JP4100086B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP4100086B2
JP4100086B2 JP2002228965A JP2002228965A JP4100086B2 JP 4100086 B2 JP4100086 B2 JP 4100086B2 JP 2002228965 A JP2002228965 A JP 2002228965A JP 2002228965 A JP2002228965 A JP 2002228965A JP 4100086 B2 JP4100086 B2 JP 4100086B2
Authority
JP
Japan
Prior art keywords
fine particles
fuel cell
less
carbon fine
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002228965A
Other languages
Japanese (ja)
Other versions
JP2004071352A (en
Inventor
洋一 大橋
一夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002228965A priority Critical patent/JP4100086B2/en
Publication of JP2004071352A publication Critical patent/JP2004071352A/en
Application granted granted Critical
Publication of JP4100086B2 publication Critical patent/JP4100086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、黒鉛質成形体よりなる燃料電池セパレータに係り、特に、黒鉛質炭素微粒子と自己焼結性炭素微粒子とを混合、造粒して得られる造粒物を加圧成形、焼成してなる燃料電池セパレータであって、貫通穴やリブ付きの、大面積の燃料電池セパレータであっても、良好な面精度で歩留り良く製造することが可能な燃料電池セパレータに関する。
【0002】
【従来の技術】
近年、発電効率が高く環境性にも優れているエネルギー供給源として、燃料電池が注目されている。中でも、電解質に固体高分子を使った固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cells)が最も注目されている。この固体高分子型燃料電池は、電解質となるフィルム状のイオン交換膜の両側に触媒層を有し、更にその両側には集電体が設けられ、膜・電極接合体(MEA)を形成している。そして、その外側に、燃料の通り道となる溝を付けたセパレータが設けられ、MEAとセパレータとの間を水素あるいは酸素が通り、これらを全てを一体化して1枚のセルを構成している。このセル1枚で約0.7Vの電位差が得られる場合に、例えばこのセルを300枚重ねて直列につなぎ、例えば210Vの電圧を得るスタックを構成することができる。
【0003】
この燃料電池に用いられるセパレータは、板面に細い溝(流路)と、厚さ方向に貫通する貫通穴とが形成された板状体である。板面に形成された溝は、ガス拡散電極とガスとの接触面積を増大させる目的で、セパレータの主要領域に対して蛇行して細かなピッチで形成されている。また、貫通穴はこのような溝へ流体を導入又は流出させるためのマニホールド、或いは、スタック組み立てのための取り付け孔となるものであり、その形状は円形、長円形、三角形、正方形、長方形、台形等の各種の形状であり、板状体の側辺縁近傍ないし中央部など、目的に応じた箇所に形成されている。
【0004】
このセパレータの性能としては、供給される水素や酸素のガスを透過させないことが要求されると共に、燃料電池の集電体として機能することから、高い導電性が要求される。更に、セパレータとMEAとの間での導電性の悪化を防止し、また溝内を流れるガスのガス漏れやショートパスを防止するために、面精度を確保することが要求されている。
【0005】
従来、このような燃料電池セパレータとしては、一般に、黒鉛質成形体よりなるものが用いられており、従って、このような複雑な溝形状及び貫通穴を有する黒鉛質成形体を良好な面精度で歩留まり良く安価に製造することが望まれている。
【0006】
このような黒鉛質成形体を冷間プレスで安価に製造する方法として、特開2000-319068には、炭化時に自己焼結性を有する成分を含有する平均粒径が10μm以下の炭素質炭素化合物微粒子と、平均粒径が10〜70μmの黒鉛質炭素微粒子を乾燥脱水した後に乾燥状態で撹拌混合し、得られた均一混合体に粒子相互結着用添加剤を含む水溶液を加えて撹拌混合造粒して最大粒径が0.5mm以下の造粒物とし、次いで水分を除去して得られる乾燥造粒物を加圧成形し、得られた生成形体を非酸素雰囲気下で炭素化する方法が記載されている。本公報には造粒粒子の強度を高くすることによりハンドリング時の粉化を防ぐために、水溶性の粒子相互結着剤を用いることが記載され、この粒子相互結着剤として、高分子凝集剤、ポリエチレングリコール、メチルセルロース、蔗糖が例示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開2000-319068に記載されるように、高分子凝集剤、ポリエチレングリコール、メチルセルロース、蔗糖を粒子相互結着剤として用いた場合、平板の成形は可能であるが、リブ付き、即ち板面に溝を有し、貫通穴が形成された、大面積のセパレータを歩留り良く製造することはできない。即ち、特開2000-319068に記載される方法では、板面に溝及び貫通穴を有し、かつ大面積のセパレータを加圧成形しようとすると、成形時にひび割れが発生し易く、製造歩留りが悪い。特に、板面の辺縁近傍にこの辺縁に沿って設けられた長円形の貫通穴と、この辺縁との間に形成される細長い成形体部分において、貫通穴から成形体の辺縁に到るひび割れが発生し易く、このことが、生産性を損なう原因となっていた。
【0008】
本発明は上記従来の問題点を解決し、黒鉛質炭素微粒子と自己焼結性炭素微粒子の混合物を造粒し、造粒物を加圧成形した後、焼成することにより得られる黒鉛質成形体からなる燃料電池セパレータであって、貫通穴及びリブ付きの、大面積のものであっても、ひび割れ等の欠陥を防止して歩留り良く製造することが可能な燃料電池セパレータを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の燃料電池セパレータは、黒鉛質炭素微粒子と、該黒鉛質炭素微粒子より小さい平均粒径の自己焼結性炭素微粒子との混合物を造粒し、得られた造粒物を加圧成形した後焼成して得られる黒鉛質成形体よりなる燃料電池セパレータにおいて、造粒助剤としてポリビニルアルコールを用いた燃料電池セパレータであって、前記黒鉛質炭素微粒子と自己焼結性炭素微粒子との合計に対するポリビニルアルコールの割合が 0.035 質量%以上、 6.5 質量%以下であることを特徴とする。
【0010】
本発明に従って、造粒助剤としてポリビニルアルコール(PVA)を用いることにより、成形時のひび割れ等の欠陥を防止して、貫通穴及びリブ付きの、大面積のセパレータであっても歩留り良く製造することができる。
【0011】
本発明において、黒鉛質炭素微粒子の平均粒径は20μm以上、180μm以下であり、自己焼結性炭素微粒子の平均粒径は黒鉛質炭素微粒子の平均粒径の80%以下であることが好ましい。
【0012】
また、黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合割合(黒鉛質炭素微粒子/自己焼結性炭素微粒子)は量比で9/1以下、5/5以上であることが好ましい
【0013】
また、加圧成形圧力は1t/cm2(98.0MPa)以上、2.4t/cm2(235MPa)以下であり、焼成温度は500℃以上であることが好ましい。
【0014】
このような本発明の燃料電池セパレータは、特に、一辺の長さが10cm以上、100cm以下で、厚さが0.5mm以上、10mm以下の板形状であり、少なくとも一方の主板面に溝が形成された燃料電池セパレータに好適である。
【0015】
【発明の実施の形態】
以下に本発明の燃料電池セパレータの実施の形態を詳細に説明する。
【0016】
本発明で用いる黒鉛質炭素微粒子は、天然黒鉛、人造黒鉛のいずれであっても良く、これらの混合物であっても良い。黒鉛質炭素微粒子の平均粒径は20μm以上、特に30μm以上であり、180μm以下、特に120μm以下であることが好ましい。黒鉛質炭素微粒子の平均粒径が小さすぎると成形性が悪く、圧縮成形時にひび割れが生じやすい。平均粒径が大きすぎると得られる成形体表面の平滑性が失われ、燃料電池として組み立てた際にガス漏れを生じてしまう。また、成形体の表面に微細な溝形状を付与するためには溝サイズより小さな粒径の黒鉛質炭素微粒子を用いる必要がある。
【0017】
一方、自己焼結性炭素質微粒子を構成する自己焼結性炭素化合物とは、バインダ用を用いなくとも成形、焼成することによりそれ自体で形状を保持して黒鉛化可能な炭素質化合物であり、従来公知の任意のものを使用することができる。中でも、γ成分(キノリン可溶、トルエン不溶成分)含有量が3量%以上、好ましくは5量%以上、30量%以下、好ましくは25量%以下の炭素質化合物を用いることが好ましい。γ成分含有量が少なすぎると、所定物性値の要求範囲内で所望の強度を発現しにくくなる。γ成分含有量があまりに多すぎると、例えばコールタールのように100℃以下で溶融してしまい、成形体形状を保持し得ず、また自己焼結性炭素質化合物の偏在化を引き起こしてしまう恐れがある。
【0018】
上記γ成分含有量を満たす市販の自己焼結性炭素質化合物としては、例えば、大阪化成社製TGPシリーズ、大阪ガスケミカル社製MCMBグリーンパウダー、川崎製鉄社製KMFC等を挙げることができる。これ以外の高軟化点ピッチも上記のγ成分含有量を満たせば自己焼結性炭素微粒子として用いることができる。上記γ成分含有量範囲を満たす限り、自己焼結性炭素化合物がコールタール、石油系重質油のいずれを出発原料にしていても問題はない。また、大阪化成社製MPC−1のように、空気酸化によって酸素含有量を大きくした素材であっても、γ成分が上記含有量を満たす限り何ら問題はない。
【0019】
自己焼結性炭素微粒子の平均粒径は黒鉛質炭素微粒子の平均粒径より小さいことが重要であり、好ましくは黒鉛質炭素微粒子の平均粒径の80%以下(0.8倍以下)、特に50%以下(0.5倍以下)であることが好ましい。即ち、黒鉛質炭素微粒子と自己焼結性炭素微粒子とを混合した際に、黒鉛質炭素微粒子の周囲を自己焼結性炭素微粒子が覆うことで焼成時に強度が発現する。従って、黒鉛質炭素微粒子の平均粒径と自己焼結性炭素微粒子の平均粒径との比が大きいほど、少ない自己焼結性炭素微粒子の量で高い強度を発現することができ、好ましい。ただし、自己焼結性炭素を粒径3μm以下に粉砕することは工業的には難しいことから、自己焼結性炭素微粒子の平均粒径の下限は通常3μm以上である。
【0020】
黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合割合は、量比で黒鉛質炭素微粒子/自己焼結性炭素微粒子=9/1以下、特に8/2以下であり、5/5以上、特に6/4以上、即ち、黒鉛質炭素微粒子と自己焼結性炭素微粒子との合計量に対して黒鉛質炭素微粒子の割合が90量%以下、特に80量%以下で、50量%以上、特に40量%以上であることが好ましい。この範囲よりも黒鉛質炭素微粒子の割合が多過ぎると、相対的に自己焼結性炭素微粒子が少なくなって、黒鉛質炭素微粒子の周囲を自己焼結性炭素微粒子で十分に覆うことができず、焼結性が不十分となりやすく、十分な強度を発現し得なくなる。逆に、この範囲よりも黒鉛質炭素微粒子が少ないと、相対的に自己焼結性炭素微粒子が多くなって、焼成時の収縮が大きくなる傾向があり、割れが生じ易くなると共に、軟化溶融し易くなるため、形状の保持が難しくなる。また、黒鉛質炭素微粒子に由来する電気伝導度、熱伝導度、成形体の寸法安定性等における優れた効果が得られなくなる。
【0021】
黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合は乾式で行っても湿式で行っても良く、通常の粉体混合法を用いることができるが、焼成時の強度発現のために、黒鉛質炭素微粒子と自己焼結性炭素微粒子は高度に均一に混合されていることが重要である。黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合は、乾式でも十分行うことができ、例えば、乾燥した黒鉛質炭素微粒子と自己焼結性炭素微粒子とを、ハイスピードミキサー(深江パウテック製)を用いて乾式混合することにより、十分に均一に混合することができる。
【0022】
本発明においては、プレス成形時のハンドリングを容易にし、発塵を防止するために、黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合粉を造粒する。この造粒は、通常の湿式造粒法により、例えばハイスピードミキサー(深江パウテック製)、グラニュレックス(フロイント産業製)などを用いて行うことができる。
【0023】
このような湿式造粒で用いる造粒剤としては特に制限はないが、有機溶媒系では自己焼結性炭素の微粒子結着成分(γ成分)が溶解してしまい、結着性が低下しやすくなるので、水系溶媒、特に水が実用的である。
【0024】
また、本発明においては造粒助剤としてPVA(ポリビニルアルコール)を、好ましくは造粒剤に溶解して用いる。
【0025】
用いるPVAの重合度は通常400以上、特に500以上、4000以下、特に3000以下であることが好ましい。この重合度は分子量でいうと14000以上、好ましくは18000以上、200000以下、好ましくは150000以下となる。また、PVAの鹸化度は60%以上、特に70%以上であり、100%以下が好ましい。
【0026】
PVAの造粒剤、好ましくは水に対する濃度は0.1量%以上、特に0.2量%以上、10量%以下、特に5量%以下が好ましい。
【0027】
造粒剤の使用量は黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合粉100量部に対して、35量部以上、特に40量部以上、65量部以下、特に60量部以下であることが好ましい。
【0028】
用いるPVAの重合度が大きいほど、また造粒剤に対するPVAの濃度が高いほど、得られる乾燥造粒粉の強度が高くなるが、乾燥造粒粉の強度が高すぎると、加圧成形時に乾燥造粒粉が潰れず、成形体内に隙間が残りやすくなり、成形体に欠陥を生じやすい。また、造粒粉の強度が低すぎるとハンドリング時に粉化しやすく、発塵する、金型への充填時の流動性が悪くなるなどの問題を生じやすい。用いるPVAの重合度と造粒剤に対するPVAの濃度を選ぶことで、適切な強度の乾燥造粒粉を作ることができる。
【0029】
また、PVAの鹸化度の高いものほど、また造粒剤の使用量が多いほど、造粒粉の粒径が大きくなる。しかし、造粒剤を黒鉛質微粒子と自己焼結性炭素微粒子との混合粉に対し過剰に使用してもその効果は飽和する。逆にPVAの鹸化度が低いほど、また造粒剤の使用量が少ないほど、造粒粉の粒度は小さくなるが、造粒剤の使用量が黒鉛質微粒子と自己焼結性炭素微粒子との混合粉に対して少な過ぎると混合粉を十分に濡らしにくくなり、造粒しにくくなる。用いるPVAの鹸化度と造粒剤の使用量を選ぶことで、所望の粒度の造粒粉を得ることができる。
【0030】
このように、造粒助剤としてのPVAの重合度及び鹸化度に応じて、上述の如く、所望の粒度で適切な強度の造粒粉が得られるようなPVA濃度と造粒剤使用量が決定されるが、PVAの使用量は、造粒粉、即ち、黒鉛質炭素微粒子と自己焼結性炭素微粒子との合計に対して0.035量%以上、特に0.1量%以上、更には0.3量%以上、6.5量%以下、特に6量%以下、更には3量%以下であることが好ましい。
【0031】
造粒操作時の温度は、用いる造粒助剤が液体である範囲であり、かつ、造粒助剤が造粒剤の溶液となる範囲で選択することができる。具体的に造粒剤に水を用いる場合、造粒操作時の温度は0℃以上、好ましくは10℃以上、80℃以下、好ましくは60℃以下程度とするのがよい。
【0032】
なお、本発明においては、造粒助剤としてPVAの他に任意の離型剤を併用することもできる。造粒剤に溶解する離型剤の場合は、造粒剤に溶解させて用いれば良く、例えば水系造粒剤の場合、水溶性のポリエチレングリコールはそのまま混合して使用することができる。造粒剤への溶解度が小さい離型剤は造粒剤へエマルジョンとして分散させて用いても良い。
【0033】
このようにして得られる造粒物は、箱型、流動層等の熱風乾燥機、撹拌型、ドラム型等の伝熱乾燥機、赤外線乾燥機、マイクロ波乾燥機等公知の任意の乾燥機で乾燥し、乾燥造粒粉とし、これをロータップ、振動篩器など、通常の篩機で必要に応じて篩分処理することにより粒度調整した後、成形に供する。
【0034】
この造粒物の乾燥条件としては特に制限はないが、低すぎると乾燥に時間がかかりすぎるため、通常20℃以上、好ましくは60℃以上、更に好ましくは100℃以上であり、高すぎると自己焼結性炭素微粒子の焼結性が低下する可能性があるため、160℃以下、140℃以下、更には120℃以下が好ましい。
【0035】
また、成形に供する乾燥造粒粉は、平均粒径0.1mm以上、特に0.2mm以上、更には0.3mm以上、10mm以下、特に5mm以下、更には3mm以下であることが好ましい。乾燥造粒粉の平均粒径が大きすぎると、金型に充填することが難しくなる。乾燥造粒粉の平均粒径が小さすぎると、金型充填時の流れ性が悪くなる傾向があり、均一に充填することが難しくなるだけでなく、プレス時の脱気性が悪くなる傾向があり、プレスに時間がかかる。
【0036】
乾燥造粒粉の成形は、所望のセパレータの形状を押圧面に刻んだ金型を用いて圧縮成型することにより行う。成形に用いる金型にはシリコーンオイルなどの公知の任意の離型剤を塗布(スプレー)してもよい。この加圧成形は、一軸プレス、二軸プレス、ロータリープレス、湿式静水圧プレス、乾式静水圧プレス等により行うことができ、プレス圧力は1t/cm2(98.0MPa)以上、好ましくは1.2t/cm2(118MPa)以上、2.4t/cm2(235MPa)以下、好ましくは2.2t/cm2(216MPa)以下で行うことが好ましい。プレス圧力が低すぎると得られる成形体の強度が十分でなく、高すぎると圧力を解放した際にふくれを生じるスプリングバックという現象によって、ひび、割れが生じてしまうこととなる。
【0037】
得られた成形体の焼成は、生産性を考慮して型から外して行うことが望ましい。
【0038】
焼成の最高温度は通常500℃以上、好ましくは550℃以上、特に好ましくは600℃以上とする。通常最高温度は電気伝導率などの物性から所望の黒鉛化度に応じて設定すればよいが、本発明では原料中の黒鉛含有率が高いため、1500℃以下、中でも1000℃以下の最高温度でも十分な黒鉛化度が得られる。
【0039】
焼成時の昇温速度は20℃/h以下、中でも15℃/h以下であることが好ましい。昇温速度が速すぎると成形体に割れ、ふくれが生じやすくなる。エネルギー節約のためには昇温速度は速い方が良く、また、過度に昇温速度が遅いと生産効率が低下しやすくなるので、通常0.01℃/h以上、中でも0.05℃/h以上とすることが好ましい。
【0040】
なお、焼成は、焼成時の酸化を防ぐため、炉内を窒素、アルゴン等の不活性雰囲気にするか、成形体をコークスブリーズに埋めるなどして行うことが好ましい。
【0041】
焼成後は放冷しても良いが、生産性向上のために強制冷却することもできる。
【0042】
このようにして得られる本発明の燃料電池セパレータは例えば、厚さ0.5mm以上、好ましくは1mm以上で、10mm以下、好ましくは5mm以下の板状であり、縦横の寸法は50mm以上、好ましくは100mm以上、1000mm以下、好ましくは500mm以下である。
【0043】
通常、セパレータには、片面又は両面に、燃料ガス、酸素、冷却水などの流体の通路となる溝を設けるが、その幅は通常0.1mm以上、好ましくは0.3mm以上、10mm以下、好ましくは5mm以下で、深さは通常0.1mm以上、好ましくは0.3mm以上、9mm以下、好ましくは5mm以下である。
【0044】
更に、このような溝へ流体を導入又は流出するためのマニホールドとなる貫通穴やスタック組み立て時に用いる貫通穴を形成することもできる。
【0045】
このように製造した本発明の燃料電池セパレータを用いて、燃料電池の単セル及びスタックを組み立てることができる。前述の如く、固体高分子型燃料電池の単セルの主要構成部材は、膜・電極接合体と、溝及び貫通穴付きセパレータである。膜・電極接合体の基本構造は、高分子固体電解質膜(イオン交換膜)の両面に、触媒層、ガス拡散層及び集電体を順次接合したものである。触媒層は主として触媒とカーボンブラックとの混合物から成っている。またガス拡散層に集電体の機能を兼ねさせることもある。この膜電極体の両面に本発明による溝及び貫通穴付きセパレータを接合することにより、固体高分子型燃料電池の単セルが形成される。そして、この単セルを複数枚直列に積層してスタックとして使用することもできる。
【0046】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0047】
実施例1
110℃に保持された熱風循環型乾燥機で乾燥恒量に達した平均粒径が3μmの自己焼結性炭素質化合物微粒子(大阪化成社製「TGP3000」をジェットミルで粉砕したもの)300gと、平均粒径が29μmの黒鉛質炭素微粒子(ティミカル社製人造黒鉛「SLM44」)700gとを深江パウテック社製ハイスピードミキサー(LFS-GS-2J型)に投入し、アジテータ及びチョッパー軸から乾燥窒素を吹き出して、アジテータ回転数500rpm、チョッパー回転数1000rpmで5分間攪拌した。蓋の覗き窓から観察したところ粉体はなめらかに混合していた。
【0048】
ポリビニルアルコール(日本合成社ゴーセノール「KH-20」、重合度2000以上、鹸化度80)の2量%水溶液400gを、造粒剤及び造粒助剤として、アジテータ回転数2000rpm、チョッパー回転数500rpmで混合中の上記混合物に2分間で注入し、3分間造粒を継続した。得られた造粒物を120℃の熱風循環型乾燥機で乾燥した後、室温に冷却した。この乾燥造粒物を網目3mmの篩を用いて篩上を分離し、99%以上を篩下として回収した。
【0049】
1軸1500トン型プレス機に縦130.0mm×横260.0mmの金型を設置し、上部・下部押し型面にはサーペタインと称される溝と、貫通穴形成用の凸条を設置した。この金型内に篩下造粒物(平均粒径0.5mm)62gを投入し、1.4t/cm2(137MPa)の成形圧でプレス成形し、厚み1.8mmで、板面に深さ0.5mm、幅2mmの溝が形成されると共に、側辺縁近傍に長円形の貫通穴が形成された溝及び貫通穴付き成形体を得た。
【0050】
厚さ10mmの黒鉛板でこの成形体の上下面を挟み、この黒鉛板をステンレス容器に納め、このステンレス容器を更に大きなステンレス容器に納めて周囲をコークスブリーズで覆った。電気炉に容器を設置し、20L/分の供給速度で窒素を供給しつつ室温から170℃までは0.5時間、170℃から400℃までは86.5時間、400℃から550℃までは15時間、550℃から700℃までは5時間で昇温し、1時間700℃に維持した後に炉冷した。
【0051】
得られた黒鉛質成形体は焼成前寸法に比べて0.2%の線収縮率を与えた。金型によって形成された溝及び貫通穴はそのまま炭素化され、歪みやひび割れ等の欠陥は認められなかった。
【0052】
実施例2
ポリビニルアルコールとして日本合成社のゴーセノール「NL-05」(重合度1000未満、鹸化度98%以上)を用いた他は実施例1と同様の操作を行ったところ、良好な成形体を得、この成形体から、良好な黒鉛質成形体を得ることができた。この黒鉛質成形体は、金型によって形成された溝及び貫通穴がそのまま炭素化され、歪みやひび割れ等の欠陥は認められなかった。
【0053】
比較例1
造粒剤及び造粒助剤として、蔗糖水溶液(10量%)を使用した他は、実施例1と同様の操作を行ったところ、プレス成形時に、成形体外周部の貫通穴と成形体外周との間の成形体部分にひび割れが発生し、製品とすることができなかった。
【0054】
比較例2
造粒剤及び造粒助剤として、ポリエチレングリコール(PEG、分子量20000)水溶液(2量%)を使用した他は、実施例1と同様の操作を行ったところ、プレス成形時に、成形体外周部の貫通穴と成形体外周との間の成形体部分にひび割れが発生し、製品とすることができなかった。
【0055】
比較例3
造粒剤及び造粒助剤として、ポリエチレングリコール(PEG、分子量4000)水溶液(2量%)を使用した他は、実施例1と同様の操作を行ったところ、プレス成形時に、成形体外周部の貫通穴と成形体外周との間の成形体部分にひび割れが発生し、製品とすることができなかった。
【0056】
比較例4
造粒剤及び造粒助剤として、ポリカルボン酸アンモニウム水溶液(2量%)を使用した他は、実施例1と同様の操作を行ったところ、プレス成形時に、成形体外周部の貫通穴と成形体外周との間の成形体部分にひび割れが発生し、製品とすることができなかった。
【0057】
上記実施例及び比較例の結果を表1にまとめて示す。
【0058】
【表1】

Figure 0004100086
【0059】
【発明の効果】
以上詳述した通り、本発明によれば、造粒助剤としてPVAを用いることにより、成形時のひび割れ等の欠陥を防止して、貫通穴及びリブ付き、大面積の燃料電池セパレータであっても、歩留り良く工業的に有利に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell separator comprising a graphite molded body, and in particular, a granulated product obtained by mixing and granulating graphite carbon microparticles and self-sintering carbon microparticles is pressure-molded and fired. The present invention relates to a fuel cell separator that can be manufactured with good surface accuracy and high yield even if it is a large-area fuel cell separator with through holes and ribs.
[0002]
[Prior art]
In recent years, fuel cells have attracted attention as an energy supply source with high power generation efficiency and excellent environmental performance. Among them, the polymer electrolyte fuel cells (PEFC) using a solid polymer as an electrolyte have attracted the most attention. This polymer electrolyte fuel cell has a catalyst layer on both sides of a film-like ion exchange membrane serving as an electrolyte, and a current collector is provided on both sides to form a membrane-electrode assembly (MEA). ing. Further, a separator provided with a groove serving as a passage for fuel is provided on the outside thereof, and hydrogen or oxygen passes between the MEA and the separator, and all of them are integrated to constitute one cell. When a potential difference of about 0.7 V is obtained with one cell, for example, 300 cells can be stacked and connected in series to form a stack that obtains a voltage of 210 V, for example.
[0003]
The separator used in this fuel cell is a plate-like body in which a thin groove (flow channel) and a through hole penetrating in the thickness direction are formed on the plate surface. The grooves formed on the plate surface meander with respect to the main region of the separator and are formed at a fine pitch for the purpose of increasing the contact area between the gas diffusion electrode and the gas. In addition, the through hole is a manifold for introducing or discharging fluid into such a groove, or a mounting hole for stack assembly, and the shape thereof is circular, oval, triangular, square, rectangular, trapezoidal. Etc., and are formed at locations according to the purpose, such as the vicinity of the side edge or the central portion of the plate-like body.
[0004]
As the performance of the separator, it is required not to allow the supplied hydrogen or oxygen gas to permeate, and since it functions as a current collector of the fuel cell, high conductivity is required. Furthermore, it is required to ensure surface accuracy in order to prevent deterioration of conductivity between the separator and the MEA, and to prevent gas leakage and short path of the gas flowing in the groove.
[0005]
Conventionally, as such fuel cell separators, those made of a graphite molded body are generally used. Therefore, a graphite molded body having such a complicated groove shape and a through hole can be obtained with good surface accuracy. It is desired to manufacture with good yield and low cost.
[0006]
As a method for producing such a graphite molded body at low cost by cold pressing, Japanese Patent Application Laid-Open No. 2000-319068 discloses a carbonaceous carbon compound having an average particle size of 10 μm or less containing a component having self-sintering properties during carbonization. Fine particles and graphitic carbon fine particles having an average particle size of 10 to 70 μm are dried and dehydrated and then mixed in a dry state. The resulting uniform mixture is mixed with an aqueous solution containing an additive for bonding particles, and mixed with stirring. A method is described in which a granulated product having a maximum particle size of 0.5 mm or less is formed, and then a dried granulated product obtained by removing moisture is subjected to pressure molding, and the resulting formed product is carbonized in a non-oxygen atmosphere. Has been. This publication describes the use of a water-soluble particle binder in order to prevent powdering during handling by increasing the strength of the granulated particles. As the particle binder, a polymer flocculant is used. Polyethylene glycol, methylcellulose, and sucrose are exemplified.
[0007]
[Problems to be solved by the invention]
However, as described in JP-A-2000-319068, when a polymer flocculant, polyethylene glycol, methylcellulose, or sucrose is used as a particle binder, a flat plate can be formed. A large-area separator having grooves on the surface and having through-holes cannot be manufactured with high yield. That is, in the method described in Japanese Patent Application Laid-Open No. 2000-319068, when trying to pressure mold a separator having a groove and a through hole on the plate surface and having a large area, cracks are likely to occur during molding, and the production yield is poor. . Particularly, in the oval through-hole formed near the edge of the plate surface along the edge and the elongated molded body portion formed between the edge, the through-hole reaches the edge of the molded body. Cracks are likely to occur, which has been a cause of impaired productivity.
[0008]
The present invention solves the above-mentioned conventional problems, granulates a mixture of graphitic carbon fine particles and self-sintering carbon fine particles, press-molds the granulated product, and then fires the graphite molded product. An object of the present invention is to provide a fuel cell separator comprising a through hole and a rib, and having a large area, which can be manufactured with high yield by preventing defects such as cracks. And
[0009]
[Means for Solving the Problems]
The fuel cell separator of the present invention granulates a mixture of graphitic carbon microparticles and self-sintering carbon microparticles having an average particle size smaller than the graphite carbon microparticles, and press-molds the resulting granulated product. In a fuel cell separator comprising a graphite molded body obtained by post-firing, a fuel cell separator using polyvinyl alcohol as a granulation aid , the total of the graphite carbon fine particles and self-sintering carbon fine particles The proportion of polyvinyl alcohol is 0.035 % by mass or more and 6.5 % by mass or less .
[0010]
According to the present invention, by using polyvinyl alcohol (PVA) as a granulation aid, defects such as cracks during molding can be prevented, and even a large-area separator with through holes and ribs can be manufactured with high yield. be able to.
[0011]
In the present invention, the average particle size of the graphitic carbon fine particles is preferably 20 μm or more and 180 μm or less, and the average particle size of the self-sintering carbon fine particles is preferably 80% or less of the average particle size of the graphitic carbon fine particles.
[0012]
The mixing ratio of the graphitic carbon particles and self-sintering carbon particles (graphitic carbon particles / self-sintering carbon particles) is 9/1 or less mass ratio, correct preferable to be 5/5 or more .
[0013]
Also, pressing pressure is 1t / cm 2 (98.0MPa) or more and less 2.4t / cm 2 (235MPa), it is preferred that the firing temperature is 500 ° C. or higher.
[0014]
Such a fuel cell separator of the present invention has a plate shape in which the length of one side is 10 cm or more and 100 cm or less, the thickness is 0.5 mm or more and 10 mm or less, and a groove is formed on at least one main plate surface. It is suitable for a fuel cell separator.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the fuel cell separator of the present invention will be described in detail.
[0016]
Graphite carbon fine particles used in the present invention may be either natural graphite or artificial graphite, or a mixture thereof. The average particle size of the graphitic carbon fine particles is 20 μm or more, particularly 30 μm or more, and is preferably 180 μm or less, particularly 120 μm or less. If the average particle size of the graphite carbon fine particles is too small, the moldability is poor and cracks are likely to occur during compression molding. If the average particle size is too large, the smoothness of the surface of the resulting molded body is lost, and gas leakage occurs when assembled as a fuel cell. Further, in order to give a fine groove shape to the surface of the molded body, it is necessary to use graphitic carbon fine particles having a particle diameter smaller than the groove size.
[0017]
On the other hand, the self-sintering carbon compound constituting the self-sintering carbonaceous fine particles is a carbonaceous compound that can be graphitized while maintaining its own shape by molding and firing without using a binder. Any conventionally known one can be used. Of these, gamma component (quinoline soluble, toluene insoluble component) content 3 mass% or more, preferably 5 mass% or more, 30 mass% or less, preferably to use a carbonaceous compound than 25 mass% Is preferred. When the γ component content is too small, it becomes difficult to express a desired strength within the required range of predetermined physical property values. If the γ component content is too large, it will melt at 100 ° C. or lower, such as coal tar, and the molded product shape cannot be maintained, and the self-sintering carbonaceous compound may be unevenly distributed. There is.
[0018]
Examples of commercially available self-sintering carbonaceous compounds satisfying the above γ component content include TGP series manufactured by Osaka Kasei Co., Ltd., MCMB green powder manufactured by Osaka Gas Chemical Company, and KMFC manufactured by Kawasaki Steel Company. Other high softening point pitches can also be used as self-sintering carbon fine particles as long as they satisfy the above γ component content. As long as the above γ component content range is satisfied, there is no problem whether the self-sintering carbon compound is a coal tar or a petroleum heavy oil as a starting material. Moreover, even if it is the raw material which increased oxygen content by air oxidation like MPC-1 by Osaka Kasei Co., Ltd., there is no problem as long as the γ component satisfies the above content.
[0019]
It is important that the average particle size of the self-sintering carbon fine particles is smaller than the average particle size of the graphitic carbon fine particles, preferably 80% or less (0.8 times or less) of the average particle size of the graphitic carbon fine particles, It is preferably 50% or less (0.5 times or less). That is, when the graphite carbon fine particles and the self-sintering carbon fine particles are mixed, the self-sintering carbon fine particles cover the periphery of the graphite carbon fine particles so that strength is exhibited at the time of firing. Therefore, the larger the ratio of the average particle diameter of the graphitic carbon fine particles to the average particle diameter of the self-sintering carbon fine particles, the higher the strength can be expressed with a small amount of the self-sintering carbon fine particles, which is preferable. However, since it is industrially difficult to pulverize self-sintering carbon to a particle size of 3 μm or less, the lower limit of the average particle size of self-sintering carbon fine particles is usually 3 μm or more.
[0020]
The mixing ratio of the graphitic carbon particles and self-sintering carbon particulate, graphitic carbon particles / self-sintering carbon particles = 9/1 or less in mass ratio, and in particular 8/2 or less, 5/5 or more , particularly 6/4 or more, i.e., the ratio of graphitic carbon particles 90 mass% or less relative to the total weight of the graphitic carbon particles and self-sintering carbon particles, in particular 80 mass% or less, 50 mass% or more, and especially preferably 40 mass% or more. If the ratio of the graphitic carbon fine particles is too large than this range, the self-sinterable carbon fine particles are relatively small, and the periphery of the graphite carbon fine particles cannot be sufficiently covered with the self-sinterable carbon fine particles. The sinterability tends to be insufficient, and sufficient strength cannot be expressed. On the other hand, if the amount of fine graphite carbon particles is less than this range, the amount of self-sintering carbon particles is relatively large, and shrinkage during firing tends to increase, cracking is likely to occur, and softening and melting occur. Since it becomes easy, holding | maintenance of a shape becomes difficult. In addition, it is not possible to obtain excellent effects in electrical conductivity, thermal conductivity, dimensional stability of the molded body, and the like derived from the graphitic carbon fine particles.
[0021]
Mixing of the graphite carbon fine particles and the self-sintering carbon fine particles may be performed by a dry method or a wet method, and a normal powder mixing method can be used. It is important that the carbonaceous fine particles and the self-sintering carbon fine particles are highly uniformly mixed. Mixing of the graphite carbon fine particles and the self-sintering carbon fine particles can be sufficiently performed even in a dry type.For example, the dried graphitic carbon fine particles and the self-sintering carbon fine particles are mixed with a high speed mixer (manufactured by Fukae Powtech). By using dry mixing with the, the mixture can be sufficiently uniformly mixed.
[0022]
In the present invention, a mixed powder of graphitic carbon fine particles and self-sintering carbon fine particles is granulated in order to facilitate handling during press molding and prevent dust generation. This granulation can be performed by an ordinary wet granulation method using, for example, a high speed mixer (Fukae Powtech), Granurex (Freund Sangyo) or the like.
[0023]
There is no particular limitation on the granulating agent used in such wet granulation, but in the organic solvent system, the self-sintering carbon fine particle binding component (γ component) is dissolved, and the binding property is likely to decrease. Therefore, an aqueous solvent, particularly water, is practical.
[0024]
In the present invention, PVA (polyvinyl alcohol) is used as a granulation aid, preferably dissolved in a granulation agent.
[0025]
The degree of polymerization of the PVA used is usually 400 or more, preferably 500 or more, 4000 or less, particularly 3000 or less. This degree of polymerization is 14000 or more, preferably 18000 or more, 200,000 or less, preferably 150,000 or less in terms of molecular weight. The saponification degree of PVA is 60% or more, particularly 70% or more, and preferably 100% or less.
[0026]
Granulating agents PVA, preferably at a concentration in water is 0.1 mass% or more, particularly 0.2 mass% or more, 10 mass% or less, particularly 5 mass% or less.
[0027]
The amount of granulating agent for mixing powder 100 mass portions of the graphitic carbon particles and self-sintering carbon particles, 35 mass parts or more, particularly 40 mass parts or more, 65 mass parts or less, particularly it is preferably 60 or less mass unit.
[0028]
The higher the degree of polymerization of the PVA used and the higher the concentration of PVA with respect to the granulating agent, the higher the strength of the dry granulated powder obtained. The granulated powder is not crushed, gaps are easily left in the molded body, and defects are easily generated in the molded body. In addition, if the strength of the granulated powder is too low, it is likely to be pulverized during handling, causing problems such as dust generation and poor fluidity when filling the mold. By selecting the degree of polymerization of PVA to be used and the concentration of PVA relative to the granulating agent, dry granulated powder having an appropriate strength can be produced.
[0029]
Moreover, the higher the degree of saponification of PVA and the larger the amount of granulating agent used, the larger the particle size of the granulated powder. However, even if the granulating agent is used excessively with respect to the mixed powder of the graphite fine particles and the self-sintering carbon fine particles, the effect is saturated. Conversely, the lower the degree of saponification of PVA and the smaller the amount of granulating agent used, the smaller the particle size of the granulated powder. However, the amount of granulating agent used varies between the graphite fine particles and the self-sintering carbon fine particles. If the amount is too small relative to the mixed powder, it becomes difficult to sufficiently wet the mixed powder and granulation becomes difficult. By selecting the degree of saponification of the PVA used and the amount of granulating agent used, granulated powder having a desired particle size can be obtained.
[0030]
Thus, depending on the polymerization degree and saponification degree of PVA as a granulation aid, the PVA concentration and the amount of granule used so that a granulated powder having a desired particle size and appropriate strength can be obtained as described above. is determined, the amount of PVA is, granulated powder, i.e., 0.035 mass% or more to the total of the graphitic carbon particles and self-sintering carbon particles, especially 0.1 mass% or more, further 0.3 mass% or more, 6.5 mass% or less, particularly 6 mass% or less, more is preferably 3 mass% or less.
[0031]
The temperature during the granulation operation can be selected within the range where the granulation aid used is a liquid and the granulation aid becomes a solution of the granulation agent. Specifically, when water is used as the granulating agent, the temperature during the granulating operation is 0 ° C. or higher, preferably 10 ° C. or higher, 80 ° C. or lower, preferably 60 ° C. or lower.
[0032]
In addition, in this invention, arbitrary mold release agents can also be used together as a granulation adjuvant other than PVA. In the case of a release agent that dissolves in the granulating agent, it may be used after being dissolved in the granulating agent. For example, in the case of an aqueous granulating agent, water-soluble polyethylene glycol can be used as it is. A release agent having a low solubility in the granulating agent may be used after being dispersed as an emulsion in the granulating agent.
[0033]
The granulated product obtained in this way can be obtained by any known dryer such as a hot air dryer such as a box type or a fluidized bed, a heat transfer dryer such as a stirring type or a drum type, an infrared dryer or a microwave dryer. It is dried to obtain dry granulated powder, which is subjected to sieving treatment as necessary with a normal sieving machine such as a low tap or a vibration sieving machine, and then subjected to molding.
[0034]
There are no particular restrictions on the drying conditions for this granulated product, but if it is too low, it takes too much time to dry, so it is usually 20 ° C or higher, preferably 60 ° C or higher, more preferably 100 ° C or higher. Since the sinterability of the sinterable carbon fine particles may be lowered, it is preferably 160 ° C. or lower, 140 ° C. or lower, and more preferably 120 ° C. or lower.
[0035]
The dry granulated powder to be used for molding preferably has an average particle size of 0.1 mm or more, particularly 0.2 mm or more, more preferably 0.3 mm or more and 10 mm or less, particularly 5 mm or less, further 3 mm or less. When the average particle size of the dried granulated powder is too large, it becomes difficult to fill the mold. If the average particle size of the dry granulated powder is too small, the flowability at the time of filling the mold tends to deteriorate, and not only it becomes difficult to uniformly fill, but also the degassing property at the time of pressing tends to deteriorate. , Press takes time.
[0036]
The dry granulated powder is molded by compression molding using a mold in which the desired separator shape is cut on the pressing surface. You may apply | coat (spray) well-known arbitrary mold release agents, such as silicone oil, to the metal mold | die used for shaping | molding. This pressure molding can be performed by a uniaxial press, a biaxial press, a rotary press, a wet isostatic press, a dry isostatic press, etc., and the press pressure is 1 t / cm 2 (98.0 MPa) or more, preferably 1.2 t / cm 2 (118 MPa) or more, 2.4t / cm 2 (235MPa) less, preferably in the following 2.2t / cm 2 (216MPa). If the pressing pressure is too low, the strength of the resulting molded body is not sufficient, and if it is too high, cracking and cracking will occur due to the phenomenon of springback that causes blistering when the pressure is released.
[0037]
The obtained molded body is preferably fired out of the mold in consideration of productivity.
[0038]
The maximum temperature for firing is usually 500 ° C. or higher, preferably 550 ° C. or higher, particularly preferably 600 ° C. or higher. Usually, the maximum temperature may be set according to the desired graphitization degree from the physical properties such as electrical conductivity, but in the present invention, since the graphite content in the raw material is high, even at a maximum temperature of 1500 ° C. or less, especially 1000 ° C. or less. A sufficient degree of graphitization is obtained.
[0039]
The heating rate during firing is 20 ° C./h or less, and preferably 15 ° C./h or less. If the heating rate is too fast, the molded body will be cracked and blistered easily. In order to save energy, a faster heating rate is better, and if the heating rate is too slow, production efficiency tends to decrease, so it is usually 0.01 ° C / h or higher, especially 0.05 ° C / h or higher. Is preferred.
[0040]
In addition, in order to prevent the oxidation at the time of baking, it is preferable to perform baking by making the inside of a furnace into inert atmosphere, such as nitrogen and argon, or burying a molded object in coke breeze.
[0041]
Although it may cool after baking, it can also be forcedly cooled to improve productivity.
[0042]
The fuel cell separator of the present invention thus obtained is, for example, a plate shape having a thickness of 0.5 mm or more, preferably 1 mm or more, 10 mm or less, preferably 5 mm or less, and vertical and horizontal dimensions of 50 mm or more, preferably 100 mm. As mentioned above, it is 1000 mm or less, preferably 500 mm or less.
[0043]
Usually, a separator is provided with a groove that serves as a passage for fluids such as fuel gas, oxygen, and cooling water on one or both sides, and the width is usually 0.1 mm or more, preferably 0.3 mm or more, preferably 10 mm or less, preferably 5 mm. In the following, the depth is usually 0.1 mm or more, preferably 0.3 mm or more, 9 mm or less, preferably 5 mm or less.
[0044]
Furthermore, a through hole serving as a manifold for introducing or outflowing fluid into such a groove or a through hole used during stack assembly can be formed.
[0045]
A single cell and a stack of a fuel cell can be assembled using the fuel cell separator of the present invention thus manufactured. As described above, the main constituent members of a single cell of a polymer electrolyte fuel cell are a membrane / electrode assembly, a separator with a groove and a through hole. The basic structure of the membrane / electrode assembly is such that a catalyst layer, a gas diffusion layer, and a current collector are sequentially joined to both surfaces of a polymer solid electrolyte membrane (ion exchange membrane). The catalyst layer is mainly composed of a mixture of a catalyst and carbon black. The gas diffusion layer may also function as a current collector. A single cell of a polymer electrolyte fuel cell is formed by joining a separator with a groove and a through hole according to the present invention to both surfaces of the membrane electrode body. A plurality of single cells can be stacked in series and used as a stack.
[0046]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0047]
Example 1
300 g of self-sintering carbonaceous compound fine particles with an average particle size of 3 μm that reached a constant dry weight in a hot air circulation dryer maintained at 110 ° C. (obtained by pulverizing “TGP3000” manufactured by Osaka Kasei Co., Ltd. with a jet mill), 700 g of graphite carbon fine particles with an average particle size of 29 μm (manufactured graphite “SLM44” manufactured by Timical Co., Ltd.) are charged into a high speed mixer (LFS-GS-2J type) manufactured by Fukae Powtech Co., and dry nitrogen is supplied from the agitator and chopper shaft. The mixture was blown out and stirred for 5 minutes at an agitator rotation speed of 500 rpm and a chopper rotation speed of 1000 rpm. The powder was smoothly mixed when observed through the viewing window of the lid.
[0048]
Polyvinyl alcohol (Nippon Gosei GOHSENOL "KH-20", the polymerization degree of 2000 or more, degree of saponification 80) 2 mass% aqueous solution 400g of a granulating and granulating aids, agitator rotational speed 2000 rpm, chopper rotational speed 500rpm The mixture was poured into the above mixture for 2 minutes and granulation was continued for 3 minutes. The obtained granulated product was dried with a hot air circulating dryer at 120 ° C. and then cooled to room temperature. The dried granulated product was separated on the sieve using a sieve having a mesh size of 3 mm, and 99% or more was recovered as the sieve.
[0049]
A single-shaft 1500-ton type press was installed with a 130.0mm long x 260.0mm wide die, and grooves called serpetines and ridges for forming through holes were installed on the upper and lower press surfaces. 62g of undergranulated granulated material (average particle size 0.5mm) is put into this mold, press-molded with a molding pressure of 1.4t / cm 2 (137MPa), thickness 1.8mm, depth 0.5mm on the plate surface A groove having a width of 2 mm and an oval through hole formed in the vicinity of the side edge and a molded body with a through hole were obtained.
[0050]
The upper and lower surfaces of the compact were sandwiched between 10 mm thick graphite plates, and the graphite plates were placed in a stainless steel container. The stainless steel container was placed in a larger stainless steel container and the periphery was covered with coke breeze. Place the vessel in an electric furnace and supply nitrogen at a supply rate of 20 L / min for 0.5 hours from room temperature to 170 ° C, 86.5 hours from 170 ° C to 400 ° C, 15 hours from 400 ° C to 550 ° C, 550 The temperature was raised from 5 ° C to 700 ° C in 5 hours, maintained at 700 ° C for 1 hour, and then cooled in the furnace.
[0051]
The obtained graphite compact gave a linear shrinkage of 0.2% compared to the dimension before firing. The grooves and through holes formed by the mold were carbonized as they were, and no defects such as distortion and cracks were observed.
[0052]
Example 2
The same operation as in Example 1 was performed except that GOHSENOL “NL-05” (degree of polymerization less than 1000 and saponification degree of 98% or more) manufactured by Nippon Gosei Co., Ltd. was used as the polyvinyl alcohol. A good graphite molded body could be obtained from the molded body. In this graphite molded body, the grooves and through-holes formed by the mold were carbonized as they were, and no defects such as distortion and cracks were observed.
[0053]
Comparative Example 1
As granulating and granulating aids, other using sucrose aqueous solution (10 mass%) is, as a result of working in the same manner as in Example 1, at the time of press molding, molding and the through-hole of the molded body outer peripheral portion outside Cracks occurred in the molded part between the circumference and the product could not be made.
[0054]
Comparative Example 2
As granulating and granulating aids, polyethylene glycol (PEG, molecular weight 20000) except that using an aqueous solution (2 mass%) is, as a result of working in the same manner as in Example 1, at the time of press molding, the molded body periphery Cracks occurred in the molded body part between the through hole of the part and the outer periphery of the molded body, and the product could not be obtained.
[0055]
Comparative Example 3
As granulating and granulating aids, polyethylene glycol (PEG, molecular weight 4000) except that using an aqueous solution (2 mass%) is, as a result of working in the same manner as in Example 1, at the time of press molding, the molded body periphery Cracks occurred in the molded body part between the through hole of the part and the outer periphery of the molded body, and the product could not be obtained.
[0056]
Comparative Example 4
As granulating and granulating aids, other using ammonium polycarboxylate solution (2 mass%) is, as a result of working in the same manner as in Example 1, at the time of press molding, the through-hole of the molded body outer peripheral portion Cracks occurred in the part of the molded body between the outer periphery of the molded body and the outer periphery of the molded body, making it impossible to produce a product.
[0057]
The results of the above examples and comparative examples are summarized in Table 1.
[0058]
[Table 1]
Figure 0004100086
[0059]
【The invention's effect】
As described above in detail, according to the present invention, by using PVA as a granulating aid, it is possible to prevent defects such as cracks during molding, and to provide a large area fuel cell separator with through holes and ribs. However, it can be produced industrially advantageously with a high yield.

Claims (8)

黒鉛質炭素微粒子と、該黒鉛質炭素微粒子より小さい平均粒径の自己焼結性炭素微粒子との混合物を造粒し、得られた造粒物を加圧成形した後焼成して得られる黒鉛質成形体よりなる燃料電池セパレータにおいて、
造粒助剤としてポリビニルアルコールを用いた燃料電池セパレータであって、
前記黒鉛質炭素微粒子と自己焼結性炭素微粒子との合計に対するポリビニルアルコールの割合が 0.035 質量%以上、 6.5 質量%以下であることを特徴とする燃料電池セパレータ。
Graphite obtained by granulating a mixture of graphitic carbon fine particles and self-sintering carbon fine particles having an average particle size smaller than that of the graphitic carbon fine particles, press-molding the obtained granulated product, and firing the mixture In a fuel cell separator made of a molded body,
A fuel cell separator using polyvinyl alcohol as a granulating aid ,
A fuel cell separator, wherein a ratio of polyvinyl alcohol to a total of the graphite carbon fine particles and the self-sintering carbon fine particles is 0.035 % by mass or more and 6.5 % by mass or less .
請求項1において、該黒鉛質炭素微粒子の平均粒径が20μm以上、180μm以下であることを特徴とする燃料電池セパレータ。  2. The fuel cell separator according to claim 1, wherein the graphite carbon fine particles have an average particle size of 20 μm or more and 180 μm or less. 請求項1又は2において、該黒鉛質炭素微粒子と自己焼結性炭素微粒子との混合割合(黒鉛質炭素微粒子/自己焼結性炭素微粒子)が量比で9/1以下、5/5以上であることを特徴とする燃料電池セパレータ。According to claim 1 or 2, the mixing ratio of the graphite quality carbon particles and self-sintering carbon particles (graphitic carbon particles / self-sintering carbon particles) is 9/1 or less mass ratio, 5/5 or more A fuel cell separator. 請求項1ないし3のいずれか1項において、該自己焼結性炭素微粒子の平均粒径が該黒鉛質炭素微粒子の平均粒径の80%以下であることを特徴とする燃料電池セパレータ。  4. The fuel cell separator according to claim 1, wherein the average particle size of the self-sintering carbon fine particles is 80% or less of the average particle size of the graphitic carbon fine particles. 5. 請求項1ないし4のいずれか1項において、前記黒鉛質炭素微粒子と自己焼結性炭素微粒子とを乾式混合して得られた混合粉に対して、ポリビニルアルコール0.1〜5質量%の水溶液を、造粒剤及び造粒助剤として、混合中の上記混合粉に注入して造粒することを特徴とする燃料電池セパレータ。5. The aqueous solution of 0.1 to 5% by mass of polyvinyl alcohol with respect to the mixed powder obtained by dry-mixing the graphitic carbon fine particles and the self-sintering carbon fine particles according to claim 1. and as a granulating agent and granulating aids, a fuel cell separator, wherein granulation to isosamples injected into the mixed powder during mixing. 請求項1ないし5のいずれか1項において、前記加圧成形圧力が1t/cm2(98.0MPa)以上、2.4t/cm2(235MPa)以下であることを特徴とする燃料電池セパレータ。In any one of claims 1 to 5, a fuel cell separator, wherein said pressure molding pressure of 1t / cm 2 (98.0MPa) or more and less 2.4t / cm 2 (235MPa). 請求項1ないし6のいずれか1項において、前記焼成温度が500℃以上であることを特徴とする燃料電池セパレータ。  The fuel cell separator according to any one of claims 1 to 6, wherein the firing temperature is 500 ° C or higher. 請求項1ないし7のいずれか1項において、一辺の長さが10cm以上、100cm以下で、厚さが0.5mm以上、10mm以下の板状であり、少なくとも一方の主板面に溝が形成されていることを特徴とする燃料電池セパレータ。  The plate according to any one of claims 1 to 7, wherein the length of one side is 10 cm or more and 100 cm or less, the thickness is 0.5 mm or more and 10 mm or less, and a groove is formed on at least one main plate surface. A fuel cell separator.
JP2002228965A 2002-08-06 2002-08-06 Fuel cell separator Expired - Fee Related JP4100086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228965A JP4100086B2 (en) 2002-08-06 2002-08-06 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228965A JP4100086B2 (en) 2002-08-06 2002-08-06 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2004071352A JP2004071352A (en) 2004-03-04
JP4100086B2 true JP4100086B2 (en) 2008-06-11

Family

ID=32015519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228965A Expired - Fee Related JP4100086B2 (en) 2002-08-06 2002-08-06 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP4100086B2 (en)

Also Published As

Publication number Publication date
JP2004071352A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
CN107785560B (en) High-performance silicon-carbon negative electrode material and preparation method thereof
CN106410158B (en) A kind of graphene modified oxidized sub- silicon and carbon complex microsphere and its preparation method and application
CN106848264A (en) A kind of porous silicon oxide lithium ion battery negative material and preparation method thereof
WO2017008494A1 (en) Method for fabricating graphite silicon-based composite negative-electrode material
CN108123111A (en) A kind of lithium ion battery silicon substrate composite negative pole material, its preparation method and the negative electrode of lithium ion battery comprising the material
CN105449165A (en) Lithium ion battery lithium-rich electrode piece and preparation method thereof
KR20190019430A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
CN111682177B (en) Graphite composite material, preparation method and application thereof
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
CN112661133A (en) Preparation method of hard carbon material
CN108821275A (en) A kind of lithium ion battery high capacity, high magnification graphite cathode material and preparation method thereof
CN110931744B (en) Silicon-carbon negative electrode material and preparation method thereof
JP2013020899A (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for manufacturing secondary battery
CN110767881A (en) High-silicon-content carbon-silicon sandwich material, preparation method thereof and application thereof in lithium ion battery
CN115347176A (en) Graphite-based composite negative electrode material and preparation method and application thereof
CN113707881B (en) Carbon-coated lithium metaaluminate material and preparation method and application thereof
JP4103526B2 (en) Fuel cell separator
JP4100086B2 (en) Fuel cell separator
CN116364892A (en) High-capacity COF-based lithium ion battery positive electrode material, and preparation method and application thereof
JP2005285774A (en) Separator for fuel cell, its manufacturing method, and fuel cell including the separator
CN113526956B (en) Low-cost long-circulation graphite negative electrode material and preparation method and application thereof
CN110600738B (en) Method for preparing low-temperature lithium ion battery hard carbon negative electrode material
CN115207349A (en) Graphite negative electrode material and preparation method and application thereof
KR100808332B1 (en) Method of preparing separator for fuel cell and separator for fuel cell prepared by the same
CN114824257A (en) Hard carbon negative electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees