JP4099848B2 - Traction oil supply device for toroidal type continuously variable transmission - Google Patents

Traction oil supply device for toroidal type continuously variable transmission Download PDF

Info

Publication number
JP4099848B2
JP4099848B2 JP02941698A JP2941698A JP4099848B2 JP 4099848 B2 JP4099848 B2 JP 4099848B2 JP 02941698 A JP02941698 A JP 02941698A JP 2941698 A JP2941698 A JP 2941698A JP 4099848 B2 JP4099848 B2 JP 4099848B2
Authority
JP
Japan
Prior art keywords
traction
piston
toroidal
piston shaft
traction oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02941698A
Other languages
Japanese (ja)
Other versions
JPH11230494A (en
Inventor
尚 今西
尚 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP02941698A priority Critical patent/JP4099848B2/en
Publication of JPH11230494A publication Critical patent/JPH11230494A/en
Application granted granted Critical
Publication of JP4099848B2 publication Critical patent/JP4099848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Friction Gearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車用の変速機として使用されるトロイダル型無段変速機において、トロイダル型変速機構がいわゆる油膜切れ状態で回転される際に、入力ディスク及び出力ディスクのトラクション面ならびにパワーローラの周面に擦り合いによる損傷が生じることを防止するトロイダル型無段変速機のトラクション油供給装置に関する。
【0002】
【従来の技術】
主に自動車用の変速機として従来より研究が進められているトロイダル型無段変速機は、互いに対向する面がそれぞれ円弧形状の凹断面を持つ入力ディスク及び出力ディスクと、これらのディスク間に挟持される回転自在な複数個のパワーローラとが組み合わされた構造を有するトロイダル変速機構を少なくとも1組備えている。入力ディスクは、トルク入力軸に対して一体的に回転可能かつトルク入力軸方向への移動が制限されるように係止されて取り付けられ、一方出力ディスクは、トルク入力軸に対して相対的に回転可能かつ入力ディスクから離れる方向への移動が制限されるように入力ディスクと対向して取り付けられる。
【0003】
上述のようなトロイダル型変速機構では、入力ディスクが回転するとパワーローラを介して出力ディスクが逆回転するため、トルク入力軸に入力される回転運動は、逆方向の回転運動として出力ディスクと結合する出力ギアへと伝達され出力軸から取り出される。この際、パワーローラの周面が入力ディスクの外周付近と出力ディスクの中心付近とにそれぞれ当接するようにパワーローラの回転軸の傾斜角度を変化させることでトルク入力軸から出力ギアへの増速が行なわれ、これとは逆に、パワーローラの周面が入力ディスクの中心付近と出力ディスクの外周付近とにそれぞれ当接するようにパワーローラの回転軸の傾斜角度を変化させることでトルク入力軸から出力ギアへの減速が行なわれる。さらに両者の中間の変速比についても、パワーローラの回転軸の傾斜角度を適当に調節することにより、ほぼ無段階に得ることができる。
【0004】
トロイダル型変速機構における入力ディスク/パワーローラ間及びパワーローラ/出力ディスク間の駆動力伝達は共に摩擦接触を介して行われるため、入力ディスク及び出力ディスクの各トラクション面とパワーローラの周面との間にそれぞれ油膜を形成するようにして各部材の金属表面の保護を図っている。これらの油膜は、エンジン等の原動機によって駆動される供給ポンプから送出されたトラクション油をトロイダル型変速機構のトラクション面へと導くことで、絶えず再形成される。
【0005】
また、自動変速を行う自動車の駆動系では、エンジン等の原動機から駆動輪が装着されている車軸へと伝達する駆動トルクの大きさを、発進時には漸増させ、停止時には漸減させる必要があることから、発進時及び停止時のトルク断続状態を切り換えるための発進機構が備わっている。自動変速機としてトロイダル型無段変速機を搭載する自動車の場合、湿式多板クラッチやトルクコンバータといった作動油を介して駆動力の大きさを変化させる形式の発進機構が多く使用され、発進機構は、エンジン等の原動機からトロイダル型変速機構の入力ディスクまでの間、あるいはトロイダル型変速機構の出力ディスクから駆動輪までの間のいずれかに配置される。そのため、発進機構がトロイダル型変速機構と駆動輪の間に備わるトロイダル型無段変速機では、トロイダル型変速機構の各部が常に原動機と共に回転し、一方、発進機構が原動機とトロイダル型変速機構の間に備わるトロイダル型無段変速機では、トロイダル型変速機構の各部が常に駆動輪と共に回転することになる。
【0006】
【発明が解決しようとする課題】
トロイダル型変速機構の各トラクション面とパワーローラ周面との間の油膜を形成しているトラクション油は、重力の影響を受けて時間の経過と共に少しずつ落下するため、これらの面は、次第にいわゆる油膜切れ状態へと変化してゆく。その結果、原動機を停止させたまま長期間放置されていた自動車に搭載されているトロイダル型無段変速機では、各トラクション面とパワーローラ周面との間の油膜が完全に消失してしまい、入力ディスク及び出力ディスクとパワーローラの各金属部材同士は、直接触れ合った状態になる。
【0007】
上述のように、長期間放置されていた自動車のトロイダル型変速機構が回転を開始する場合には、油膜を介さずに接触している入力ディスク及び出力ディスクとパワーローラの金属同士が直接擦り合わされるため、各部材の表面に損傷が生じる。高温かつ高面圧の条件下で運転されるトロイダル型変速機構のトラクション部では、このような油膜切れ状態での直接接触回転により形成される部材表面の微細な損傷が起点となって、面剥離等のトロイダル型無段変速機全体の耐久性を低下させるような重大な問題に至る危険性が高い。
【0008】
例えば、発進機構がトロイダル型変速機構と駆動輪の間に備わるトロイダル型無段変速機の場合、原動機を始動する際に、油供給ポンプが安定に作動し始めるよりも先に原動機によってトロイダル型変速機構の各部が強制的に回転させられるため、上述の各部材の直接接触に関する問題が生じる。また、発進機構が原動機とトロイダル型変速機構の間に設けられているトロイダル型無段変速機の場合、牽引等に伴い原動機が停止した状態で駆動輪が外部から回転される際に、油供給ポンプが駆動されないまま駆動輪の摩擦トルクによってトロイダル型変速機構の各部が強制的に回転させられるため、やはり上述の各部材の直接接触に関する問題が生じる。
【0009】
本発明は、上述の事情に応じてなされたものであり、入力ディスク及び出力ディスクの各トラクション面とパワーローラの周面とが油膜を介さずに直接接触している状態のまま、トロイダル型変速機構の各部が回転される場合に、接触点周辺にトラクション油を供給することで、トラクション面及びパワーローラ周面の損傷を防止するトロイダル型無段変速機のトラクション油供給装置の提供を目的とする。
【0010】
【課題を解決するための手段】
本発明は、トロイダル型無段変速機のトラクション油供給装置に関するものであり、本発明の上記目的は、トラクション油をトロイダル型変速機構のトラクション面に圧送するためのトラクション油供給ポンプと、前記トロイダル型変速機構と駆動輪との間に配置されて発進時及び停止時のトルク断続を切り換えるための発進機構とを有するトロイダル型無段変速機に組み込まれ、原動機が始動される際に、前記原動機の出力軸が実際に回転を開始するよりも先に前記トロイダル型変速機構のトラクション面にトラクション油を供給するトロイダル型無段変速機のトラクション油供給装置により効果的に達成される。
【0011】
また、本発明の上記目的は、トラクション油をトロイダル型変速機構のトラクション面に圧送するためのトラクション油供給ポンプと、原動機の出力軸とトロイダル型変速機構との間に配置されて発進時及び停止時のトルク断続を切り換えるための発進機構とを有するトロイダル型無段変速機に組み込まれ、前記原動機が停止した状態で駆動輪が外部から回転される場合に、前記トロイダル型変速機構のトラクション面にトラクション油を供給するトロイダル型無段変速機のトラクション油供給装置によっても効果的に達成される。
【0012】
【発明の実施の形態】
本発明のトラクション油供給装置は、トラクション油をトロイダル型変速機構のトラクション面付近に圧送するためのトラクション油供給ポンプが備わるトロイダル型無段変速機に組み込まれ、このトラクション油供給ポンプとは独立して動作する。以下では、本発明のトラクション油供給装置がエンジン等の内燃機関を原動機として持つ車両に適用される場合の各構成例について説明する。本発明の構成は、発進時及び停止時のトルク断続を切り換えるための発進機構が設けられている位置に応じて、大きく2種類に分けられる。
【0013】
発進機構がトロイダル型変速機構と駆動輪の間に配置されたトロイダル型無段変速機に組み込まれる形式のトラクション油供給装置の場合、原動機が始動される際にトロイダル型変速機構の各部材表面が損傷することを防ぐために、運転者によりエンジン等の原動機を始動する操作が行われてから実際に原動機の出力軸の回転を開始させるまでの間に、トラクション油をトロイダル型変速機構のトラクション面付近へと供給する。したがって、この形式のトラクション油供給装置では、イグニッションスイッチに接続するセンサと、所定量のトラクション油を短時間で送出するための油送出手段とが必要になる。油送出手段としては、例えば、電動ポンプ、アキュームレータ、圧縮状態に保持されたシリンダといったものが使用可能である。
【0014】
油送出手段として電動ポンプを用いる構成例では、トロイダル型変速機構のトラクション面付近にモータにより駆動される圧送ポンプを配置する。エンジン等が始動される際にイグニッションスイッチへの操作をセンサによって検知すると、モータに通電して圧送ポンプを作動させることで、トロイダル型変速機構が回転を開始するよりも前に油膜形成に必要な量のトラクション油をトラクション面周辺へと送出する。このときに、セルモータへの電力供給が、圧送ポンプへの通電から約1〜2秒経過した後に行われるようにすれば、エンジン等の出力軸が実際に回転を開始するまでに時間差を生じさせることができる。その結果、エンジン等の出力軸と一体回転されるトロイダル型変速機構のトラクション面及びパワーローラ周面には、始動前に確実に油膜が形成されるようになる。
【0015】
油送出手段としてアキュームレータを用いる構成例では、トロイダル型変速機構のトラクション面付近にアキュームレータを配置する。トラクション油の油路の途中に接続されているアキュームレータには、トラクション油供給ポンプから送出されるトラクション油の一部を通常走行中に前もって導入し、適当なトラクション油圧が醸成されたときに、アキュームレータの吐出口に設けられている開閉制御可能なバルブを閉じておく。このため、エンジン等を停止させた後にも、アキュームレータ内には高いトラクション油圧を有する畜圧状態が長期間にわたって保持される。次回エンジン等が始動される際にイグニッションスイッチへの操作をセンサによって検知すると、アキュームレータ吐出口バルブを開くことで、アキュームレータ内に醸成されている油圧を直ちに開放する。自己圧力によってアキュームレータ吐出口から送出されたトラクション油は、トロイダル型変速機構のトラクション面周辺に供給されて油膜を形成する。したがって、エンジン等の出力軸が回転を開始するときに、トロイダル型変速機構の各部材の金属表面同士が直接擦り合わされることはない。なお、この構成例においても、吐出口バルブの開放からセルモータへの電力供給までに数秒程度の遅延時間を生じさせるようにして、油膜形成の確実性を高めても良い。
【0016】
油送出手段として圧縮状態に保持されたシリンダを用いる構成例では、トロイダル型変速機構のトラクション面付近に、図1のようなバネ等の弾性体3及びピストン2を内蔵したシリンダ室1を設ける。ピストン2は、トラクション油を蓄積するシリンダ室1内に嵌装されており、ピストン2の背面とシリンダ室1の内壁との間には、バネ等の弾性体3が伸縮自在に配置される。シリンダ室1に穿設された通し穴4から外へと延びるピストン軸5の端部には、送りネジ機構6と螺合するネジ山50が形成され、送りネジ機構6の外周には、ワンウェイクラッチ7を介してネジ送りギア8が結合されている。このネジ送りギア8は、モータ9の出力軸に駆動結合されている駆動ギア10と歯合しているため、モータ9に供給する電力を制御することで、送りネジ機構6によるピストン軸5の送り込み量を調節できる。また、ピストン軸5の中間部には、ソレノイド11によって上下方向へと駆動されるストッパ12と係合する顎部51が突設されている。
【0017】
モータ9の駆動は、通常走行中の余剰電力を利用して行われる。駆動ギア10の回転にしたがって送りネジ機構6が作動すると、ネジ山50からの推力を受けたピストン軸5がシリンダ室1に向かって押し込まれ、バネ等の弾性体3を圧縮する。シリンダ室1は、側壁に形成された出入口を経由してトラクション油の油路と接続されているため、ピストン軸5が押し込まれてシリンダ室1の容積が増大すると、トラクション油がシリンダ室1内へと流入する。ピストン軸5の送り込みが所定量に達した時点で、ソレノイド11に通電してストッパ12を押し下げ、ピストン軸5の顎部51と係合させることで、通常走行中に予めバネ等の弾性体3の圧縮状態を創生しておくことができる。この圧縮状態はエンジン等を停止させた後も喪失しないため、シリンダには、バネ等の弾性体3の反発力に基づく高い送出力が長期間にわたって保持される。
【0018】
次回エンジン等の始動時にイグニッションスイッチへの操作をセンサによって検知すると、ソレノイド11へと通電してストッパ12を引き上げることで、シリンダの送出力を直ちに開放する。バネ等の弾性体3の反発力を受けたピストン2の移動により容積を急速に減少させるシリンダ室1の出入口から排出されたトラクション油は、トロイダル型変速機構のトラクション面及びパワーローラ周面周辺に供給されて油膜を形成する。なお、バネ等の弾性体3から反発力を受けたピストン2がシリンダ室1から押し出されてシリンダ室1の容積を減少させる際には、ワンウェイクラッチ7の働きにより送りネジ機構6が空転するため、ネジ送りギア8及びモータ9がピストン軸2の軸方向に沿った移動を妨げることはない。
【0019】
発進機構が原動機とトロイダル型変速機構の間に配置されたトロイダル型無段変速機に組み込まれる形式のトラクション油供給装置の場合、原動機が停止した状態のままトロイダル型変速機構が回転される際の各部材表面の損傷を防止するために、駆動輪が回転している間は、継続的にトラクション油をトロイダル型変速機構のトラクション面付近へと供給する。したがって、この形式のトラクション油供給装置では、常に所定量のトラクション油を送出し続けるための油送出手段が必要になる。油送出手段としては、電動ポンプや機械式ポンプといったものが使用可能である。
【0020】
油送出手段として電動ポンプを用いる構成例では、駆動輪または駆動軸に回転センサを接続し、トロイダル型変速機構のトラクション面付近にモータにより駆動される圧送ポンプを配置する。車両の牽引時など、エンジン等が停止している状態で駆動輪の回転が開始されたことを回転センサによって検知すると、モータに通電して圧送ポンプを作動させることで、油膜形成に必要な量のトラクション油をトラクション面周辺へと送出する。圧送ポンプを作動させるモータへの電力供給は、トロイダル型変速機構が回転している間は継続して行われ、回転センサが駆動輪の一定時間以上の静止を検知したときにのみ停止される。
【0021】
油送出手段として機械式ポンプを用いる構成例では、駆動系の発進機構から駆動輪までの間に動力抽出部を配置する。動力抽出部は、駆動輪から入力された回転力の一部を取り出して、機械式ポンプへと伝達する。牽引などの際に外部から加えられた力によって車両が進行すると、エンジン等を停止させたまま駆動輪が回転されるため、動力抽出部で自動的に配分された駆動力が機械式ポンプを作動させ、油膜形成に必要な量のトラクション油がトラクション面周辺へと送出される。この構成例では、機械式ポンプが路面からの摩擦力を受けた駆動輪の回転に応じて自動的に作動を開始するため、駆動輪が回転を停止しない限りトラクション油の送出は継続される。なお、ここで使用する機械式ポンプとしては、小容量のトロコイドポンプなど、種々の作動形式の中から適当なものを選択することができる。
【0022】
上記のような、発進機構が原動機とトロイダル型変速機構の間に配置されたトロイダル型無段変速機に組み込まれる形式のトラクション油供給装置では、エンジン等が停止しているかどうか判別するための検出部が必要となる。この検出部としては、点火系の電流値や電圧値を監視する方法のほか、イグニッションスイッチに接続したセンサ、ギアポジションセンサ、クランク角センサ等から入力される信号を活用することもできる。
【0023】
【発明の効果】
以上説明したように、本発明のトロイダル型無段変速機のトラクション油供給装置によれば、入力ディスク及び出力ディスクの各トラクション面とパワーローラの周面とが油膜を介さずに直接接触している場合にも、実際にトロイダル型変速機構の各部が回転を開始するよりも先に、接触点周辺にトラクション油を供給することができるため、各金属同士が油膜を介さずに直接擦り合わされることがなくなる。その結果、部材表面における損傷の発生が防止され、トロイダル型無段変速機全体の耐久性の大幅な向上が見込める。
【図面の簡単な説明】
【図1】本発明のトロイダル型無段変速機のトラクション油供給装置の一構成例を示した模式図である。
【符号の説明】
1 シリンダ室
2 ピストン
3 弾性体
4 通し穴
5 ピストン軸
6 送りネジ機構
7 ワンウェイクラッチ
8 ネジ送りギア
9 モータ
10 駆動ギア
11 ソレノイド
12 ストッパ
50 ネジ山
51 顎部
[0001]
BACKGROUND OF THE INVENTION
In the toroidal type continuously variable transmission used as a transmission for an automobile, for example, when the toroidal type transmission mechanism is rotated in a so-called oil film cut state, the traction surfaces of the input disk and the output disk, and the power roller The present invention relates to a traction oil supply device for a toroidal-type continuously variable transmission that prevents damage caused by rubbing on a peripheral surface.
[0002]
[Prior art]
The toroidal type continuously variable transmission, which has been studied mainly as a transmission for automobiles, is sandwiched between an input disk and an output disk, each of which has an arcuate concave cross section on the surfaces facing each other. At least one set of toroidal transmission mechanisms having a structure in which a plurality of freely rotatable power rollers are combined is provided. The input disk is mounted so as to be able to rotate integrally with the torque input shaft and to be restricted from moving in the direction of the torque input shaft, while the output disk is relatively fixed to the torque input shaft. It is mounted opposite to the input disk so that it can be rotated and movement in the direction away from the input disk is restricted.
[0003]
In the toroidal type transmission mechanism as described above, when the input disk rotates, the output disk rotates reversely via the power roller. Therefore, the rotational motion input to the torque input shaft is coupled to the output disk as a rotational motion in the reverse direction. It is transmitted to the output gear and taken out from the output shaft. At this time, the speed of rotation from the torque input shaft to the output gear is increased by changing the inclination angle of the rotating shaft of the power roller so that the peripheral surface of the power roller is in contact with the vicinity of the outer periphery of the input disk and the center of the output disk. On the contrary, the torque input shaft is changed by changing the tilt angle of the rotation shaft of the power roller so that the peripheral surface of the power roller is in contact with the vicinity of the center of the input disk and the vicinity of the outer periphery of the output disk. To the output gear. Further, an intermediate gear ratio can be obtained almost steplessly by appropriately adjusting the inclination angle of the rotating shaft of the power roller.
[0004]
Since the driving force is transmitted between the input disk / power roller and between the power roller / output disk in the toroidal transmission mechanism through frictional contact, the traction surfaces of the input disk and output disk and the peripheral surface of the power roller An oil film is formed between them to protect the metal surface of each member. These oil films are constantly reformed by guiding traction oil sent from a supply pump driven by a prime mover such as an engine to the traction surface of the toroidal transmission mechanism.
[0005]
In addition, in a drive system of an automobile that performs automatic gear shifting, it is necessary to gradually increase the magnitude of the drive torque transmitted from a prime mover such as an engine to the axle on which the drive wheels are mounted, and gradually decrease when stopping. In addition, a starting mechanism is provided for switching between a torque intermittent state when starting and stopping. In the case of an automobile equipped with a toroidal-type continuously variable transmission as an automatic transmission, a type of starting mechanism that changes the magnitude of the driving force via hydraulic oil, such as a wet multi-plate clutch or a torque converter, is often used. It is disposed either between the prime mover such as the engine and the input disk of the toroidal transmission mechanism or between the output disk of the toroidal transmission mechanism and the drive wheel. Therefore, in a toroidal type continuously variable transmission in which the starting mechanism is provided between the toroidal type transmission mechanism and the drive wheel, each part of the toroidal type transmission mechanism always rotates together with the prime mover, while the starting mechanism is between the prime mover and the toroidal type transmission mechanism. In the toroidal type continuously variable transmission provided in, each part of the toroidal type transmission mechanism always rotates together with the drive wheels.
[0006]
[Problems to be solved by the invention]
The traction oil that forms an oil film between each traction surface of the toroidal transmission mechanism and the power roller peripheral surface falls gradually over time due to the influence of gravity, so these surfaces gradually become so-called It changes to the state of running out of oil film. As a result, the oil film between each traction surface and the power roller peripheral surface disappears completely in the toroidal type continuously variable transmission mounted on the automobile that has been left for a long time with the prime mover stopped. The input disk, the output disk, and the metal members of the power roller are in direct contact with each other.
[0007]
As described above, when the toroidal transmission mechanism of an automobile that has been left for a long time starts to rotate, the metal of the input disk and output disk that are in contact with each other without an oil film and the power roller are directly rubbed together. Therefore, the surface of each member is damaged. In the traction section of a toroidal transmission mechanism that is operated under high temperature and high surface pressure conditions, surface separation occurs due to the minute damage to the surface of the member formed by such direct contact rotation when the oil film is cut. There is a high risk of serious problems such as reducing the durability of the entire toroidal continuously variable transmission.
[0008]
For example, if the starting mechanism is a toroidal-type continuously variable transmission provided between a toroidal-type transmission mechanism and a drive wheel, when starting the prime mover, the toroidal-type transmission is started by the prime mover before the oil supply pump starts to operate stably. Since each part of the mechanism is forcibly rotated, a problem relating to the direct contact of each member described above occurs. In addition, when the starting mechanism is a toroidal continuously variable transmission provided between the prime mover and the toroidal transmission mechanism, oil is supplied when the drive wheels are rotated from the outside while the prime mover is stopped due to traction, etc. Since each part of the toroidal type transmission mechanism is forcibly rotated by the friction torque of the drive wheel without driving the pump, there still arises a problem related to the direct contact of each member described above.
[0009]
The present invention has been made in response to the above-mentioned circumstances, and each traction surface of the input disk and the output disk and the peripheral surface of the power roller are in direct contact with no oil film interposed therebetween. To provide a traction oil supply device for a toroidal continuously variable transmission that prevents damage to the traction surface and the power roller peripheral surface by supplying traction oil around the contact point when each part of the mechanism is rotated. To do.
[0010]
[Means for Solving the Problems]
The present invention relates to a traction oil supply device for a toroidal type continuously variable transmission, and the object of the present invention is to provide a traction oil supply pump for pumping traction oil to a traction surface of a toroidal type transmission mechanism, and the toroidal When the prime mover is started, the prime mover is incorporated in a toroidal continuously variable transmission that is arranged between the type transmission mechanism and the drive wheel and has a start mechanism for switching between torque interruption at start and stop. This is effectively achieved by the traction oil supply device for the toroidal continuously variable transmission that supplies the traction oil to the traction surface of the toroidal transmission mechanism before the output shaft actually starts rotating.
[0011]
The above-mentioned object of the present invention is arranged between the traction oil supply pump for pumping the traction oil to the traction surface of the toroidal transmission mechanism, and the output shaft of the prime mover and the toroidal transmission mechanism, at the time of starting and stopping. Is incorporated in a toroidal-type continuously variable transmission having a starting mechanism for switching torque on / off, and when the driving wheels are rotated from the outside with the prime mover stopped, the traction surface of the toroidal-type transmission mechanism This can also be achieved effectively by a traction oil supply device for a toroidal type continuously variable transmission that supplies traction oil.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The traction oil supply device of the present invention is incorporated in a toroidal continuously variable transmission equipped with a traction oil supply pump for pumping traction oil to the vicinity of the traction surface of the toroidal transmission mechanism, and is independent of the traction oil supply pump. Works. Below, each structural example in case the traction oil supply apparatus of this invention is applied to the vehicle which has internal combustion engines, such as an engine, as a motor is demonstrated. The configuration of the present invention is roughly divided into two types according to the position where the start mechanism for switching between torque interruption at start and stop is provided.
[0013]
In the case of a traction oil supply device of the type in which the starting mechanism is incorporated in a toroidal continuously variable transmission arranged between the toroidal transmission mechanism and the drive wheel, the surface of each member of the toroidal transmission mechanism is changed when the prime mover is started. In order to prevent damage, the traction oil is supplied near the traction surface of the toroidal transmission mechanism between the time the driver starts the prime mover such as the engine and the time when the output shaft of the prime mover is actually started. To supply. Therefore, this type of traction oil supply apparatus requires a sensor connected to the ignition switch and an oil delivery means for delivering a predetermined amount of traction oil in a short time. For example, an electric pump, an accumulator, or a cylinder held in a compressed state can be used as the oil delivery means.
[0014]
In the configuration example using the electric pump as the oil delivery means, a pressure feed pump driven by a motor is disposed near the traction surface of the toroidal transmission mechanism. When the operation of the ignition switch is detected by a sensor when the engine or the like is started, it is necessary to form an oil film before the toroidal transmission mechanism starts rotating by energizing the motor and operating the pressure pump. Deliver an amount of traction oil around the traction surface. At this time, if the power supply to the cell motor is performed after about 1-2 seconds have passed since the energization of the pressure pump, a time difference is produced until the output shaft of the engine or the like actually starts rotating. be able to. As a result, an oil film is reliably formed on the traction surface and the peripheral surface of the power roller of the toroidal transmission mechanism that rotates integrally with the output shaft of the engine or the like before starting.
[0015]
In the configuration example using the accumulator as the oil delivery means, the accumulator is disposed in the vicinity of the traction surface of the toroidal transmission mechanism. In the accumulator connected in the middle of the traction oil passage, a part of the traction oil sent from the traction oil supply pump is introduced in advance during normal running, and when the appropriate traction hydraulic pressure is cultivated, the accumulator The valve which can be opened and closed provided at the discharge port is closed. For this reason, even after the engine or the like is stopped, the accumulator maintains a stock pressure state having a high traction hydraulic pressure for a long period of time. When the operation of the ignition switch is detected by the sensor when the engine or the like is started next time, the hydraulic pressure developed in the accumulator is immediately released by opening the accumulator discharge valve. The traction oil delivered from the accumulator discharge port by the self pressure is supplied to the periphery of the traction surface of the toroidal transmission mechanism to form an oil film. Therefore, when the output shaft of the engine or the like starts rotating, the metal surfaces of the members of the toroidal transmission mechanism are not directly rubbed. In this configuration example as well, the certainty of oil film formation may be improved by causing a delay time of about several seconds from the opening of the discharge port valve to the power supply to the cell motor.
[0016]
In a configuration example using a cylinder held in a compressed state as oil delivery means, a cylinder chamber 1 containing an elastic body 3 such as a spring and a piston 2 as shown in FIG. 1 is provided near the traction surface of a toroidal transmission mechanism. The piston 2 is fitted into a cylinder chamber 1 that accumulates traction oil, and an elastic body 3 such as a spring is disposed between the back surface of the piston 2 and the inner wall of the cylinder chamber 1 so as to be extendable and contractible. A thread 50 is formed at the end of the piston shaft 5 extending outwardly from the through hole 4 formed in the cylinder chamber 1. The thread 50 is screwed with the feed screw mechanism 6. A screw feed gear 8 is coupled via the clutch 7. Since this screw feed gear 8 meshes with a drive gear 10 that is drivingly coupled to the output shaft of the motor 9, by controlling the electric power supplied to the motor 9, the piston shaft 5 of the feed screw mechanism 6 is controlled. The feeding amount can be adjusted. In addition, a jaw portion 51 that engages with a stopper 12 that is driven in the vertical direction by a solenoid 11 protrudes from an intermediate portion of the piston shaft 5.
[0017]
The motor 9 is driven using surplus power during normal travel. When the feed screw mechanism 6 operates in accordance with the rotation of the drive gear 10, the piston shaft 5 that receives the thrust from the screw thread 50 is pushed toward the cylinder chamber 1 and compresses the elastic body 3 such as a spring. Since the cylinder chamber 1 is connected to an oil passage for traction oil via an inlet / outlet formed in the side wall, when the piston shaft 5 is pushed in and the volume of the cylinder chamber 1 increases, the traction oil is moved into the cylinder chamber 1. Flows into. When the feeding of the piston shaft 5 reaches a predetermined amount, the solenoid 11 is energized to push down the stopper 12 and engage with the jaw portion 51 of the piston shaft 5 so that the elastic body 3 such as a spring is preliminarily provided during normal traveling. The compression state can be created. Since this compressed state is not lost even after the engine or the like is stopped, the cylinder maintains a high power output based on the repulsive force of the elastic body 3 such as a spring for a long period of time.
[0018]
When the operation of the ignition switch is detected by the sensor at the next start of the engine or the like, the solenoid 11 is energized and the stopper 12 is pulled up to immediately release the cylinder feed output. Traction oil discharged from the inlet / outlet of the cylinder chamber 1 whose volume is rapidly reduced by the movement of the piston 2 that receives the repulsive force of the elastic body 3 such as a spring is distributed around the traction surface of the toroidal transmission mechanism and the peripheral surface of the power roller. Supplied to form an oil film. Note that when the piston 2 that has received a repulsive force from the elastic body 3 such as a spring is pushed out of the cylinder chamber 1 to reduce the volume of the cylinder chamber 1, the feed screw mechanism 6 is idled by the action of the one-way clutch 7. The screw feed gear 8 and the motor 9 do not hinder the movement of the piston shaft 2 along the axial direction.
[0019]
In the case of a traction oil supply device of a type incorporated in a toroidal continuously variable transmission where the starting mechanism is disposed between the prime mover and the toroidal type transmission mechanism, when the toroidal type transmission mechanism is rotated while the prime mover is stopped In order to prevent damage to the surface of each member, traction oil is continuously supplied to the vicinity of the traction surface of the toroidal transmission mechanism while the drive wheel is rotating. Therefore, in this type of traction oil supply device, an oil delivery means is required for constantly delivering a predetermined amount of traction oil. As the oil delivery means, an electric pump or a mechanical pump can be used.
[0020]
In the configuration example using the electric pump as the oil delivery means, a rotation sensor is connected to the drive wheel or the drive shaft, and a pressure feed pump driven by a motor is disposed near the traction surface of the toroidal transmission mechanism. When the rotation sensor detects that the drive wheels have started to rotate while the engine is stopped, such as when the vehicle is being pulled, the amount required for oil film formation by energizing the motor and operating the pressure feed pump The traction oil is sent around the traction surface. The power supply to the motor that operates the pressure feed pump is continuously performed while the toroidal transmission mechanism is rotating, and is stopped only when the rotation sensor detects that the driving wheel is stationary for a predetermined time or longer.
[0021]
In the configuration example in which a mechanical pump is used as the oil delivery means, a power extraction unit is disposed between the drive train starting mechanism and the drive wheels. The power extraction unit extracts a part of the rotational force input from the drive wheel and transmits it to the mechanical pump. When the vehicle travels by force applied from the outside during towing, the drive wheels are rotated with the engine stopped, etc., so the driving force automatically distributed by the power extraction unit operates the mechanical pump. Thus, an amount of traction oil necessary for forming an oil film is delivered to the periphery of the traction surface. In this configuration example, since the mechanical pump automatically starts operating according to the rotation of the driving wheel that receives the frictional force from the road surface, the traction oil is continuously sent out unless the driving wheel stops rotating. In addition, as a mechanical pump used here, a suitable thing can be selected from various operation types, such as a small capacity trochoid pump.
[0022]
In the traction oil supply device of the type incorporated in the toroidal type continuously variable transmission in which the starting mechanism is disposed between the prime mover and the toroidal type transmission mechanism, detection for determining whether the engine or the like is stopped Part is required. As the detection unit, in addition to the method of monitoring the current value and voltage value of the ignition system, a signal input from a sensor connected to the ignition switch, a gear position sensor, a crank angle sensor, or the like can be used.
[0023]
【The invention's effect】
As described above, according to the traction oil supply device of the toroidal continuously variable transmission of the present invention, the traction surfaces of the input disk and the output disk and the peripheral surface of the power roller are in direct contact with each other without an oil film interposed therebetween. In this case, the traction oil can be supplied around the contact point before each part of the toroidal transmission mechanism actually starts rotating, so that the metals are directly rubbed without an oil film. Nothing will happen. As a result, the occurrence of damage on the member surface is prevented, and the durability of the entire toroidal type continuously variable transmission can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration example of a traction oil supply device for a toroidal type continuously variable transmission according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder chamber 2 Piston 3 Elastic body 4 Through-hole 5 Piston shaft 6 Feed screw mechanism 7 One-way clutch 8 Screw feed gear 9 Motor 10 Drive gear 11 Solenoid 12 Stopper 50 Screw thread 51 Jaw

Claims (2)

トラクション油をトロイダル型変速機構のトラクション面に圧送するためのトラクション油送出手段と、前記トロイダル型変速機構と駆動輪との間に配置されて発進時及び停止時のトルク断続を切り換えるための発進機構とを有するトロイダル型無段変速機に組み込まれ、
前記トラクション油送出手段は、前記トラクション油を蓄積するシリンダ室と、該シリンダ室内に嵌装されたピストンと、該ピストンの背面と前記シリンダ室の内壁との間に配された弾性体と、一端部が前記ピストンの正面側に取り付けられ、他端部が前記シリンダ室に穿設された通し穴から外へ延びているピストン軸と、該ピストン軸の他端部に連結され、前記弾性体を圧縮する方向に前記ピストン軸を推進するピストン押圧機構と、前記ピストン軸の中間部に形成された顎部にストッパを係合させるソレノイドとを備え、
前記ピストン軸の推進量が所定量に達した時点で、前記ソレノイドに通電して前記ストッパを前記ピストン軸の顎部に係合させることにより、通常走行中に予め前記弾性体の圧縮状態を創生し、かつ、
原動機が始動される際に、前記ソレノイドに通電して前記ストッパと前記ピストン軸の顎部との係合を解除することにより、前記原動機の出力軸が実際に回転を開始するよりも先に前記トロイダル型変速機構のトラクション面にトラクション油を供給するトロイダル型無段変速機のトラクション油供給装置。
Traction oil delivery means for pumping traction oil to the traction surface of the toroidal type transmission mechanism, and a start mechanism for switching between torque interruption at start and stop, arranged between the toroidal type transmission mechanism and the drive wheel Embedded in a toroidal continuously variable transmission having
The traction oil delivery means includes a cylinder chamber for accumulating the traction oil, a piston fitted in the cylinder chamber, an elastic body disposed between a back surface of the piston and an inner wall of the cylinder chamber, and one end The piston shaft is attached to the front side of the piston, and the other end is connected to the other end of the piston shaft, and the elastic body is connected to the other end of the piston shaft. A piston pressing mechanism that propels the piston shaft in a compressing direction, and a solenoid that engages a stopper with a jaw portion formed in an intermediate portion of the piston shaft,
When the propulsion amount of the piston shaft reaches a predetermined amount, the solenoid is energized and the stopper is engaged with the jaw portion of the piston shaft to create a compressed state of the elastic body in advance during normal travel. Live and
When the prime mover is started, the solenoid is energized to release the engagement between the stopper and the jaw portion of the piston shaft, so that the output shaft of the prime mover actually starts rotating before A traction oil supply device for a toroidal continuously variable transmission that supplies traction oil to the traction surface of a toroidal transmission mechanism.
トラクション油をトロイダル型変速機構のトラクション面に圧送するためのトラクション油送出手段と、原動機の出力軸と前記トロイダル型変速機構との間に配置されて発進時及び停止時のトルク断続を切り換えるための発進機構とを有するトロイダル型無段変速機に組み込まれ、
前記トラクション油送出手段は、前記トラクション油を蓄積するシリンダ室と、該シリンダ室内に嵌装されたピストンと、該ピストンの背面と前記シリンダ室の内壁との間に配された弾性体と、一端部が前記ピストンの正面側に取り付けられ、他端部が前記シリンダ室に穿設された通し穴から外へ延びているピストン軸と、該ピストン軸の他端部に連結され、前記弾性体を圧縮する方向に前記ピストン軸を推進するピストン押圧機構と、前記ピストン軸の中間部に形成された顎部にストッパを係合させるソレノイドとを備え、
前記ピストン軸の推進量が所定量に達した時点で、前記ソレノイドに通電して前記ストッパを前記ピストン軸の顎部に係合させることにより、通常走行中に予め前記弾性体の圧縮状態を創生し、かつ、
前記原動機が停止した状態で駆動輪が外部から回転される場合に、前記ソレノイドに通電して前記ストッパと前記ピストン軸の顎部との係合を解除することにより、前記トロイダル型変速機構のトラクション面にトラクション油を供給するトロイダル型無段変速機のトラクション油供給装置。
Traction oil delivery means for pumping traction oil to the traction surface of the toroidal type transmission mechanism, and arranged between the output shaft of the prime mover and the toroidal type transmission mechanism for switching between torque interruption at start and stop Incorporated in a toroidal continuously variable transmission having a starting mechanism,
The traction oil delivery means includes a cylinder chamber for accumulating the traction oil, a piston fitted in the cylinder chamber, an elastic body disposed between a back surface of the piston and an inner wall of the cylinder chamber, and one end The piston shaft is attached to the front side of the piston, and the other end is connected to the other end of the piston shaft, and the elastic body is connected to the other end of the piston shaft. A piston pressing mechanism that propels the piston shaft in a compressing direction, and a solenoid that engages a stopper with a jaw portion formed in an intermediate portion of the piston shaft,
When the propulsion amount of the piston shaft reaches a predetermined amount, the solenoid is energized and the stopper is engaged with the jaw portion of the piston shaft to create a compressed state of the elastic body in advance during normal travel. Live and
When the driving wheel is rotated from the outside in a state where the prime mover is stopped, the traction of the toroidal transmission mechanism is released by energizing the solenoid and releasing the engagement between the stopper and the jaw portion of the piston shaft. Traction oil supply device for toroidal continuously variable transmission that supplies traction oil to the surface.
JP02941698A 1998-02-12 1998-02-12 Traction oil supply device for toroidal type continuously variable transmission Expired - Fee Related JP4099848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02941698A JP4099848B2 (en) 1998-02-12 1998-02-12 Traction oil supply device for toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02941698A JP4099848B2 (en) 1998-02-12 1998-02-12 Traction oil supply device for toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH11230494A JPH11230494A (en) 1999-08-27
JP4099848B2 true JP4099848B2 (en) 2008-06-11

Family

ID=12275536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02941698A Expired - Fee Related JP4099848B2 (en) 1998-02-12 1998-02-12 Traction oil supply device for toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4099848B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567889B2 (en) * 2000-12-28 2004-09-22 トヨタ自動車株式会社 Lubrication device for toroidal type continuously variable transmission
JP5035741B2 (en) * 2005-07-28 2012-09-26 日本精工株式会社 Lubricating device for toroidal type continuously variable transmission
JP5365562B2 (en) * 2010-03-23 2013-12-11 トヨタ自動車株式会社 Drive device
CN102444776B (en) * 2010-10-12 2016-06-29 彭道琪 fat press pump
CN106838586B (en) * 2017-04-07 2019-01-04 山东固润工程技术有限公司 A kind of door machine exposed gear automatic lubrication installation
CN108533939B (en) * 2018-04-28 2020-07-28 芜湖超源力工业设计有限公司 Novel sealing cap oiling machine
CN109296514A (en) * 2018-11-05 2019-02-01 安庆市睿霞机械有限公司 A kind of production lubricating oil discharge device
CN109681759A (en) * 2019-02-25 2019-04-26 山西日盛达新能源集团有限公司 A kind of anticlogging calender bearing shell automatic lubrication installation

Also Published As

Publication number Publication date
JPH11230494A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
EP1950076B1 (en) Vehicle drive device and hydraulic circuit thereof
US4252208A (en) Method and apparatus for operating a motor vehicle
US6656083B2 (en) Hybrid drive system
JP3810601B2 (en) Hybrid vehicle lubrication structure
US6712166B2 (en) Energy management system
JP2015509877A (en) Fuel saving system that makes it easy to restart a vehicle with the engine stopped
US5147254A (en) Torque transmission unit for the drive connection of a secondary unit with an internal combustion engine
JP4099848B2 (en) Traction oil supply device for toroidal type continuously variable transmission
EP2488380B1 (en) Power train for a hybrid vehicle
US7036310B2 (en) Hydraulic controller for hydraulic actuator
US20140113759A1 (en) Drive Train Having a Hydrodynamic Retarder and Its Control Method
FR2849142A1 (en) BRAKING SYSTEM FOR A VEHICLE DRIVEN BY AT LEAST ONE HYDRAULIC MOTOR SUPPLIED IN A CLOSED CIRCUIT
KR100687300B1 (en) Compact Transmission Preventing A Vehicle From Moving Backward On A Slope
JP5035741B2 (en) Lubricating device for toroidal type continuously variable transmission
JPH02123247A (en) Turbo-retarder
CN112443596B (en) Brake-by-wire system and vehicle
JP2879018B2 (en) Drive unit for motor vehicle
JP2001294139A (en) Hand guide roller
JP3567889B2 (en) Lubrication device for toroidal type continuously variable transmission
JP2004308784A (en) Clutch unit for preventing reverse rotation, and system for preventing reverse travel
JPS6237218A (en) Deceleration energy recovery apparatus for vehicle
JPS6235928B2 (en)
JP5046069B2 (en) Lubricating device for toroidal type continuously variable transmission
JPH10100731A (en) Braking energy regenerating device
CN114941569B (en) Power system and engineering machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees