number of counts per 3 minutes), the count number becomes 920 counts.

図13は、図12の比較例としてのデプスプロファイル特性を示す。
この例は図11の試料2を表し、sp結合炭素の比が28%のときの測定値を示す。比摩耗量は、2.4×10−7mm/N・mとなり、ガス吸着量(SO イオン、3分当たりのカウント数)は、カウント数が920カウントとなった。
FIG. 13 shows a depth profile characteristic as a comparative example of FIG.
This example represents sample 2 in FIG. 11 and shows the measured value when the ratio of sp 3 -bonded carbon is 28%. Specific wear amount, 2.4 × 10 -7 mm 3 / N · m , and the gas adsorption amount (SO 3 - ions, the number of counts per 3 minutes), the count number becomes 920 counts.

以上より、試料1〜5について比較する。
まず、試料3〜5では、sp結合炭素の比はいずれも50%以上であり、比摩耗量は1.0×10−7mm/N・m未満となり、良好な保護膜が得られた。
From the above, the samples 1 to 5 are compared.
First, in Samples 3 to 5, the sp 3 bonded carbon ratio is 50% or more, the specific wear amount is less than 1.0 × 10 −7 mm 3 / N · m, and a good protective film is obtained. It was.

このとき、水素前方散乱法(HFS)により求めた深さ1nmまでの膜表面層5の水素の量は、いずれも1.0at.%程度であった。また、オージェ電子分光法(AES)の深さ方向測定により求めた深さ1nmを超える膜内層6の窒素の量は1.0at.%未満であり、深さ1nmまでの膜表面層5の窒素の量は10.0 at.%程度であった。   At this time, the amount of hydrogen in the film surface layer 5 up to a depth of 1 nm obtained by the hydrogen forward scattering method (HFS) is 1.0 at. %. Further, the amount of nitrogen in the inner layer 6 exceeding 1 nm in depth obtained by measurement in the depth direction by Auger electron spectroscopy (AES) is 1.0 at. % And the amount of nitrogen in the film surface layer 5 up to a depth of 1 nm is 10.0 at. %.

これに対して、試料1,2では、sp結合炭素の比はいずれも50%未満であり、比摩耗量は1.0×10−7mm/N・m以上となり、良好な保護膜は得られなかった。 On the other hand, in samples 1 and 2, the sp 3 bond carbon ratio is less than 50%, and the specific wear amount is 1.0 × 10 −7 mm 3 / N · m or more, which is a good protective film. Was not obtained.

このとき、水素前方散乱法(HFS)により求めた深さ1nmまでの膜表面層5の水素の量は、いずれも1.0at.%程度であった。また、オージェ電子分光法(AES)の深さ方向測定により求めた膜内層6の窒素の量は1.0at.%未満であり、深さ1nmまでの膜表面層5の窒素の量は10.0at.%程度であった。   At this time, the amount of hydrogen in the film surface layer 5 up to a depth of 1 nm determined by the hydrogen forward scattering method (HFS) is 1.0 at. %. The amount of nitrogen in the inner layer 6 determined by the Auger electron spectroscopy (AES) depth measurement is 1.0 at. %, And the amount of nitrogen in the film surface layer 5 up to a depth of 1 nm is 10.0 at. %.

[第4の例]
本発明の第4の実施の形態を、図14〜図16に基づいて説明する。なお、前述した第1の例と同一部分については、その説明を省略し、同一符号を付す。
[Fourth example]
A fourth embodiment of the present invention will be described with reference to FIGS. In addition, about the same part as the 1st example mentioned above, the description is abbreviate | omitted and the same code | symbol is attached | subjected.

FCA装置20にて、ta−C膜4を形成する際に、所定量の窒素を添加することにより、深さ1nmを超える膜内層6の窒素の量を種々変化させたサンプルを作製した。   When the ta-C film 4 was formed with the FCA apparatus 20, samples with various amounts of nitrogen in the inner layer 6 exceeding 1 nm in depth were prepared by adding a predetermined amount of nitrogen.

図14は、深さ1nmを超える膜内層6の窒素の量、および、ボールオンディスク試験による比摩耗量の結果を示す。なお、試料1は、前述した第1の例で作成した磁気記録媒体1である。   FIG. 14 shows the result of the amount of nitrogen in the inner layer 6 exceeding 1 nm in depth and the specific wear amount by the ball-on-disk test. Sample 1 is the magnetic recording medium 1 prepared in the first example described above.

図15は、sp結合炭素の比、水素の濃度、窒素の濃度のデプスプロファイル特性を示す。
この例は図14の試料6を表し、膜内層6の窒素の量が2.3at.%のときの測定値を示す。比摩耗量は、0.5×10−7mm/N・mとなり、ガス吸着量(SO イオン、3分当たりのカウント数)は、カウント数が920カウントとなった。
FIG. 15 shows the depth profile characteristics of sp 3 bonded carbon ratio, hydrogen concentration, and nitrogen concentration.
This example represents the sample 6 of FIG. 14, and the amount of nitrogen in the inner layer 6 is 2.3 at. The measured value at% is shown. Specific wear amount, 0.5 × 10 -7 mm 3 / N · m , and the gas adsorption amount (SO 3 - ions, the number of counts per 3 minutes), the count number becomes 920 counts.

図16は、図15の比較例としてのデプスプロファイル特性を示す。
この例は図14の試料7を表し、膜内層6の窒素の量が6.5at.%のときの測定値を示す。比摩耗量は、1.2×10−7mm/N・mとなり、ガス吸着量(SO イオン、3分当たりのカウント数)は、カウント数が920カウントとなった。
FIG. 16 shows a depth profile characteristic as a comparative example of FIG.
This example represents the sample 7 of FIG. 14, and the amount of nitrogen in the inner layer 6 is 6.5 at. The measured value at% is shown. Specific wear amount, 1.2 × 10 -7 mm 3 / N · m , and the gas adsorption amount (SO 3 - ions, the number of counts per 3 minutes), the count number becomes 920 counts.

以上より、試料1,6〜9について比較する。
まず、試料1,6では、膜内層6の窒素の量が5at.%未満であり、比摩耗量は1.0×10−7mm/N・m未満となり、良好な保護膜が得られた。
From the above, the samples 1 and 6 to 9 are compared.
First, in samples 1 and 6, the amount of nitrogen in the inner layer 6 is 5 at. %, The specific wear amount was less than 1.0 × 10 −7 mm 3 / N · m, and a good protective film was obtained.

これに対して、試料7〜9では、膜内層6の窒素の量が5at.%以上であり、比摩耗量は1.0×10−7mm/N・m以上となり、良好な保護膜は得られなかった。 On the other hand, in samples 7 to 9, the amount of nitrogen in the inner layer 6 is 5 at. %, The specific wear amount was 1.0 × 10 −7 mm 3 / N · m or more, and a good protective film could not be obtained.

本発明の第1の実施の形態である、保護膜の構造を示す断面図である。It is sectional drawing which shows the structure of the protective film which is the 1st Embodiment of this invention. カーボン膜の相図である。It is a phase diagram of a carbon film. 保護膜の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a protective film. フィルタード・カソーディック・アーク装置の構成図である。It is a block diagram of a filtered cathodic arc device. 各工程の層中に含まれる水素および窒素の量、sp結合炭素の比を示す説明図である。The amount of hydrogen and nitrogen contained in the layer in each step is an explanatory diagram showing the ratio of sp 3 -bonded carbon. 本発明に係るデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic which concerns on this invention. 図6の比較例としてのデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic as a comparative example of FIG. 本発明の第2の実施の形態である、膜表面層の水素の量、窒素の量に対するガス吸着量を示す説明図である。It is explanatory drawing which shows the gas adsorption amount with respect to the quantity of hydrogen of the film | membrane surface layer and the quantity of nitrogen which is the 2nd Embodiment of this invention. 本発明に係るデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic which concerns on this invention. 図9の比較例としてのデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic as a comparative example of FIG. 本発明の第3の実施の形態である、sp結合炭素の比および比摩耗量を示す説明図である。Is a third embodiment of the present invention, it is an explanatory diagram showing a specific and specific wear amount of sp 3 -bonded carbon. 本発明に係るデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic which concerns on this invention. 図12の比較例としてのデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic as a comparative example of FIG. 本発明の第4の実施の形態である、膜内層での窒素の量および比摩耗量を示す説明図である。It is explanatory drawing which shows the quantity of nitrogen and the specific abrasion loss in the film | membrane inner layer which is the 4th Embodiment of this invention. 本発明に係るデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic which concerns on this invention. 図15の比較例としてのデプスプロファイル特性を示す説明図である。It is explanatory drawing which shows the depth profile characteristic as a comparative example of FIG.

符号の説明Explanation of symbols

1 磁気記録媒体
2 基体
3 磁気記録層
4 保護膜
5 膜表面層
6 膜内層
20 FCA装置
21 アーク源
22 磁気フィルター
23 成膜チャンバー
24 アーク源用真空室
25 陰極
26 直流アーク電源
27 陽極
28 ストライカー
29 シャッター
30 X方向ラスターコイル
31 電磁石コイル
DESCRIPTION OF SYMBOLS 1 Magnetic recording medium 2 Base | substrate 3 Magnetic recording layer 4 Protective film 5 Film surface layer 6 Film inner layer 20 FCA apparatus 21 Arc source 22 Magnetic filter 23 Film forming chamber 24 Arc source vacuum chamber 25 Cathode 26 DC arc power supply 27 Anode 28 Striker 29 Shutter 30 X direction raster coil 31 Electromagnetic coil

Claims (3)

所定の部材の表面を被覆する保護膜であって、
前記所定の部材の表面に設けられた、sp結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなり、
前記テトラヘドラル・アモルファス・カーボン膜は、
前記sp結合炭素の比と、水素の濃度と、窒素の濃度とを、一定の組成比で配分することによって、
前記所定の部材の表面上に、互いに組成比の異なる層が上下に積層されて構成され、
前記sp結合炭素の比は、50%以上であって、前記上下に積層された層のうち下方の層の方が高く設定され、
前記水素の濃度は、当該保護膜において10at.%以下に設定され、
前記窒素の濃度は、前記上方の層において5at.%以上に、前記下方の層において5at.%未満にそれぞれ設定されたことを特徴とする保護膜。
A protective film covering the surface of a predetermined member,
A tetrahedral amorphous carbon film mainly composed of sp 3 bonded carbon provided on the surface of the predetermined member;
The tetrahedral amorphous carbon film is
By distributing the ratio of sp 3 bonded carbon, the concentration of hydrogen, and the concentration of nitrogen at a constant composition ratio,
On the surface of the predetermined member, layers having different composition ratios are stacked one above the other ,
The ratio of the sp 3 bond carbon is 50% or more, and the lower layer of the layers stacked above and below is set higher.
The hydrogen concentration is 10 at. % Or less ,
The concentration of the nitrogen, 5at in the upper layer. % At 5% in the lower layer . A protective film characterized by being set to less than%.
所定の部材の表面を被覆する保護膜の製造方法であって、
前記所定の部材上に、sp 結合炭素の比と水素の濃度と窒素の濃度とを一定の組成比で配分することによって、互いに組成比の異なる層を上下に積層して形成する工程を具え、
これによって、sp 結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなる保護膜を構成し、
前記テトラヘドラル・アモルファス・カーボン膜は、
前記sp 結合炭素の比は、50%以上であって、前記上下に積層された層のうち下方の層の方が高く設定され、
前記水素の濃度は、当該保護膜において10at.%以下に設定され、
前記窒素の濃度は、前記上方の層において5at.%以上に、前記下方の層において5at.%未満にそれぞれ設定されたことを特徴とする保護膜の製造方法。
A method for producing a protective film covering the surface of a predetermined member,
A step of stacking layers having different composition ratios on top and bottom by allocating sp 3 -bonded carbon ratio, hydrogen concentration and nitrogen concentration at a constant composition ratio on the predetermined member; ,
Thereby, a protective film composed of a tetrahedral amorphous carbon film mainly composed of sp 3 bonded carbon is constituted,
The tetrahedral amorphous carbon film is
The ratio of the sp 3 bond carbon is 50% or more, and the lower layer of the layers stacked above and below is set higher.
The hydrogen concentration is 10 at. % Or less,
The nitrogen concentration is 5 at. % At 5% in the lower layer. A method for producing a protective film, characterized in that each is set to less than% .
磁気記録媒体であって、
基体と、
前記基体上に形成された磁気記録層と、
前記磁気記録層上に形成された保護膜とからなり、
前記保護膜は、sp 結合炭素を主成分としたテトラヘドラル・アモルファス・カーボン膜からなり、
前記テトラヘドラル・アモルファス・カーボン膜は、
前記sp 結合炭素の比と、水素の濃度と、窒素の濃度とを、一定の組成比で配分することによって、
前記磁気記録層の表面上に、互いに組成比の異なる層が上下に積層されて構成され、
前記sp 結合炭素の比は、50%以上であって、前記上下に積層された層のうち下方の層の方が高く設定され、
前記水素の濃度は、当該保護膜において10at.%以下に設定され、
前記窒素の濃度は、前記上方の層において5at.%以上に、前記下方の層において5at.%未満にそれぞれ設定されたことを特徴とする磁気記録媒体。
A magnetic recording medium,
A substrate;
A magnetic recording layer formed on the substrate;
A protective film formed on the magnetic recording layer,
The protective film is composed of a tetrahedral amorphous carbon film mainly composed of sp 3 bonded carbon,
The tetrahedral amorphous carbon film is
By distributing the ratio of the sp 3 bonded carbon, the concentration of hydrogen, and the concentration of nitrogen at a constant composition ratio,
On the surface of the magnetic recording layer, layers having different composition ratios are stacked one above the other,
The ratio of the sp 3 bond carbon is 50% or more, and the lower layer of the layers stacked above and below is set higher.
The hydrogen concentration is 10 at. % Or less,
The nitrogen concentration is 5 at. % At 5% in the lower layer. A magnetic recording medium characterized by being set to less than% .
JP2003413701A 2003-12-11 2003-12-11 Protective film, method for producing protective film, and magnetic recording medium Expired - Fee Related JP4100686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413701A JP4100686B2 (en) 2003-12-11 2003-12-11 Protective film, method for producing protective film, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413701A JP4100686B2 (en) 2003-12-11 2003-12-11 Protective film, method for producing protective film, and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005171329A JP2005171329A (en) 2005-06-30
JP4100686B2 true JP4100686B2 (en) 2008-06-11

Family

ID=34733755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413701A Expired - Fee Related JP4100686B2 (en) 2003-12-11 2003-12-11 Protective film, method for producing protective film, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4100686B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8332908B2 (en) 2006-06-22 2012-12-11 Nec Corporation Sharing management system, sharing management method and program
JP2009203541A (en) * 2008-02-29 2009-09-10 Ntn Corp Sliding member
US8559136B1 (en) * 2012-11-14 2013-10-15 HGST Netherlands B.V. Hard amorphous carbon film containing ultratrace hydrogen for magnetic recording media and magnetic heads
JP5669117B2 (en) * 2013-11-05 2015-02-12 国立大学法人豊橋技術科学大学 Method for manufacturing DLC film
WO2015132830A1 (en) * 2014-03-04 2015-09-11 キヤノンアネルバ株式会社 Vacuum processing device and vacuum processing method

Also Published As

Publication number Publication date
JP2005171329A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4839723B2 (en) Protective film forming method and magnetic recording medium provided with the protective film
WO2007111245A1 (en) Method for manufacturing magnetic disc, and magnetic disc
US6902773B1 (en) Energy gradient ion beam deposition of carbon overcoats on rigid disk media for magnetic recordings
JP2010055680A (en) Method of forming protection film for magnetic recording medium, protection film formed by the method, and magnetic recording medium including the protection film
KR20080073258A (en) Magnetic recording head and media overcoat
US10370613B2 (en) Grey cast iron-doped diamond-like carbon coatings and methods for depositing same
US5901021A (en) Thin-film magnetic head
WO2006125613A1 (en) Coating comprising layered structures of diamond like nanocomposite layers and diamond like carbon layers
JP4100686B2 (en) Protective film, method for producing protective film, and magnetic recording medium
WO2013061398A1 (en) Cxnyhz film, film forming method, magnetic recording medium, and method for producing same
US6613422B1 (en) Nitrogen -implanted, high carbon density overcoats for recording media
JP2006161075A (en) Hard carbon film, and its depositing method
JP4720052B2 (en) Apparatus and method for forming amorphous carbon film
CN103069485A (en) Protective film, and magnetic recording medium having protective film
JP5772757B2 (en) Method and apparatus for forming amorphous hard carbon film
JP4733941B2 (en) Sealing material and manufacturing method thereof
JP2007100133A (en) Member coated with hard film and production method therefor
JPH11158631A (en) Protective film, its production and article
US20100277852A1 (en) Dielectric coatings and use in capacitors
US8367207B2 (en) Method of producing a hydrogenated amorphous carbon coating
CN1085871C (en) Magnetic head and manufacturing method thereof
CN105229739B (en) Method for manufacturing carbon -containing protective film
US8028653B2 (en) System, method and apparatus for filament and support used in plasma-enhanced chemical vapor deposition for reducing carbon voids on media disks in disk drives
JP2000222724A (en) Film forming method and production of magnetic recording medium
JP2006127619A (en) Magnetic recording medium and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4100686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees