JP4099625B2 - Concrete material measuring device - Google Patents

Concrete material measuring device Download PDF

Info

Publication number
JP4099625B2
JP4099625B2 JP2001185885A JP2001185885A JP4099625B2 JP 4099625 B2 JP4099625 B2 JP 4099625B2 JP 2001185885 A JP2001185885 A JP 2001185885A JP 2001185885 A JP2001185885 A JP 2001185885A JP 4099625 B2 JP4099625 B2 JP 4099625B2
Authority
JP
Japan
Prior art keywords
water
aggregate
tank
measuring
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001185885A
Other languages
Japanese (ja)
Other versions
JP2003001623A (en
Inventor
茂幸 十河
竜一 近松
幸次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001185885A priority Critical patent/JP4099625B2/en
Priority to PCT/JP2002/005721 priority patent/WO2003000478A1/en
Priority to US10/481,454 priority patent/US7000458B2/en
Priority to EP02733428A priority patent/EP1405705A4/en
Priority to KR1020037016550A priority patent/KR100866855B1/en
Priority to CNB028123654A priority patent/CN100354094C/en
Publication of JP2003001623A publication Critical patent/JP2003001623A/en
Application granted granted Critical
Publication of JP4099625B2 publication Critical patent/JP4099625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面水の状態が異なる骨材及び水を計量するコンクリート材料の計量装置に関する。
【0002】
【従来の技術】
コンクリートを現場配合する際、水量がコンクリート強度等に大きな影響を及ぼすため、練混ぜ時に十分管理する必要があるが、配合材料である骨材は、その貯蔵状況や気候条件等によって含水状態が異なり、湿潤状態の骨材を用いるとコンクリート中の水量が骨材の表面水の量だけ増加し、乾燥状態の骨材を用いるとコンクリート中の水量は有効吸水量だけ減少する。
【0003】
そのため、骨材の乾湿程度に応じて練混ぜ時の水量を補正し示方配合通りのコンクリートを製造することが、コンクリートの品質を維持する上できわめて重要な事項となる。
【0004】
ここで、湿潤状態における表面水の水量(細骨材の表面に付着している水量)を表乾状態(表面乾燥飽水状態)の細骨材の質量で除した比率を表面水率と呼んでいるが、貯蔵されている骨材、特に細骨材は一般に濡れていることが多いため、かかる表面水率を骨材の乾湿程度の指標として予め測定し、その測定値に基づいて練混ぜ水量を調整するのが一般的である。
【0005】
そして、このような表面水率の測定は、従来、細骨材が貯蔵されたストックビンと呼ばれる貯蔵容器から少量の試料を採取してその質量及び絶乾状態での質量を計測し、次いで、これらの計測値と予め測定された表乾状態の吸水率とを用いて算出していた。
【0006】
【発明が解決しようとする課題】
しかしながら、このような測定方法では、わずかな試料から全体の表面水率を推測しているにすぎないため、精度の面でどうしても限界がある一方、絶乾状態の質量を計測するにはバーナー等による加熱作業が必要となるため、実際に使用する量に近い量を採取してこれを試料とすることは、経済性や時間の面で非現実的であるという問題を生じていた。
【0007】
また、このような問題を補うべく、練混ぜ状況をオペレータが目視で確認したり、ミキサの負荷電流を参考にすることによって練混ぜ水量の調整を行うといった方法を採用することがあるが、かかる方法自体が精度の低いものであり、結局、強度面で20%近い大きな安全率を見込まざるを得なくなり、不経済な配合となるという問題も生じていた。
【0008】
本発明は、上述した事情を考慮してなされたもので、骨材及び水の質量を正確に計測することが可能なコンクリート材料の計量装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るコンクリート材料の計量装置は請求項1に記載したように、骨材を供給する骨材供給手段と、給水手段と、前記骨材供給手段から供給された骨材を前記給水手段から供給された水とともに水浸骨材として収容するとともに底部開口に水密性を保持可能な底蓋を開閉自在に取り付けてなる計量槽と、該計量槽内の水浸骨材の質量を計測する水浸骨材質量計測手段と、前記計量槽内の水浸骨材の水位を計測する水位計測手段と、前記計量槽内の水浸骨材の水位を所望の水位に保持するために該所望の水位を上回る水を前記計量槽内から吸水するとともにその吸水量を計測する水位保持手段とを備え、該水位保持手段を、昇降自在に設置された吸水管と該吸水管に連通接続され吸水された水を計量する吸水計量用貯留槽と該吸水計量用貯留槽に連通接続された吸気手段とで構成したものである。
【0010】
また、本発明に係るコンクリート材料の計量装置は、前記水位計測手段を電極式センサーで構成するとともに該電極式センサーを前記吸水管に固定することで前記電極式センサーを前記吸水管に連動昇降できるように構成したものである。
【0011】
また、本発明に係るコンクリート材料の計量装置は、前記電極式センサーを中空管内に配置して該中空管とともに前記吸水管に固定するとともに、前記中空管内を鉛直下向きの低圧空気が流れるように該中空管の上端に低圧空気導入手段を設けたものである。
【0012】
また、本発明に係るコンクリート材料の計量装置は、前記底蓋の近傍に取り付けられた洗浄ノズルから前記底蓋の上面に洗浄水を吹き付けることができるようになっている洗浄水吹付け手段を備え、該洗浄水吹付け手段を、前記洗浄ノズルに接続された洗浄水貯留タンクと、該洗浄水貯留タンクに接続された洗浄水供給手段と、前記洗浄水貯留タンクに切替バルブを介して連通接続された高圧空気タンクと、該高圧空気タンクに接続されたコンプレッサーとから構成するとともに、前記切替バルブを第一の切替位置にて前記洗浄水貯留タンクを前記高圧空気タンクに連通させるとともに、第2の切替位置にて大気に連通させるように構成したものである。
【0013】
また、本発明に係るコンクリート材料の計量装置は、前記底蓋と計量槽本体とを該底蓋が前記計量槽本体の側方側に移動しながら回動するように互いに長さの異なる2つのリンク部材で連結するとともに前記計量槽本体の側面に所定の底蓋開閉用アクチュエータをその下端にて固定されるように設置し、該底蓋開閉用アクチュエータのピストンロッドの先端と前記底蓋にピン接合された昇降ロッドの先端とを所定の連結部材を介して連結するとともに、該連結部材が前記計量槽本体の側面に突設された鉛直ガイド体に沿って摺動自在となるように前記連結部材を前記鉛直ガイド体に嵌合したものである。
【0014】
本発明に係るコンクリート材料の計量装置においては、水位保持手段を、昇降自在に設置された吸水管と該吸水管に連通接続され吸水された水を計量する吸水計量用貯留槽と該吸水計量用貯留槽に連通接続された吸気手段とで構成してあり、水及び骨材を計量槽に投入するにあたっては、予め吸水管を適宜昇降させることによって、計量槽内の水浸骨材の水位が所望の水位に保持される高さとなるように、吸水管の下端に設けられた吸水口を位置決めしておく。
【0015】
このようにすると、計量槽内の水浸骨材が所望の水位に達した後、該所望の水位を越える余分な水は、吸水管を介して吸気手段で吸水されることとなり、かくして、計量槽内の水浸骨材の容積は、予め定められた容積に保持される。
【0016】
なお、計量槽内の水位が所望の水位になっているかどうかは、水位計測手段で別途確認する。
【0017】
また、吸水管を介して吸水された水は、吸水計量用貯留槽に貯留されるので、その質量を計測しておけば、後述するように骨材の表面水率を精度よく求めることができる。
【0018】
このように、表面水率を算出しておけば、次の計量作業における表面水率の設定に適切に反映させることが可能となる。
【0019】
骨材は、主として細骨材を対象とするが、粗骨材にも適用することができることは言うまでもない。また、骨材はこのように、細骨材でも粗骨材でもかまわないが、コンクリートを構成する材料は、実際には細骨材も粗骨材も必要であるし、細骨材や粗骨材についても、密度が互いに異なるものや粒度が互いに異なるものを複数使う場合が想定される。特に、粒度が互いに異なる複数の骨材を適当な割合で混ぜ合わせることによって、所望の粒度をもつ骨材をあらたに作り出すことがコンクリートの配合上、重要となることが多い。
【0020】
本発明に係るコンクリート材料の計量装置は、単一種類の骨材計量のみならず、主として密度及び粒度の少なくともいずれかが互いに異なる複数の骨材を例えば累加計量方式で計量することができる。
【0021】
なお、本発明で複数の骨材と言うときは、すべてが細骨材である場合、すべてが粗骨材である場合及び細骨材と粗骨材とを任意に含む場合のすべてを包摂するものとする。また、上述したように、複数の骨材とは、密度や粒度が互いに異なるものをはじめ、産地、強度、ヤング係数、耐久性、天然骨材か人工骨材か副産骨材かあるいは天然骨材でも海砂か山砂かという産出状況その他骨材に関する分類指標が互いに異なるものを言うものとする。
【0022】
また、例えば、ΣMi(i=1,2,3,・・N)と表記したときには、総和、すなわち、M1+M2+・・・・+MNを表すものとする。また、第i(i=1,2,3,・・N)の骨材と標記したときには、第1の骨材、第2の骨材、第3の骨材、・・・・、第Nの骨材を意味するものとする。
【0023】
計量槽は、水浸骨材を収容できる限り、どのような形状とするかは任意であって、例えば中空円筒状としてもかまわないが、これを中空円錐台状に形成すると、下方に行くほど内径が大きくなるため、水浸骨材が途中で閉塞するおそれがなくなり、計量が終了したとき、底蓋を開いただけで水浸骨材を自由落下させて容易に取り出すことができる。
【0024】
なお、計量槽内面への骨材付着や骨材の締め固め等により水浸骨材を完全に自由落下させることができない場合には、バイブレータ、ノッカー等の振動付与機器を計量槽の側方に適宜取り付けるようにすればよい。
【0025】
また、計量槽の上方に所定のバイブレータを昇降自在にかつその降下位置にて前記水浸骨材に埋没するように設置するようにすれば、骨材の投入中又は投入後にバイブレータを降下させ、かかる状態にて該バイブレータを作動させることにより、計量槽内に投入された骨材は振動によって平坦になり、該骨材が水面上に出るおそれがなくなる。
【0026】
計量槽の容積については任意であって、コンクリート配合を行う単位すなわち1バッチに必要な全量としてもよいし、何回かに分けて計量するようにしてもよい。
【0027】
水浸骨材質量計測手段は、例えばロードセルで構成することができる。
【0028】
水位計測手段は、計量槽内の水位を計測できる限り、いかなる手段で構成してもかまわないが、前記水位計測手段を電極式センサーで構成するとともに該電極式センサーを前記吸水管に固定することで前記電極式センサーを前記吸水管に連動昇降できるように構成したならば、電極式センサーを昇降させる機構を省略することができる。
【0029】
また、このような電極式センサーを中空管内に配置して該中空管とともに前記吸水管に固定するとともに、前記中空管内を鉛直下向きの低圧空気が流れるように該中空管の上端に低圧空気導入手段を設けたならば、計量槽内の水面に発生している泡を低圧の空気流で取り除くことできるので、電極式センサーの計測精度を向上させることができる。なお、電極式センサーの下端が水浸骨材の水面に接触する位置にて中空管の下端が該水浸骨材の水面下に若干沈むようにその位置を設定しておけば、いったん取り除いた泡が再度、電極式センサーの下端に集まってくるおそれもなくなる。
【0030】
底蓋は、計量槽本体の底部開口を開閉できるとともに、閉じた状態において水密性を保持できるものであれば、いかなる構造のものでもかまわないが、前記底蓋と計量槽本体とを該底蓋が前記計量槽本体の側方側に移動しながら回動するように所定のリンク部材で連結するとともに前記本体の側面に所定の底蓋開閉用アクチュエータをその下端にて固定されるように設置し、該底蓋開閉用アクチュエータのピストンロッドの先端と前記底蓋にピン接合された昇降ロッドの先端とを所定の連結部材を介して連結するとともに、該連結部材が前記本体の側面に突設された鉛直ガイド体に沿って摺動自在となるように前記連結部材を前記鉛直ガイド体に嵌合したならば、底蓋を完全に開くための必要な高さ方向の下方スペースを抑えることができるとともに、底蓋開閉動作を安定させることも可能となる。
【0031】
すなわち、従来の開閉形式では、底蓋を開くと該底蓋が垂れ下がるため、その分だけ、高さ方向の下方スペースを確保する必要があったが、本発明においては、このような開閉に要する高さ方向の下方スペースを抑えることができるため、その分だけ、計量槽本体の底部開口を下げることができるようになり、混練ミキサーへの確実な投入が可能となる。
【0032】
また、底蓋と計量槽本体とを互いに長さの異なる2つのリンク部材で連結してあるため、昇降ロッドで底蓋を押し下げたときには、底蓋は、計量槽本体の側方に廻り込むように移動しつつ回動するが、逆に昇降ロッドで底蓋を引き上げたときには、底蓋を閉じる直前にて、計量槽本体の底部開口とほぼ平行な姿勢となる。そのため、底部開口又は底蓋に設けられたシール材には、ほぼ均等な圧力が作用することとなり、底部開口に沿って均等な水密性を確保することができるとともに、シール材の部分的な損傷をも防止することが可能となる。
【0033】
また、前記底蓋の近傍に取り付けられた洗浄ノズルから前記底蓋の上面に洗浄水を吹き付けることができるようになっている洗浄水吹付け手段を備え、該洗浄水吹付け手段を、前記洗浄ノズルに接続された洗浄水貯留タンクと、該洗浄水貯留タンクに接続された洗浄水供給手段と、前記洗浄水貯留タンクに切替バルブを介して連通接続された高圧空気タンクと、該高圧空気タンクに接続されたコンプレッサーとから構成するとともに、前記切替バルブを第一の切替位置にて前記洗浄水貯留タンクを前記高圧空気タンクに連通させるとともに、第2の切替位置にて大気に連通させるように構成した場合においては、予め、コンプレッサーを駆動して高圧空気タンクに高圧空気を蓄積しておくとともに、洗浄水供給手段から洗浄水貯留タンクに所定量の洗浄水を移送しておく。高圧空気の蓄積及び洗浄水移送を行う際には、洗浄水貯留タンクが高圧空気タンクに連通せず大気に連通する第2の切替位置に切替バルブを切り替えて行う。
【0034】
次に、計量が終了した水浸骨材を底蓋を開いて下方のミキサーに落下排出させた後、切替バルブを第1の位置に切り替える。
【0035】
このようにすると、高圧空気タンクに蓄積された高圧空気は、洗浄水貯留タンクに送り込まれることとなり、その圧力で該タンク内の洗浄水は、洗浄ノズルから噴出される。
【0036】
そのため、水浸骨材の排出時に底蓋の上面に骨材が付着していたとしても、該骨材は、上述した洗浄水で洗浄され吹き飛ばされるので、次の計量のために底蓋を閉じても、計量槽本体と底蓋との間に骨材が挟まることはない。
【0037】
そのため、骨材が挟まることで生じた隙間から漏水が生じて計量に誤差が生じるのを未然に防止することができるとともに、計量槽本体や底蓋に設けられたシール部材に損傷を与えることもない。
【0038】
次に、本発明に係るコンクリート材料の計量装置を用いて複数の骨材を計量する手順を述べる。なお、単一の骨材の場合には、以下の説明中、Nを1に読み替えればよい。
【0039】
まず、第i(i=1,2,3・・・N)の骨材の投入が終了した時点における水浸骨材の目標質量Mdi(i=1,2,3・・・N)を設定する。
【0040】
次に、第1の骨材及び水を該第1の骨材が水面から出ない水浸骨材となるように計量槽に投入する。
【0041】
計量槽に骨材と水を投入するにあたり、いずれを先行させるかは任意であるが、水を先行投入し、しかる後に骨材を投入するようにすれば、特に細骨材の場合に水浸骨材への気泡混入をかなり抑制することが可能となる。
【0042】
次に、水浸骨材の全質量Mf1を計測する。水浸骨材の全質量Mf1を計測するには、水浸骨材で満たされたときの計量槽の質量から計量槽のみの質量を差し引けばよい。
【0043】
次に、第1の骨材の表乾状態における密度ρa1及び水の密度ρwを、水浸骨材の全質量Mf1及び予め設定された所望の水位である第1の水位に対して求められる水浸骨材の全容量Vf1とともに次式、
a1=ρa1(Mf1−ρw・Vf1)/(ρa1−ρw) (1)
に代入して第1の骨材の表乾状態の質量Ma1を求める。
【0044】
次に、第1の骨材と同様にして、第2の骨材を該第2の骨材が水面から出ない水浸骨材となるように計量槽に投入し、次いで、水浸骨材の全質量Mf2を計測する。
【0045】
次に、第1の骨材の表乾状態における密度ρa1、第2の骨材の表乾状態における密度ρa2及び水の密度ρwを全質量Mf2及び予め設定された所望の水位である第2の水位に対して求められる水浸骨材の全容量Vf2とともに、次式、
a2=ρa2((Mf2−Ma1)−ρw(Vf2−Ma1/ρa1))/(ρa2−ρw) (2)
に代入して第2の骨材の表乾状態の質量Ma2を求める。
【0046】
以下、上述の手順を繰り返して第(N―1)の骨材の表乾状態における質量Ma(N-1)までを順次算出し、最後に、第Nの骨材を該第Nの骨材が水面から出ない水浸骨材となるように計量槽に投入する。
【0047】
次に、上述したと同様、水浸骨材の全質量MfNを計測する。
【0048】
次に、第iの骨材(i=1,2,3,・・N)の表乾状態における密度ρai(i=1,2,3,・・N)及び水の密度ρwを全質量MfN及び所望の水位として予め設定された第Nの水位に対して求められる水浸骨材の全容量VfNとともに次式、
aN=ρaN((MfN−ΣMai(i=1,2,3,・・(N-1)))−ρw(VfN−Σ(Mai/ρai)(i=1,2,3,・・(N-1))))/(ρaN−ρw) (3)
w=ρw(ρaN(VfN−Σ(Mai/ρai)(i=1,2,3,・・(N-1)))−(MfN−ΣMai(i=1,2,3,・・(N-1))))/(ρaN−ρw) (4)
に代入して第Nの骨材の表乾状態の質量MaN及び水の質量Mwを求める。
【0049】
ここで、計量槽に第i(i=1,2,3・・・N)の骨材をそれぞれ累加投入していくにあたっては、計量槽への第i(i=1,2,3・・・N)の骨材の投入を所定速度で連続的に又は断続的に行いつつ、水浸骨材の全質量Mfi(i=1,2,3・・・N)の計測をリアルタイム又は所定時間間隔で行い、第i(i=1,2,3・・・N)の骨材のうち、第jの骨材投入中において、そのときの水浸骨材の水位が予め設定された第jの水位を越えないように余分な水を吸水しながら、水浸骨材の全質量Mfjが水浸骨材の目標質量Mdjに達したとき、該第jの骨材投入を終了する。
【0050】
一方、そのときの水浸骨材の水位が予め設定された第jの水位に達していないことが水位計測手段によって確認されたときには、該第jの水位になるように水を補充した上で前記水浸骨材の全質量Mfjの再計測、前記第jの骨材の表乾状態の質量Majの再演算及び前記水の質量Mwの再演算を行う。
【0051】
なお、引き続いて累加投入すべき骨材が存在する場合、すなわち累加投入すべき骨材が複数であってかつ最後の骨材でない場合には、上述したと同様にして第(j+1)の骨材の投入を引き続き行う。
【0052】
このようにして、第i(i=1,2,3・・・N)の骨材及び水を計量したならば、セメントや混和剤といった他のコンクリート材料についても適宜計量し、これらとともに混練ミキサーに投入して練り混ぜることとなるが、ここで、水浸骨材の水位が予め設定された第jの水位を越えないように余剰水を排水しながら、前記水浸骨材の全質量Mfjが水浸骨材の目標質量Mdjに達したときには、第iの骨材の表乾状態の質量Mai(i=1,2,3・・・N)は、当初設定した値と等しくなるため、現場配合を修正する必要はない。
【0053】
一方、水浸骨材の水位が予め設定された第jの水位に達していないときには該第jの水位になるように水を補充するため、実測された前記第jの骨材の表乾状態の質量Majは、当初設定されたものとは異なる値となる。そのため、計量結果を示方配合に従って設定された当初の現場配合と比較し、必要に応じて現場配合を修正する。すなわち、計量された骨材質量と当初設定された現場配合の骨材質量とを比較し、その比率に応じて1バッチの練混ぜ量を修正するとともに、かかる比率に応じて水の不足分を二次水として補充し、又は水の過剰分を排水するとともに、セメントや混和剤といった他のコンクリート材料についても上述した比率に応じて当初の現場配合を修正して計量し、これらを混練ミキサーに投入して練り混ぜる。
【0054】
このように、骨材の表面水は、湿潤状態が異なる骨材ごとのばらつきが考慮された状態で水の質量Mwの一部として間接的に算出されるとともに、骨材の質量は、表乾状態のときの質量Mai(i=1,2,3,・・N)として把握される。すなわち、骨材や水の質量が示方配合と同等の条件で把握されることとなるので、湿潤状態が異なる骨材を用いても、示方配合通りにコンクリートを製造することが可能となる。
【0055】
また、水浸骨材の全質量Mfjが水浸骨材の目標質量Mdjに達したとき、該第jの骨材投入を終了するとともに、そのときの水浸骨材の水位が予め設定された第jの水位に達していないときには該第jの水位になるように水を補充した上で前記水浸骨材の全質量Mfjの再計測、前記第jの骨材の表乾状態の質量Majの再演算及び前記水の質量Mwの再演算を行うようにしたので、水浸骨材の全容量Vfi(i=1,2,3・・・N)の計測は、既知の値となって計測する必要がなくなるとともに、第i(i=1,2,3・・・N)の骨材の投入量を正確に管理し、結果として、示方配合通りのコンクリートを製造することが可能となる。
【0056】
また、それに加えて、密度、粒度等が異なる複数の骨材であっても、湿潤状態の違いによる表面水の影響を最終的な水量の一部として正確に把握しつつ、一つの計量槽内で効率よくしかも高い精度で計量することが可能となる。
【0057】
なお、かかる計量方法において、計量槽への給水量MIを予め計測しておけば、吸水計量用貯留槽にて計測された計量槽からの吸水量MOの累積値を用いて骨材の表面水率を精度よく算出することができる。
【0058】
すなわち、計量槽への給水量MI、計量槽からの吸水量MO及び全質量Mfi(i=1,2,3・・・N)を、次式、
ΣMawj(j=1,2,3,・・i)=Mfi―(MI―MO) (5)
に代入してΣMawj(j=1,2,3,・・i)を求め、
ΣMawj(j=1,2,3,・・i)―ΣMawj(j=1,2,3,・・(i-1)) (6)
を算出し、該Mawiを、次式、
(Mawi―Mai)/Mai (7)
に代入するようにすれば、前記第i(i=1,2,3,・・N)の骨材の表面水率を求めることができる。
【0059】
ここで、計量槽への給水量MIの累積値は、必ずしも増加するとは限らず、最初に投入した水量がその累積値となる、つまり累積値が変動せずに一定となる場合が考えられる。また、計量槽からの吸水量MOは、必ずしも吸水されるとは限らず、累積値が零のままという場合も考えられる。
【0060】
また、水浸骨材内の空気量をa(%)とし、前記Vfi(i=1,2,3,・・N)に代えて、Vfi(i=1,2,3,・・N)・(1―a/100)を用いるようにすれば、空気量を考慮したさらに精度の高い計量が可能となる。
【0061】
【発明の実施の形態】
以下、本発明に係るコンクリート材料の計量装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0062】
図1は、本実施形態に係るコンクリート材料の計量装置を示した全体図である。同図に示すように、本実施形態に係るコンクリート材料の計量装置1は、骨材である細骨材2を供給する骨材供給手段としての骨材ホッパー3と、給水手段である給水管4と、骨材ホッパー3から供給された細骨材2を給水管4から供給された水とともに水浸骨材として収容する計量槽5と、該計量槽内の水浸骨材の質量を計測する水浸骨材質量計測手段としてのロードセル6と、計量槽5内の水浸骨材の水位を計測する水位計測手段としての電極式センサー7と、計量槽5内の水浸骨材の水位を所望の水位に保持する水位保持手段としての水位保持装置8とから概ね構成してある。
【0063】
骨材ホッパー3及びロードセル6は、それぞれ図示しない架台に取り付けてあるとともに、該ロードセルの上に計量槽5の支持ブラケット9を載せて計量槽5を吊持することで、該計量槽の質量をロードセル6で計測できるようになっている。ロードセル6は、計量槽5を安定した状態で吊持計測できるよう、例えば、同一水平面に120゜ごとに3箇所設けるようにするのが望ましい。
【0064】
計量槽5は、下方に行くほど内径が大きくなるよう、中空円錐台状に形成されてなる計量槽本体10と該計量槽本体の底部開口を水密性が保持可能な状態で開閉自在に塞ぐ底蓋11とから構成してあり、バイブレータ等の振動器具を使用せずとも、計量が終わった水浸骨材を該計量槽内で閉塞させることなく、底蓋11を開いただけで下方に自然落下させ、これを、別途計量されたセメントや粗骨材とともに、図示しない混練ミキサーに投入することができるようになっている。
【0065】
計量槽5の容積については任意であって、コンクリート配合を行う単位すなわち1バッチに必要な全量としてもよいし、何回かに分けて計量することを前提とした容量でもかまわない。
【0066】
骨材ホッパー3の下端開口には、ロードセル6と連動する昇降ゲート12を設けてあり、ロードセル6で計測された質量値に応じて昇降ゲート12を閉じることで、計量槽5への細骨材2の供給を停止することができるようになっている。
【0067】
なお、骨材ホッパー3の下端開口直下には、計量槽5の上部開口まで延びる電磁式振動体を備えた振動フィーダ13を設けてあり、該振動フィーダを用いて骨材ホッパー3の直下から計量槽5の上部開口まで細骨材2を搬送することによって、細骨材の団粒化、ひいては気泡混入を防止することができるようになっている。
【0068】
給水管4には給水バルブ14を設けてあり、該バルブを開閉することによって、計量槽5への給水作業を行うことができるようになっている。
【0069】
電極式センサー7は、電源を内蔵したセンサー制御装置15に接続してあり、下端が計量槽5内に収容された水浸骨材の水面に触れたときの通電状態の変化を監視することによって該水浸骨材の水位を計測できるようになっている。ここで、センサー制御装置15に内蔵された図示しない電源の一方の電極端子は、電極式センサー7に電気接続し、他方の電極端子については、例えば鋼製の計量槽5に電気接続しておけばよい。
【0070】
水位保持装置8は、昇降自在に設置された吸水管16と、該吸水管に連通接続され吸水された水を計量する吸水計量用貯留槽17と、該吸水計量用貯留槽に連通接続された吸気手段である吸気ファン18とで構成してあり、吸水計量用貯留槽17は、ロードセル19によって吸水された水の質量を計測できるようになっている。
【0071】
吸水管16は、計量槽本体10の側面に取り付けられた吸水管昇降用アクチュエータ20のピストンロッドに連結してあり、該吸水管昇降用アクチュエータを駆動することによって昇降自在に構成してある。吸水管昇降用アクチュエータ20は、昇降精度を確保すべく、例えば電動式サーボシリンダを採用するのが望ましい。
【0072】
ここで、上述した電極式センサー7は、図2(a)でよくわかるように中空管21内に配置してあり、該中空管は、吸水管16に固定してある。すなわち、中空管21及びその内部に配置された電極式センサー7は、吸水管16と連動する形で吸水管昇降用アクチュエータ20で昇降できるように構成してある。
【0073】
一方、中空管21の上端は、例えばビニール製チューブを介して低圧空気導入手段である低圧空気ポンプ22に接続してあり、該低圧空気ポンプ22を駆動することによって中空管21内に鉛直下向きの低圧空気が流れるようになっている。
【0074】
ここで、底蓋11は図3でよくわかるように、長さが短いリンク部材41と、該リンク部材よりも長いリンク部材42を介して計量槽本体10の側面に連結してあり、該底蓋が押し下げられたとき、リンク部材41による小さな回転半径とリンク部材42による大きな回転半径とによって、計量槽本体10の側方側に廻り込むように回動することができるようになっている。
【0075】
また、計量槽本体10の側面には、底蓋開閉用アクチュエータ43,43をその下端にて固定されるように設置してあり、該底蓋開閉用アクチュエータのピストンロッドの先端と底蓋11にピン接合された昇降ロッド44の先端とを連結部材45を介して連結するとともに、該連結部材が計量槽本体10の側面に突設された鉛直ガイド体46に沿って摺動自在となるように連結部材45を鉛直ガイド体46に嵌合してある。
【0076】
鉛直ガイド体46は、例えばT字断面の鋼材を計量槽本体10の側面に鉛直に溶接することで構成することができる。
【0077】
一方、本実施形態に係るコンクリート材料の計量装置1には、底蓋11の上面に洗浄水を吹き付ける洗浄水吹付け手段としての洗浄水吹付け装置30を設けてあり、該洗浄水吹付け装置は図1及び図3でよくわかるように、底蓋11の近傍に取り付けられた洗浄ノズル31と、洗浄バルブ32を介して洗浄ノズル31に接続された洗浄水貯留タンク33と、該洗浄水貯留タンクに接続された洗浄水供給手段としての洗浄水供給バルブ37、流量調整バルブ36、洗浄水ポンプ35及び洗浄水供給タンク34と、切替バルブ38を介して洗浄水貯留タンク33に連通接続される高圧空気タンク39と、該高圧空気タンクに接続されたコンプレッサー40とからなり、切替バルブ38は、第一の切替位置にて洗浄水貯留タンク33を高圧空気タンク39に連通させるとともに、第2の切替位置にて大気に連通させるようになっている。
【0078】
本実施形態に係るコンクリート材料の計量装置1において水及び細骨材を計量槽5に投入するにあたっては、吸水管昇降用アクチュエータ20を駆動させて吸水管16を予め昇降させることにより、計量槽5内の水浸骨材の水位が所望の水位に保持されるように、吸水管16の下端に設けられた吸水口を位置決めしておく。吸水管16の吸水口を所望の水位からどの程度離間させて位置決めすればよいかは、実験等を行った上で適宜定めればよい。
【0079】
このように吸水管16の吸水口を位置決めすると、計量槽5内の水浸骨材が所望の水位に達したとき、該所望の水位を越える余分な水は、吸水管16を介して吸気ファン18で吸水されることとなり、かくして、計量槽5内の水浸骨材の容積は、予め定められた容積に保持される。
【0080】
なお、計量槽5内の水位が所望の水位になっているかどうかは、水位計測手段である電極式センサー7で別途確認する。
【0081】
本実施形態に係るコンクリート材料の計量装置1を用いて細骨材2を計量する手順として、ここでは、細骨材2が二種類の細骨材A,Bからなり、これらを順次投入することを想定して説明する。
【0082】
まず、細骨材A,細骨材Bの投入が終了した時点における水浸骨材の目標質量Mdi(i=1,2)を設定する。
【0083】
目標質量Mdi(i=1,2)を設定するにあたっては、まず、水と細骨材の総容量に占める細骨材の容量比である水浸細骨材充填率Fを設定するとともに1バッチの練混ぜ量N0を設定し、かかる水浸細骨材充填率F及び1バッチの練混ぜ量N0に基づいて細骨材の容積を設定し、次いで、細骨材A,細骨材Bの混合比率及びそれらの表乾状態における密度から細骨材A,細骨材Bの表乾状態における目標投入質量を定め、次いで、最初に投入される水(一次計量水)に細骨材Aが投入された状態の質量を水浸骨材の目標質量Md1、かかる水浸骨材にさらに細骨材Bが投入された状態の質量を水浸骨材の目標質量Md2として定める。なお、水浸骨材の目標質量Mdi(i=1,2)を定めるにあたり、できるだけ適切な表面水率を設定し、これを一次計量水の中に含めるようにしておけば、計量後の補正が少なくて済む。
【0084】
次に、細骨材A及び水を該細骨材が水面から出ない水浸骨材となるように計量槽5に投入する。計量槽5に細骨材Aと水を投入するにあたっては、水浸骨材への気泡混入を抑制すべく、水を先行投入し、しかる後に細骨材Aを投入するのが望ましい。また、細骨材Aを計量槽5に直接投入するのではなく、図1に示すように電磁式振動体を備えた振動フィーダ13を用いて計量槽5まで搬送するようにすれば、細骨材の団粒化、ひいては気泡混入を防止することができる。
【0085】
なお、水及び細骨材Aを計量槽5に投入するにあたっては、水位保持装置8の吸水管16を予め適宜昇降させることによって、計量槽5内の水浸骨材の水位が所望の水位である第1の水位に保持されるように、吸水管16の下端に設けられた吸水口を位置決めしておく。
【0086】
次に、水浸骨材の全質量Mf1をロードセル6で計測する。水浸骨材の全質量Mf1を計測するには、水浸骨材で満たされたときの計量槽5の質量から計量槽5のみの質量を差し引けばよい。
【0087】
ここで、水浸骨材の全質量Mf1を計測するにあたっては、細骨材Aの投入を所定速度で連続的に又は断続的に行いつつ、水浸骨材の全質量Mf1の計測をリアルタイム又は所定時間間隔で行い、細骨材Aの投入中に水浸骨材の水位が予め設定された所望の水位としての第1の水位を越えないように余分な水を水位保持装置8で吸水しながら、水浸骨材の全質量Mf1が水浸骨材の目標質量Md1に達したとき、細骨材Aの投入を終了する。
【0088】
なお、骨材ホッパー3の下端開口に設けられた昇降ゲート12は、ロードセル6と連動させてあるため、水浸骨材の全質量Mf1が水浸骨材の目標質量Md1に達したとき、ロードセル6からの制御信号で昇降ゲート12が閉じられ、細骨材Aの投入は自動的に停止する。
【0089】
また、投入終了時の水位が第1の水位に達していることを電極式センサー7で別途確認するが、細骨材Aの投入によって水位が上昇し、第1の水位に近づいてきたとき、低圧空気ポンプ22を作動させて中空管21内に低圧空気を送り込む。このようにすれば、図2(b)に示すように、水浸骨材の水面に生じている泡が中空管21の周囲に逃げるので、計量槽5内の水浸骨材の水位が第1の水位に到達したときには、同図(c)のように、水浸骨材表面に生じている泡に邪魔されることなく、電極式センサー7でその水位を精度よく検出することができる。
【0090】
次に、細骨材Aの表乾状態における密度ρa1及び水の密度ρwを、水浸骨材の全質量Mf1及び予め設定された第1の水位に対して求められる水浸骨材の全容量Vf1とともに下式、
a1=ρa1(Mf1−ρw・Vf1)/(ρa1−ρw) (1)
に代入して細骨材Aの表乾状態の質量Ma1を求める。
【0091】
一方、水浸骨材の全質量Mf1が水浸骨材の目標質量Md1に達したときの水浸骨材の水位が予め設定された第1の水位に達していないことが電極式センサー7によって確認されたときには、該第1の水位になるように水を補充した上で水浸骨材の全質量Mf1の再計測及び細骨材Aの表乾状態の質量Ma1の再演算を行う。
【0092】
次に、細骨材Aと同様にして、細骨材Bを該細骨材が水面から出ない水浸骨材となるように計量槽5に投入する。
【0093】
すなわち、ここでも、予め吸水管16を適宜昇降させることによって、計量槽5内の水浸骨材の水位が所望の水位である第2の水位に保持される高さとなるように、吸水管16の下端に設けられた吸水口を位置決めしておく。
【0094】
次に、水浸骨材の全質量Mf2を計測する。水浸骨材の全質量Mf2を計測するにあたっては、細骨材Bと同様、細骨材Bの投入を所定速度で連続的に又は断続的に行いつつ、水浸骨材の全質量Mf2の計測をリアルタイム又は所定時間間隔で行い、細骨材Bの投入中に水浸骨材の水位が予め設定された所望の水位としての第2の水位を越えないように余分な水を水位保持装置8で吸水しながら、水浸骨材の全質量Mf2が水浸骨材の目標質量Md2に達したとき、細骨材Bの投入を終了する。
【0095】
なお、細骨材Aのときと同様、投入終了時の水位が第2の水位に達していることを電極式センサー7で別途確認するが、細骨材Bの投入によって水位が上昇し、第2の水位に近づいてきたとき、低圧空気ポンプ22を作動させて中空管21内に低圧空気を送り込む。このようにすれば、上述したと同様、水浸骨材表面に生じている泡に邪魔されることなく、電極式センサー7でその水位を精度よく検出することができる。
【0096】
次に、細骨材Aの表乾状態における密度ρa1、細骨材Bの表乾状態における密度ρa2及び水の密度ρwを前記全質量Mf2及び予め設定された第2の水位に対して求められる水浸骨材の全容量Vf2とともに、次式
a2=ρa2((Mf2−ΣMai(i=1,2))−ρw(Vf2−Σ(Mai/ρai)(i=1,2)))/(ρa2−ρw) (3)
w=ρw(ρa2(Vf2−Σ(Mai/ρai)(i=1,2))−(Mf2−ΣMai(i=1,2)))/(ρa2−ρw) (4)
に代入して細骨材Bの表乾状態の質量Ma2及び水の質量Mwを求める。
【0097】
一方、水浸骨材の全質量Mf2が水浸骨材の目標質量Md2に達したときの水浸骨材の水位が予め設定された第2の水位に達していないことが電極式センサー7によって確認されたときには、該第2の水位になるように水を補充した上で水浸骨材の全質量Mf2の再計測、細骨材Bの表乾状態の質量Ma2及び水の質量Mwの再演算を行う。
【0098】
このようにして、細骨材A,細骨材B及び水を計量したならば、かかる計量結果を、示方配合に従って設定された当初の現場配合と比較し、必要に応じて現場配合を修正する。
【0099】
すなわち、まず、第1の水位、第2の水位を越えないように余剰水を吸水しながら、水浸骨材の全質量Mfi(i=1,2)が水浸骨材の目標質量Md2に達した場合には、水浸骨材の全質量Mfi(i=1,2)及び水浸骨材の全容量Vfi(i=1,2)が当初設定した値と等しいため、現場配合を修正する必要はなく、そのまま、他のコンクリート材料とともに混練ミキサーに投入して練り混ぜる。
【0100】
一方、水浸骨材の水位が予め設定された第1、第2の水位に達していないときには該第1、第2の水位になるように水を補充するため、再計測された水浸骨材の全質量Mfi(i=1,2)、ひいてはそれから導かれる表乾状態の細骨材A,細骨材Bの質量も、当初の設定値とは異なる結果となる。
【0101】
したがって、かかる場合には、計量された細骨材A,細骨材Bの質量と当初設定された現場配合の細骨材A,細骨材Bの質量とを比較し、設定された細骨材A,Bの表乾状態の質量総和に対する実測された細骨材A,Bの表乾状態の質量総和の比率を算出し、例えばこれが0.9であれば、実測された細骨材A,Bの質量が10%少ないわけだから、1バッチの練混ぜ量N0そのものを10%減らして0.9・N0とする必要があり、それゆえ、セメント、混和材といった他のコンクリート材料についてもその比率を用いて当初の現場配合を修正し計量する。また、水についても、当初設定された水量と実測水量とを比較し、その不足分を二次水として補充し、又は水の過剰分を排水する。そして、これらのコンクリート材料を混練ミキサーに投入して練り混ぜる。
【0102】
ここで、計量が終了した水浸骨材を取り出すために底蓋11を開くには、図3で説明したように、まず、底蓋開閉用アクチュエータ43,43を作動させてピストンロッドを縮める。
【0103】
このようにすると、該ピストンロッドにピン接合された連結部材45は、計量槽本体10の側面に突設された鉛直ガイド体46に沿って下方に摺動するとともにそれに伴って該連結部材にピン接合された昇降ロッド44は、底蓋11を押し下げる。
【0104】
一方、底蓋11は、昇降ロッド44による押下げ力が作用したとき、図3破線に示すように計量槽本体10の側方に廻り込むように回動し、計量槽5内の水浸骨材は、計量槽本体10の底部開口から下方に落下する。
【0105】
計量が終了した水浸骨材をミキサーに投入したならば、次の計量作業に備えて底蓋11の洗浄を行う。
【0106】
すなわち、予め、コンプレッサー40を駆動して高圧空気タンク39に高圧空気を蓄積しておくとともに、洗浄水供給タンク34から洗浄水貯留タンク33に所定量の洗浄水を移送しておく。高圧空気の蓄積及び洗浄水移送を行う際には、洗浄水貯留タンク33が高圧空気タンク39に連通せず大気に連通する第2の切替位置に切替バルブ38を切り替えて行う。
【0107】
次に、計量が終了した水浸骨材を上述した手順で底蓋11を開き、下方のミキサーに落下排出させた後、切替バルブ38を第1の位置に切り替える。
【0108】
このようにすると、高圧空気タンク39に蓄積された高圧空気は、洗浄水貯留タンク33に送り込まれ、その圧力で該タンク内の洗浄水が洗浄ノズル31から噴出し、底蓋11の上面に付着していた骨材を吹き飛ばす。
【0109】
なお、いったん洗浄水が噴出された後は、切替バルブ38を再び第2の位置に切り替えて高圧空気の蓄積及び洗浄水移送を行い、次の計量後の清掃作業に備える。
【0110】
以上説明したように、本実施形態に係るコンクリート材料の計量装置によれば、細骨材A,細骨材Bの表面水は、湿潤状態が異なる骨材ごとのばらつきが考慮された状態で水の質量Mwの一部として間接的に算出されるとともに、骨材の質量は、表乾状態のときの質量Mai(i=1,2,3,・・N)として把握される。すなわち、骨材や水の質量が示方配合と同等の条件で把握されることとなるので、湿潤状態が異なる骨材を用いても、示方配合通りにコンクリートを製造することが可能となる。
【0111】
また、本実施形態に係るコンクリート材料の計量装置1によれば、水位保持装置8で吸水管16を適宜昇降させることにより、計量槽5内の水浸骨材の水位が所望の水位に保持されるように、吸水管の下端に設けられた吸水口を位置決めするようにしたので、計量槽5内の水浸骨材が所望の水位に達したとき、該所望の水位を越える余分な水は、吸水管16を介して吸気ファン18で吸水されることとなり、かくして、計量槽5内の水浸骨材の容積を予め定められた容積に保持することが可能となり、容積計測の手間を省くことが可能となる。
【0112】
すなわち、第1の水位、第2の水位を越えないように水位保持装置8を用いて余剰水を排水しながら、水浸骨材の全質量Mfi(i=1,2)が水浸骨材の目標質量Md2に達した場合には、水浸骨材の水浸骨材の全容量Vfi(i=1,2)を計測する必要がなくなるのみならず、水浸骨材の全質量Mfi(i=1,2)及び水浸骨材の全容量Vfi(i=1,2)が当初設定した値と等しくため、現場配合を修正する必要がなくなり、そのまま、他のコンクリート材料とともに混練ミキサーに投入して練り混ぜることが可能となる。
【0113】
また、本実施形態に係るコンクリート材料の計量装置1によれば、水浸骨材の水位が予め設定された第1、第2の水位に達していないときには該第1、第2の水位になるように水を補充する必要があるものの、水浸骨材の水浸骨材の全容量Vfi(i=1,2)を計測する必要がないことについては上述の場合と同様であり、水浸骨材の全質量Mfi(i=1,2)を再計測することにより、細骨材A,細骨材Bの投入量を正確に管理して現場配合を修正し、結果として、示方配合通りのコンクリートを製造することが可能となる。
【0114】
また、それに加えて、密度、粒度等が異なる複数の骨材であっても、湿潤状態の違いによる表面水の影響を最終的な水量の一部として正確に把握しつつ、一つの計量槽内で効率よくしかも高い精度で計量することが可能となる。
【0115】
また、本実施形態に係るコンクリート材料の計量装置1によれば、電極式センサー7を中空管21内に配置して該中空管とともに吸水管16に固定するとともに、中空管21内を鉛直下向きの低圧空気が流れるようにしたので、計量槽5内の水面に発生している泡を低圧の空気流で取り除くこと可能となり、電極式センサー7の計測精度を向上させることができる。なお、電極式センサー7の下端が水浸骨材の表面に接触する位置にて中空管21の下端が該水浸骨材の水面に若干沈むようにその位置を設定しておけば、いったん取り除いた泡が再度、電極式センサー7の下端に集まってくるおそれもなくなる。
【0116】
また、本実施形態に係るコンクリート材料の計量装置1によれば、底蓋11と計量槽本体10とを、長さ、すなわち回転半径が異なるリンク部材41,42で連結するようにしたので、昇降ロッド44から押下げ力が作用したとき、底蓋11は、計量槽本体10の側方側に廻り込むようにして回動する。
【0117】
したがって、底蓋11を完全に開くために必要な高さ方向の下方スペースを抑えることができる。すなわち、従来の開閉形式では、底蓋を開くと該底蓋が垂れ下がるため、その分だけ高さ方向に底蓋の開閉高さを確保する必要があったが、本実施形態によれば、このような開閉に要する下方スペースを抑えることができるため、その分だけ、計量槽本体10の底部開口を下げることができるようになり、混練ミキサーへの確実な投入が可能となる。
【0118】
また、底蓋11を閉じる直前においては、上述した2つのリンク部材41,42の作用により、該底蓋は、計量槽本体10の底部開口とほぼ平行な姿勢となる。そのため、計量槽本体10の底部開口又は底蓋11に設けられたシール材(図示せず)にはほぼ均等な圧力が作用することとなり、底部開口に沿って均等な水密性を確保することができるとともに、シール材の部分的な損傷をも防止することが可能となる。
【0119】
また、本実施形態に係るコンクリート材料の計量装置1によれば、洗浄水吹付け装置30で底蓋11の上面に洗浄水を吹き付けるようにしたので、水浸骨材の排出時に底蓋11の上面に骨材が付着していたとしても、該骨材は、上述した洗浄水で洗浄され吹き飛ばされることとなり、次の計量のために底蓋11を閉じても、計量槽本体10と底蓋11との間に骨材が挟まることはない。
【0120】
そのため、骨材が挟まることで生じた隙間から漏水が生じて計量に誤差が生じるのを未然に防止することができるとともに、計量槽本体10や底蓋11に設けられたシール部材に損傷を与えることもない。
【0121】
本実施形態では特に言及しなかったが、計量槽5への給水量MIを例えばロードセル6で予め計測しておけば、計量槽5から吸水された水の累積値については、吸水計量用貯留槽17のロードセル19で計測することができるので、骨材の表面水率を精度よく計測することができる。
【0122】
すなわち、計量槽5への給水量MO、ロードセル19で計測された計量槽5からの吸水量MO及び全質量Mfi(i=1,2)を、次式、
ΣMawj(j=1,・・i)=Mfi―(MI―MO) (5)
に代入してΣMawj(j=1,・・i)を求め、
ΣMawj(j=1,・・i)―ΣMawj(j=1) (6)
を算出し、該Mawiを、次式、
(Mawi―Mai)/Mai (7)
に代入するようにすれば、細骨材A,細骨材Bの表面水率を求めることが可能となり、次の計量の設定値として活用することが可能となる。
【0123】
また、本実施形態では特に言及しなかったが、水浸骨材内の空気量をa(%)とし、Vfi(i=1,2)に代えて、Vfi(i=1,2)・(1―a/100)を用いるようにすれば、空気量を考慮したさらに精度の高い計量が可能となる。
【0124】
また、本実施形態では特に言及しなかったが、計量槽5内に投入した細骨材が水面から出てしまい水浸骨材とならないおそれがある場合には、細骨材A、Bの投入中又は投入後にバイブレータを降下させ、かかる状態にて該バイブレータを作動させることで、計量槽5内に投入された細骨材A、Bをバイブレータの振動によって平坦に均し、該細骨材が水面上に出なくするようにすることができる。なお、水浸骨材の質量を計量する際には、バイブレータを引き上げ、上昇位置にて次の計量まで退避させておけばよい。
【0125】
また、本実施形態では、2種類の細骨材を例として説明したが、骨材の種類の数は任意であることは言うまでもなく、1種類の細骨材にも適用可能であるし、粗骨材のみや、細骨材と粗骨材との組み合わせについても適用可能であることは言うまでもない。
【0126】
また、本実施形態ではロードセル6を圧縮型とし、設置数を3個としたが、水浸骨材質量計測手段としてどのようなロードセルを用いるかは任意であり、例えば引張型を用いてもよいし、4個以上設置してもかまわない。また、計量槽5を安定吊持できるのであれば、1個又は2個でもかまわない。
【0127】
また、本実施形態では、洗浄水供給手段を洗浄水供給バルブ37、流量調整バルブ36、洗浄水ポンプ35及び洗浄水供給タンク34で構成したが、本発明の洗浄水供給手段をどのように構成するかは任意であり、かかる構成に代えて、例えば水道管と該水道管に設けられたバルブとから構成することも可能である。
【0128】
【発明の効果】
以上述べたように、本発明に係るコンクリート材料の計量装置によれば、骨材の表面水を、湿潤状態が異なる骨材ごとのばらつきが考慮された状態で水の質量Mwの一部として間接的に算出することができるとともに、骨材の質量を表乾状態のときの質量Maとして把握することができる。すなわち、骨材や水の質量が示方配合と同等の条件で把握されることとなるので、湿潤状態が異なる骨材を用いても、示方配合通りの水量でコンクリートを製造することが可能となる。
【0129】
【図面の簡単な説明】
【図1】本実施形態に係るコンクリート材料の計量装置の全体図。
【図2】電極式センサー7、該センサーが配置された中空管21及び吸水管16の作用を示した図。
【図3】計量槽の詳細側面図。
【符号の説明】
1 コンクリート材料の計量装置
3 骨材ホッパー(骨材給水手段)
4 給水管(給水手段)
5 計量槽
6 ロードセル(水浸骨材質量計測手段)
7 電極式センサー(水位計測手段)
8 水位保持装置(水位保持手段)
10 計量槽本体
11 底蓋
16 吸水管
17 吸水計量用貯留槽
18 吸気ファン
19 ロードセル
21 中空管
22 低圧空気ポンプ(低圧空気導入手段)
30 洗浄水吹付け装置(洗浄水吹付け手段)
31 洗浄ノズル
33 洗浄水貯留タンク
34 洗浄水供給タンク(洗浄水供給手段)
38 切替バルブ
39 高圧空気タンク
40 コンプレッサー
41,42 リンク部材
43,43 底蓋開閉用アクチュエータ
45 連結部材
46 鉛直ガイド体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aggregate having different surface water states and a concrete material measuring device for measuring water.
[0002]
[Prior art]
When mixing concrete on site, the amount of water has a large effect on the concrete strength and so on, so it is necessary to manage it thoroughly during mixing. However, the aggregate, which is a mixed material, has a different moisture content depending on its storage conditions and climatic conditions. When the wet aggregate is used, the amount of water in the concrete increases by the amount of surface water of the aggregate, and when the aggregate in the dry state is used, the amount of water in the concrete decreases by the effective water absorption.
[0003]
For this reason, it is extremely important to maintain the quality of concrete by correcting the amount of water at the time of mixing according to the degree of dryness and wetness of the aggregate and producing concrete as indicated.
[0004]
Here, the ratio of the amount of surface water in the wet state (the amount of water adhering to the surface of the fine aggregate) divided by the mass of the fine aggregate in the surface dry state (surface dry saturated state) is called the surface water ratio. However, since stored aggregates, especially fine aggregates, are often wet, the surface water ratio is measured in advance as an indicator of the degree of dryness and wetness of the aggregates, and is mixed based on the measured values. It is common to adjust the amount of water.
[0005]
And, the measurement of such a surface water ratio is to collect a small amount of sample from a storage container called a stock bottle in which fine aggregates are conventionally stored, measure its mass and the mass in an absolutely dry state, It calculated using these measured values and the water absorption of the surface dry state measured beforehand.
[0006]
[Problems to be solved by the invention]
However, with such a measurement method, the overall surface water ratio is only estimated from a small number of samples, so there is a limit in terms of accuracy. Therefore, it has been unrealistic in terms of economy and time to collect an amount close to the amount actually used and use it as a sample.
[0007]
In addition, in order to make up for such a problem, there are cases where an operator visually confirms the mixing state or adjusts the mixing water amount by referring to the load current of the mixer, but such a method may be adopted. The method itself has low accuracy, and eventually, a large safety factor of about 20% in terms of strength has to be expected, resulting in a problem that the composition becomes uneconomical.
[0008]
The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a concrete material measuring device capable of accurately measuring the mass of aggregate and water.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a concrete material measuring apparatus according to the present invention is supplied from aggregate supply means for supplying aggregate, water supply means, and aggregate supply means as described in claim 1. A measuring tank in which an aggregate is accommodated as water-immersed aggregate together with water supplied from the water supply means, and a bottom lid capable of maintaining watertightness is attached to the bottom opening so as to be openable and closable, and water-immersed bone in the measuring tank Water immersion aggregate mass measurement means for measuring the mass of the material, water level measurement means for measuring the water level of the water immersion aggregate in the measurement tank, and the water level of the water immersion aggregate in the measurement tank to a desired water level A water level holding means for absorbing water from the measuring tank and measuring the amount of water absorbed, the water level holding means being configured to freely move up and down, and the water absorption pipe. A water absorption meter that measures the amount of absorbed water connected to a pipe To use the reservoir and reservoir for absorbing water weighing which is constituted by the communicating connected inlet means.
[0010]
In the concrete material measuring apparatus according to the present invention, the water level measuring means is composed of an electrode type sensor, and the electrode type sensor is fixed to the water absorption pipe so that the electrode type sensor can be moved up and down in conjunction with the water absorption pipe. It is comprised as follows.
[0011]
In the concrete material measuring apparatus according to the present invention, the electrode-type sensor is disposed in a hollow tube and fixed to the water absorption tube together with the hollow tube, and vertically downward low-pressure air flows in the hollow tube. Low-pressure air introduction means is provided at the upper end of the hollow tube.
[0012]
In addition, the concrete material measuring apparatus according to the present invention includes cleaning water spraying means capable of spraying cleaning water to the upper surface of the bottom cover from a cleaning nozzle attached in the vicinity of the bottom cover. The cleaning water spraying unit is connected to the cleaning water storage tank connected to the cleaning nozzle, the cleaning water supply unit connected to the cleaning water storage tank, and the cleaning water storage tank through a switching valve. And a compressor connected to the high-pressure air tank, and the switching valve is communicated with the high-pressure air tank at the first switching position. It is configured to communicate with the atmosphere at the switching position.
[0013]
Further, the concrete material measuring apparatus according to the present invention includes two different lengths so that the bottom cover and the measuring tank body rotate while the bottom cover moves to the side of the measuring tank body. It is connected with a link member, and a predetermined bottom lid opening / closing actuator is installed on the side surface of the weighing tank main body so as to be fixed at the lower end thereof. The connected lifting rod is connected to the tip of the lifting rod through a predetermined connecting member, and the connecting member is slidable along a vertical guide body protruding from the side surface of the measuring tank body. A member is fitted to the vertical guide body.
[0014]
In the concrete material measuring apparatus according to the present invention, the water level holding means includes a water absorption pipe installed to be movable up and down, a water absorption measurement storage tank connected to the water absorption pipe and measuring the water absorbed, and the water absorption measurement The intake means communicated with the storage tank, and when water and aggregate are put into the measurement tank, the water level of the water-immersed aggregate in the measurement tank The water inlet provided at the lower end of the water absorption pipe is positioned so that the height is maintained at a desired water level.
[0015]
In this way, after the water-immersed aggregate in the measuring tank reaches a desired water level, excess water exceeding the desired water level is absorbed by the intake means through the water absorption pipe, and thus the metering The volume of the water-immersed aggregate in the tank is maintained at a predetermined volume.
[0016]
In addition, it is confirmed separately by a water level measurement means whether the water level in a measuring tank is a desired water level.
[0017]
Moreover, since the water absorbed through the water absorption pipe is stored in the water absorption storage tank, if the mass is measured, the surface water ratio of the aggregate can be accurately obtained as will be described later. .
[0018]
Thus, if the surface water ratio is calculated, it can be appropriately reflected in the setting of the surface water ratio in the next measurement work.
[0019]
Although the aggregate is mainly intended for fine aggregate, it goes without saying that it can also be applied to coarse aggregate. In addition, the aggregate may be fine aggregate or coarse aggregate as described above, but the material constituting the concrete actually requires fine aggregate and coarse aggregate. As for the materials, it is assumed that a plurality of materials having different densities or different particle sizes are used. In particular, it is often important for the mixing of concrete to newly produce an aggregate having a desired particle size by mixing a plurality of aggregates having different particle sizes at an appropriate ratio.
[0020]
The concrete material measuring apparatus according to the present invention can measure not only a single type of aggregate, but also a plurality of aggregates that are mainly different from each other in at least one of density and particle size, for example, in a cumulative measurement system.
[0021]
In addition, when referring to a plurality of aggregates in the present invention, it includes all cases where all are fine aggregates, all are coarse aggregates, and cases where fine aggregates and coarse aggregates are arbitrarily included. Shall. In addition, as described above, a plurality of aggregates include those with different densities and particle sizes, as well as locality, strength, Young's modulus, durability, natural aggregate, artificial aggregate, by-product aggregate, or natural bone. The production status of whether it is sea sand or mountain sand and other classification indexes related to aggregates are different.
[0022]
For example, ΣM i When expressed as (i = 1,2,3, ... N), the sum, ie, M 1 + M 2 + ... M N . When the i-th (i = 1, 2, 3,... N) aggregate is indicated, the first aggregate, the second aggregate, the third aggregate,. Means aggregate.
[0023]
As long as the measuring tank can accommodate the water-immersed aggregate, the shape of the measuring tank is arbitrary. For example, the measuring tank may be a hollow cylindrical shape. Since the inner diameter becomes larger, there is no possibility that the water-immersed aggregate is clogged in the middle, and when the measurement is completed, the water-immersed aggregate can be freely dropped and easily taken out by simply opening the bottom cover.
[0024]
If the water-immersed aggregate cannot be completely dropped freely due to aggregate adhesion to the inner surface of the measuring tank or compaction of the aggregate, a vibration imparting device such as a vibrator or knocker should be installed on the side of the measuring tank. It is only necessary to attach it appropriately.
[0025]
Moreover, if the predetermined vibrator is set up and down freely above the measuring tank and is installed so as to be buried in the water-immersed aggregate at the lowered position, the vibrator is lowered during or after the addition of the aggregate, By operating the vibrator in such a state, the aggregate put into the measuring tank is flattened by vibration, and there is no possibility that the aggregate comes out on the water surface.
[0026]
The volume of the measuring tank is arbitrary, and may be a unit for mixing concrete, that is, the total amount required for one batch, or may be measured in several times.
[0027]
The water-immersed aggregate mass measuring means can be constituted by a load cell, for example.
[0028]
The water level measuring means may be constituted by any means as long as it can measure the water level in the measuring tank, but the water level measuring means is constituted by an electrode type sensor and the electrode type sensor is fixed to the water absorption pipe. If the electrode type sensor can be moved up and down in conjunction with the water absorption pipe, a mechanism for raising and lowering the electrode type sensor can be omitted.
[0029]
Further, such an electrode type sensor is disposed in the hollow tube and fixed to the water absorption tube together with the hollow tube, and low-pressure air is provided at the upper end of the hollow tube so that vertically downward low-pressure air flows in the hollow tube. If the introducing means is provided, the bubbles generated on the water surface in the measuring tank can be removed with a low-pressure air flow, so that the measurement accuracy of the electrode sensor can be improved. In addition, if the position was set so that the lower end of the hollow tube sinks slightly below the water surface of the water-immersed aggregate at the position where the lower end of the electrode-type sensor contacts the water surface of the water-immersed aggregate, it was once removed. There is no risk of bubbles collecting again at the lower end of the electrode sensor.
[0030]
The bottom lid may be of any structure as long as it can open and close the bottom opening of the weighing tank body and can maintain water tightness in the closed state, but the bottom lid and the weighing tank body may be connected to the bottom lid. Is connected by a predetermined link member so as to rotate while moving to the side of the weighing tank body, and a predetermined bottom lid opening / closing actuator is fixed to the side surface of the main body at its lower end. The tip of the piston rod of the bottom lid opening / closing actuator and the tip of the lifting rod pin-joined to the bottom lid are connected via a predetermined connecting member, and the connecting member protrudes from the side of the main body. If the connecting member is fitted to the vertical guide body so as to be slidable along the vertical guide body, a lower space in the height direction necessary for completely opening the bottom cover can be suppressed. Together, it is possible to stabilize the bottom cover opening and closing operation.
[0031]
That is, in the conventional opening / closing type, since the bottom lid hangs down when the bottom lid is opened, it is necessary to secure a lower space in the height direction by that amount. In the present invention, such opening / closing is required. Since the lower space in the height direction can be suppressed, the bottom opening of the measuring tank main body can be lowered by that amount, and the charging into the kneading mixer can be reliably performed.
[0032]
In addition, since the bottom lid and the measuring tank main body are connected by two link members having different lengths, the bottom lid goes around the side of the measuring tank main body when the bottom lid is pushed down by the lifting rod. However, when the bottom lid is pulled up by the lifting rod, the posture is substantially parallel to the bottom opening of the measuring tank body immediately before the bottom lid is closed. Therefore, almost equal pressure acts on the sealing material provided in the bottom opening or the bottom lid, and it is possible to ensure uniform water tightness along the bottom opening, and partial damage to the sealing material. Can also be prevented.
[0033]
Further, the apparatus includes cleaning water spraying means capable of spraying cleaning water onto the upper surface of the bottom cover from a cleaning nozzle attached in the vicinity of the bottom cover, and the cleaning water spraying means includes the cleaning water spraying means. Wash water storage tank connected to the nozzle, wash water supply means connected to the wash water storage tank, high pressure air tank connected to the wash water storage tank via a switching valve, and the high pressure air tank And the switching valve is connected to the high-pressure air tank at the first switching position and to the atmosphere at the second switching position. In such a case, the compressor is driven in advance to accumulate high-pressure air in the high-pressure air tank, and the washing water supply means supplies the washing water storage tank. Keep transferring the amount of wash water. When accumulating high-pressure air and transferring cleaning water, the switching valve is switched to the second switching position where the cleaning water storage tank does not communicate with the high-pressure air tank but communicates with the atmosphere.
[0034]
Next, after the water-immersed aggregate that has been weighed has been opened and dropped onto the mixer below, the switching valve is switched to the first position.
[0035]
In this way, the high-pressure air accumulated in the high-pressure air tank is sent to the wash water storage tank, and the wash water in the tank is ejected from the wash nozzle at that pressure.
[0036]
Therefore, even if the aggregate adheres to the upper surface of the bottom lid when the water-immersed aggregate is discharged, the aggregate is washed with the above-mentioned washing water and blown away, so that the bottom lid is closed for the next measurement. However, the aggregate is not sandwiched between the measuring tank body and the bottom lid.
[0037]
Therefore, it is possible to prevent the occurrence of errors in measurement due to water leakage from the gap generated by the aggregate being sandwiched, and also damage the sealing member provided on the measuring tank main body and the bottom cover. Absent.
[0038]
Next, a procedure for measuring a plurality of aggregates using the concrete material measuring apparatus according to the present invention will be described. In the case of a single aggregate, N may be read as 1 in the following description.
[0039]
First, the target mass M of the water-immersed aggregate at the time when the introduction of the i-th (i = 1, 2, 3... N) aggregate is completed. di Set (i = 1,2,3 ... N).
[0040]
Next, the first aggregate and water are put into the measuring tank so that the first aggregate becomes a water-immersed aggregate that does not come out of the water surface.
[0041]
It is optional to put the aggregate and water into the measuring tank, but it is optional, but if water is put in first and then the aggregate is thrown in, it will be submerged especially in the case of fine aggregate. It becomes possible to considerably suppress the mixing of bubbles into the aggregate.
[0042]
Next, the total mass M of the water-immersed aggregate f1 Measure. Total mass M of water-immersed aggregate f1 Can be measured by subtracting the mass of the weighing tank alone from the mass of the weighing tank when filled with water-immersed aggregate.
[0043]
Next, the density ρ of the first aggregate in the surface dry state a1 And water density ρ w The total mass M of the water-immersed aggregate f1 And the total volume V of the submerged aggregate required for the first water level, which is a preset desired water level. f1 Together with the following formula,
M a1 = Ρ a1 (M f1 −ρ w ・ V f1 ) / (Ρ a1 −ρ w (1)
The mass M of the first aggregate in the surface dry state a1 Ask for.
[0044]
Next, in the same manner as the first aggregate, the second aggregate is put into the measuring tank so that the second aggregate becomes a submerged aggregate that does not come out of the water surface, and then the submerged aggregate. Total mass M f2 Measure.
[0045]
Next, the density ρ of the first aggregate in the surface dry state a1 The density ρ of the second aggregate in the surface dry state a2 And water density ρ w The total mass M f2 And the total volume V of the water-immersed aggregate required for the second water level, which is a preset desired water level. f2 Together with the following formula:
M a2 = Ρ a2 ((M f2 -M a1 ) −ρ w (V f2 -M a1 / Ρ a1 )) / (Ρ a2 −ρ w (2)
Substitute for the mass M of the second aggregate in the dry state a2 Ask for.
[0046]
Thereafter, the above procedure is repeated, and the mass M of the (N-1) th aggregate in the surface dry state a (N-1) Are sequentially calculated, and finally, the Nth aggregate is put into a measuring tank so that the Nth aggregate becomes a submerged aggregate that does not come out of the water surface.
[0047]
Next, as described above, the total mass M of the water-immersed aggregate fN Measure.
[0048]
Next, the density ρ in the surface dry state of the i-th aggregate (i = 1,2,3, ... N) ai (i = 1,2,3, ... N) and water density ρ w The total mass M fN And the total volume V of the submerged aggregate required for the Nth water level preset as the desired water level fN Together with the following formula,
M aN = Ρ aN ((M fN -ΣM ai (i = 1,2,3, ... (N-1)))-ρ w (V fN -Σ (M ai / Ρ ai ) (i = 1,2,3, ... (N-1)))) / (ρ aN −ρ w (3)
M w = Ρ waN (V fN -Σ (M ai / Ρ ai ) (i = 1,2,3, ... (N-1)))-(M fN -ΣM ai (i = 1,2,3, ... (N-1)))) / (ρ aN −ρ w (4)
The mass M in the dry state of the Nth aggregate by substituting aN And water mass M w Ask for.
[0049]
Here, when the i-th (i = 1,2,3... N) aggregates are progressively charged into the weighing tank, the i-th (i = 1,2,3,.・ Total mass M of water-immersed aggregate while continuously or intermittently feeding N) aggregate fi (i = 1,2,3... N) is measured in real time or at a predetermined time interval, and among the i-th (i = 1,2,3... N) aggregates, the j-th aggregate During the charging, the total mass M of the submerged aggregate is absorbed while absorbing excess water so that the water level of the submerged aggregate does not exceed the preset jth water level. fj Is the target mass M dj Is reached, the j-th aggregate charging is finished.
[0050]
On the other hand, when it is confirmed by the water level measuring means that the water level of the water-immersed aggregate at that time does not reach the preset j-th water level, the water level is replenished to the j-th water level. Total mass M of the water-immersed aggregate fj Re-measurement, mass M of the j-th aggregate in the dry state aj Recalculation and the mass M of the water w Perform the recalculation.
[0051]
If there are aggregates to be successively added, that is, if there are a plurality of aggregates to be added and not the last aggregate, the (j + 1) th (j + 1) th is performed in the same manner as described above. Continue to introduce aggregates.
[0052]
In this way, if the i-th (i = 1,2,3... N) aggregate and water are weighed, other concrete materials such as cement and admixture are also weighed appropriately, and kneading mixer together with these The total mass M of the water-immersed aggregate is drained while draining excess water so that the water level of the water-immersed aggregate does not exceed the preset j-th water level. fj Is the target mass M dj Is reached, the surface mass M of the i-th aggregate is dry ai (i = 1, 2, 3... N) is equal to the initially set value, so there is no need to modify the on-site recipe.
[0053]
On the other hand, when the water level of the water-immersed aggregate does not reach the preset j-th water level, water is replenished so as to reach the j-th water level. Mass M aj Is different from the value originally set. Therefore, the measurement result is compared with the initial on-site composition set according to the indicated composition, and the on-site composition is corrected as necessary. That is, the measured aggregate mass is compared with the initially set aggregate mass of the on-site mixture, and the mixing amount of one batch is corrected according to the ratio, and the shortage of water is determined according to the ratio. Replenish as secondary water or drain the excess water, measure other concrete materials such as cement and admixtures according to the above-mentioned ratios, modify the original on-site blending, and feed them to the kneading mixer Add and knead.
[0054]
As described above, the surface water of the aggregate is the mass M of the water in a state in which the variation between the aggregates in different wet states is considered. w The mass of the aggregate is the mass M in the surface dry state. ai (i = 1,2,3, ... N) In other words, since the mass of aggregate and water is grasped under the same conditions as the formulation, concrete can be produced according to the formulation even if aggregates with different wet states are used.
[0055]
Also, the total mass M of the water-immersed aggregate fj Is the target mass M dj When the water level of the submerged aggregate is not reached the preset j-th water level, the j-th aggregate input is terminated. The total mass M of the water-immersed aggregate after replenishing fj Re-measurement, mass M of the j-th aggregate in the dry state aj Recalculation and the mass M of the water w The total capacity V of the water immersion aggregate is fi The measurement of (i = 1,2,3 ... N) does not need to be measured as a known value, and the i-th (i = 1,2,3 ... N) aggregate is input. The amount can be accurately controlled, and as a result, it is possible to produce concrete as shown.
[0056]
In addition, even in the case of multiple aggregates with different densities, particle sizes, etc., the effect of surface water due to the difference in wet conditions can be accurately grasped as part of the final water volume, This makes it possible to measure efficiently and with high accuracy.
[0057]
In this measuring method, the amount M of water supplied to the measuring tank I Is measured in advance, the amount of water absorption M from the measuring tank measured in the storage tank for measuring water absorption. O It is possible to accurately calculate the surface water ratio of the aggregate using the accumulated value of.
[0058]
That is, water supply amount M to the measuring tank I , Water absorption M from the measuring tank O And total mass M fi (i = 1,2,3 ... N)
ΣM awj (j = 1,2,3, ... i) = M fi -(M I -M O (5)
Substituting for ΣM awj (j = 1,2,3, ... i)
ΣM awj (j = 1,2,3, ... i) -ΣM awj (j = 1,2,3, ... (i-1)) (6)
And M awi With the following formula:
(M awi -M ai ) / M ai (7)
By substituting for, the surface water ratio of the i-th (i = 1, 2, 3,... N) aggregate can be obtained.
[0059]
Here, water supply amount M to the measuring tank I The cumulative value does not always increase, and the amount of water initially added becomes the cumulative value, that is, the cumulative value may be constant without fluctuation. Also, water absorption M from the measuring tank O Is not always absorbed, and the accumulated value may be zero.
[0060]
The amount of air in the water-immersed aggregate is a (%), and the V fi (i = 1,2,3, ... N) instead of V fi If (i = 1, 2, 3,... N) · (1−a / 100) is used, it is possible to measure with higher accuracy in consideration of the air amount.
[0061]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a concrete material measuring apparatus according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0062]
FIG. 1 is an overall view showing a concrete material measuring apparatus according to the present embodiment. As shown in the figure, a concrete material measuring apparatus 1 according to this embodiment includes an aggregate hopper 3 as an aggregate supply means for supplying fine aggregate 2 as an aggregate, and a water supply pipe 4 as a water supply means. A measuring tank 5 that houses the fine aggregate 2 supplied from the aggregate hopper 3 as a water-immersed aggregate together with water supplied from the water supply pipe 4, and measures the mass of the water-immersed aggregate in the measuring tank. The load cell 6 as the water immersion aggregate mass measurement means, the electrode type sensor 7 as the water level measurement means for measuring the water level of the water immersion aggregate in the measuring tank 5, and the water level of the water immersion aggregate in the measurement tank 5 It is generally composed of a water level holding device 8 as water level holding means for holding a desired water level.
[0063]
The aggregate hopper 3 and the load cell 6 are each attached to a gantry (not shown), and the weighing tank 5 is suspended by placing the support bracket 9 of the weighing tank 5 on the load cell, so that the mass of the weighing tank can be increased. The load cell 6 can be used for measurement. For example, it is desirable to provide the load cell 6 at three positions every 120 ° on the same horizontal plane so that the measuring tank 5 can be suspended and measured in a stable state.
[0064]
The measuring tank 5 has a bottom that closes the measuring tank body 10 formed in the shape of a hollow truncated cone so that the inner diameter increases downward and the bottom opening of the measuring tank body can be freely opened and closed while maintaining watertightness. The lid 11 is composed of a lid 11, and without dropping a vibrator or other vibration device, the bottomed lid 11 can be opened and the natural fallen by simply opening the bottom lid 11 without closing the water-immersed aggregate in the measuring tank. This can be put into a kneading mixer (not shown) together with separately weighed cement and coarse aggregate.
[0065]
The volume of the measuring tank 5 is arbitrary, and may be a unit for mixing concrete, that is, the total amount required for one batch, or may be a capacity on the premise of weighing in several times.
[0066]
At the lower end opening of the aggregate hopper 3, an elevating gate 12 that is linked to the load cell 6 is provided. By closing the elevating gate 12 according to the mass value measured by the load cell 6, the fine aggregate to the measuring tank 5 is provided. The supply of 2 can be stopped.
[0067]
A vibration feeder 13 having an electromagnetic vibrating body extending to the upper opening of the measuring tank 5 is provided immediately below the lower end opening of the aggregate hopper 3, and measurement is performed from directly below the aggregate hopper 3 using the vibration feeder. By transporting the fine aggregate 2 to the upper opening of the tank 5, the aggregate of the fine aggregate and consequently the mixing of bubbles can be prevented.
[0068]
The water supply pipe 4 is provided with a water supply valve 14, and the water supply work to the measuring tank 5 can be performed by opening and closing the valve.
[0069]
The electrode type sensor 7 is connected to a sensor control device 15 having a built-in power source, and by monitoring the change in the energized state when the lower end touches the water surface of the water-immersed aggregate contained in the measuring tank 5. The water level of the water-immersed aggregate can be measured. Here, one electrode terminal of a power source (not shown) built in the sensor control device 15 is electrically connected to the electrode type sensor 7, and the other electrode terminal is electrically connected to, for example, a steel measuring tank 5. That's fine.
[0070]
The water level holding device 8 is connected to the water absorption pipe 16 that can be moved up and down, the water absorption measurement storage tank 17 that is connected to the water absorption pipe to measure the absorbed water, and the water absorption measurement storage tank. The water intake metering storage tank 17 is configured to be able to measure the mass of water absorbed by the load cell 19.
[0071]
The water absorption pipe 16 is connected to a piston rod of a water absorption pipe raising / lowering actuator 20 attached to the side surface of the measuring tank body 10, and is configured to be movable up and down by driving the water absorption pipe raising / lowering actuator. It is desirable to employ, for example, an electric servo cylinder as the water suction pipe lifting / lowering actuator 20 in order to ensure the lifting / lowering accuracy.
[0072]
Here, the electrode sensor 7 described above is disposed in the hollow tube 21 as can be seen in FIG. 2A, and the hollow tube is fixed to the water absorption tube 16. That is, the hollow tube 21 and the electrode-type sensor 7 disposed in the hollow tube 21 are configured so as to be moved up and down by the water absorption tube lifting / lowering actuator 20 in conjunction with the water absorption tube 16.
[0073]
On the other hand, the upper end of the hollow tube 21 is connected to a low-pressure air pump 22 which is a low-pressure air introduction means via a vinyl tube, for example, and is driven vertically into the hollow tube 21 by driving the low-pressure air pump 22. Downward low-pressure air flows.
[0074]
Here, as can be seen in FIG. 3, the bottom lid 11 is connected to the side surface of the measuring tank body 10 via a link member 41 having a short length and a link member 42 longer than the link member. When the lid is pushed down, the lid can be rotated around the side of the measuring tank body 10 by a small rotation radius by the link member 41 and a large rotation radius by the link member 42.
[0075]
Further, the bottom lid opening / closing actuators 43 and 43 are installed on the side surface of the weighing tank body 10 so as to be fixed at the lower ends thereof. The tip of the pin-joined lifting / lowering rod 44 is connected via a connecting member 45, and the connecting member is slidable along a vertical guide body 46 projecting from the side surface of the measuring tank body 10. The connecting member 45 is fitted to the vertical guide body 46.
[0076]
The vertical guide body 46 can be configured by, for example, vertically welding a steel material having a T-shaped cross section to the side surface of the measuring tank body 10.
[0077]
On the other hand, the concrete material measuring apparatus 1 according to the present embodiment is provided with a cleaning water spraying device 30 as a cleaning water spraying means for spraying cleaning water on the upper surface of the bottom lid 11, and the cleaning water spraying device. 1 and 3, the cleaning nozzle 31 attached in the vicinity of the bottom lid 11, the cleaning water storage tank 33 connected to the cleaning nozzle 31 via the cleaning valve 32, and the cleaning water storage A washing water supply valve 37 as a washing water supply means connected to the tank, a flow rate adjustment valve 36, a washing water pump 35 and a washing water supply tank 34 are connected to the washing water storage tank 33 through a switching valve 38. The high-pressure air tank 39 and a compressor 40 connected to the high-pressure air tank, and the switching valve 38 connects the washing water storage tank 33 to the high-pressure air tank at the first switching position. Together to communicate with the 39 and is adapted to communicate with the atmosphere at a second switching position.
[0078]
In putting the water and fine aggregate into the measuring tank 5 in the concrete material measuring apparatus 1 according to the present embodiment, the measuring tank 5 is driven up and down in advance by driving the water-absorbing pipe raising / lowering actuator 20. The water inlet provided in the lower end of the water absorption pipe 16 is positioned so that the water level of the water-immersed aggregate inside is maintained at a desired water level. How far the water intake port of the water absorption pipe 16 should be positioned from the desired water level may be appropriately determined after performing experiments and the like.
[0079]
When the water suction port of the water suction pipe 16 is positioned in this way, when the water-immersed aggregate in the measuring tank 5 reaches a desired water level, excess water exceeding the desired water level is passed through the water suction pipe 16 through the intake fan. Thus, the volume of the water-absorbed aggregate in the measuring tank 5 is maintained at a predetermined volume.
[0080]
In addition, it is confirmed separately by the electrode type sensor 7 which is a water level measurement means whether the water level in the measuring tank 5 is a desired water level.
[0081]
As a procedure for measuring the fine aggregate 2 using the concrete material measuring apparatus 1 according to the present embodiment, the fine aggregate 2 is composed of two types of fine aggregates A and B, and these are sequentially added. An explanation will be given assuming this.
[0082]
First, the target mass M of the submerged aggregate at the time when the introduction of the fine aggregate A and the fine aggregate B is completed. di Set (i = 1,2).
[0083]
Target mass M di When setting (i = 1,2), first set the water-filled fine aggregate filling ratio F, which is the volume ratio of fine aggregate to the total volume of water and fine aggregate, and mix one batch. Amount N 0 And set the water-filled fine aggregate filling rate F and the mixing amount N in one batch. 0 The volume of the fine aggregate is set based on the above, and then the target in the dry state of the fine aggregate A and the fine aggregate B from the mixing ratio of the fine aggregate A and the fine aggregate B and the density in the dry state The input mass is determined, and then the mass in the state where the fine aggregate A is input to the first input water (primary metered water) is the target mass M of the submerged aggregate. d1 The target mass M of the submerged aggregate is the mass of the fine aggregate B added to the submerged aggregate. d2 Determine as The target mass M of the water-immersed aggregate di In determining (i = 1, 2), if an appropriate surface water ratio is set as much as possible, and this is included in the primary metering water, the correction after weighing can be reduced.
[0084]
Next, the fine aggregate A and water are put into the measuring tank 5 so that the fine aggregate becomes a water-immersed aggregate that does not come out of the water surface. When the fine aggregate A and water are introduced into the measuring tank 5, it is desirable to introduce water first and then introduce the fine aggregate A in order to suppress air bubbles from entering the water-immersed aggregate. Further, if the fine aggregate A is not directly put into the measuring tank 5, but is conveyed to the measuring tank 5 using the vibration feeder 13 provided with an electromagnetic vibrator as shown in FIG. Aggregation of the material, and consequently, mixing of bubbles can be prevented.
[0085]
In addition, when throwing water and the fine aggregate A into the measuring tank 5, the water level of the water-immersed aggregate in the measuring tank 5 is set to a desired water level by appropriately raising and lowering the water absorption pipe 16 of the water level holding device 8 in advance. The water inlet provided in the lower end of the water absorption pipe 16 is positioned so that it may be hold | maintained at a certain 1st water level.
[0086]
Next, the total mass M of the water-immersed aggregate f1 Is measured by the load cell 6. Total mass M of water-immersed aggregate f1 Can be measured by subtracting the mass of only the measuring tank 5 from the mass of the measuring tank 5 when filled with water-immersed aggregate.
[0087]
Here, the total mass M of the water-immersed aggregate f1 In measuring the total mass M of the water-immersed aggregate, the fine aggregate A is charged continuously or intermittently at a predetermined speed. f1 Measurement is performed in real time or at predetermined time intervals, and the water level is maintained so that the water level of the water-immersed aggregate does not exceed the first predetermined water level as the desired water level during the introduction of the fine aggregate A Total mass M of the water-immersed aggregate while absorbing water with the device f1 Is the target mass M d1 When reaching the above, the introduction of the fine aggregate A is terminated.
[0088]
In addition, since the raising / lowering gate 12 provided in the lower end opening of the aggregate hopper 3 is interlocked with the load cell 6, the total mass M of the submerged aggregate M f1 Is the target mass M d1 Is reached, the lifting gate 12 is closed by a control signal from the load cell 6 and the fine aggregate A is automatically stopped.
[0089]
Moreover, it is confirmed separately by the electrode type sensor 7 that the water level at the end of the injection has reached the first water level, but when the water level rises by the introduction of the fine aggregate A and approaches the first water level, The low-pressure air pump 22 is operated to send low-pressure air into the hollow tube 21. In this way, as shown in FIG. 2 (b), bubbles generated on the water surface of the water-immersed aggregate escape to the periphery of the hollow tube 21, so that the water level of the water-immersed aggregate in the measuring tank 5 is When the first water level is reached, the water level can be accurately detected by the electrode sensor 7 without being disturbed by bubbles generated on the surface of the water-immersed aggregate as shown in FIG. .
[0090]
Next, the density ρ of the fine aggregate A in the surface dry state a1 And water density ρ w The total mass M of the water-immersed aggregate f1 And the total volume V of the submerged aggregate required for the first preset water level. f1 Together with the following formula,
M a1 = Ρ a1 (M f1 −ρ w ・ V f1 ) / (Ρ a1 −ρ w (1)
Substitute into the mass M of fine aggregate A in the surface dry state a1 Ask for.
[0091]
On the other hand, the total mass M of the water-immersed aggregate f1 Is the target mass M d1 When the electrode-type sensor 7 confirms that the water level of the water-immersed aggregate has not reached the preset first water level, water is replenished so as to reach the first water level. The total mass M of water-immersed aggregate f1 Re-measurement and mass M of fine aggregate A in the dry state a1 Perform the recalculation.
[0092]
Next, similarly to the fine aggregate A, the fine aggregate B is put into the measuring tank 5 so that the fine aggregate becomes a water-immersed aggregate that does not come out of the water surface.
[0093]
That is, also here, the water absorption pipe 16 is appropriately raised and lowered in advance so that the water level of the water-immersed aggregate in the measuring tank 5 is maintained at the second water level that is the desired water level. The water inlet provided at the lower end of the is positioned.
[0094]
Next, the total mass M of the water-immersed aggregate f2 Measure. Total mass M of water-immersed aggregate f2 Is measured, like the fine aggregate B, the total mass M of the submerged aggregate is measured while the fine aggregate B is continuously or intermittently charged at a predetermined speed. f2 Is measured in real time or at predetermined time intervals, and the water level is maintained so that the water level of the water-immersed aggregate does not exceed the preset second water level while the fine aggregate B is being charged. The total mass M of the water-immersed aggregate while absorbing water with the device 8 f2 Is the target mass M d2 , The fine aggregate B is completely charged.
[0095]
As in the case of fine aggregate A, it is confirmed separately by the electrode type sensor 7 that the water level at the end of the injection has reached the second water level. When the water level approaches 2, the low-pressure air pump 22 is operated to send low-pressure air into the hollow tube 21. In this way, as described above, the water level can be accurately detected by the electrode sensor 7 without being disturbed by bubbles generated on the surface of the water-immersed aggregate.
[0096]
Next, the density ρ of the fine aggregate A in the surface dry state a1 , Density ρ of fine aggregate B in the surface dry state a2 And water density ρ w The total mass M f2 And the total volume V of the submerged aggregate required for the preset second water level. f2 And the following formula
M a2 = Ρ a2 ((M f2 -ΣM ai (i = 1,2)) − ρ w (V f2 -Σ (M ai / Ρ ai ) (i = 1,2))) / (ρ a2 −ρ w (3)
M w = Ρ wa2 (V f2 -Σ (M ai / Ρ ai ) (i = 1,2))-(M f2 -ΣM ai (i = 1,2))) / (ρ a2 −ρ w (4)
Substitute into the mass M of fine aggregate B in the dry state a2 And water mass M w Ask for.
[0097]
On the other hand, the total mass M of the water-immersed aggregate f2 Is the target mass M d2 When the electrode type sensor 7 confirms that the water level of the water-immersed aggregate has not reached the preset second water level, the water level is replenished to the second water level. The total mass M of water-immersed aggregate f2 Re-measurement, mass M of fine aggregate B in the dry state a2 And water mass M w Perform the recalculation.
[0098]
Thus, once the fine aggregate A, fine aggregate B and water have been weighed, the measurement results are compared with the original on-site blend set according to the indicated blend, and the on-site blend is corrected as necessary. .
[0099]
That is, first, the total mass M of the submerged aggregate is absorbed while absorbing excess water so as not to exceed the first water level and the second water level. fi (i = 1,2) is the target mass M of the submerged aggregate d2 The total mass M of the submerged aggregate fi (i = 1,2) and total volume of water-immersed aggregate V fi Since (i = 1,2) is equal to the initially set value, there is no need to correct the on-site blending, and it is put into a kneading mixer together with other concrete materials and kneaded.
[0100]
On the other hand, when the water level of the water-immersed aggregate has not reached the first and second water levels set in advance, water is replenished so that the water level becomes the first and second water levels. Total mass M of material fi (i = 1, 2) As a result, the masses of fine aggregate A and fine aggregate B in the dry state derived therefrom are also different from the initial set values.
[0101]
Therefore, in such a case, the masses of the measured fine aggregate A and fine aggregate B are compared with the masses of the initially set fine aggregate A and fine aggregate B in the field, and the set fine bone is compared. The ratio of the measured mass sum of the fine aggregates A and B to the total dry mass of the materials A and B is calculated. For example, if this is 0.9, the measured fine aggregate A is measured. , B mass is less than 10%, so 1 batch of kneading amount N 0 0.9% reduced by 10% 0 Therefore, for other concrete materials such as cement and admixture, the ratio is used to modify the original on-site mix and weigh. In addition, for water, the initially set amount of water and the actually measured amount of water are compared, and the shortage is supplemented as secondary water, or the excess amount of water is drained. Then, these concrete materials are put into a kneading mixer and kneaded.
[0102]
Here, in order to open the bottom lid 11 in order to take out the water-immersed aggregate whose measurement has been completed, first, the bottom lid opening / closing actuators 43 and 43 are actuated to contract the piston rod, as described with reference to FIG.
[0103]
In this way, the connecting member 45 pin-bonded to the piston rod slides downward along the vertical guide body 46 projecting from the side surface of the measuring tank body 10, and accordingly, the connecting member 45 is pinned to the connecting member. The joined lifting rod 44 pushes down the bottom lid 11.
[0104]
On the other hand, when the pressing force by the elevating rod 44 is applied, the bottom cover 11 rotates so as to go around the side of the measuring tank body 10 as shown by the broken line in FIG. The material falls downward from the bottom opening of the weighing tank body 10.
[0105]
When the water-immersed aggregate whose measurement has been completed is put into the mixer, the bottom lid 11 is cleaned in preparation for the next measurement operation.
[0106]
That is, the compressor 40 is driven in advance to accumulate high-pressure air in the high-pressure air tank 39, and a predetermined amount of washing water is transferred from the washing water supply tank 34 to the washing water storage tank 33. When accumulating high-pressure air and transferring cleaning water, the switching valve 38 is switched to the second switching position where the cleaning water storage tank 33 does not communicate with the high-pressure air tank 39 but communicates with the atmosphere.
[0107]
Next, the water-absorbed aggregate whose measurement has been completed is opened by the procedure described above, and dropped and discharged to the lower mixer, and then the switching valve 38 is switched to the first position.
[0108]
In this way, the high-pressure air accumulated in the high-pressure air tank 39 is sent to the washing water storage tank 33, and the washing water in the tank is ejected from the washing nozzle 31 at that pressure and adheres to the upper surface of the bottom lid 11. Blow away the aggregate.
[0109]
Once the cleaning water is ejected, the switching valve 38 is switched to the second position again to accumulate high-pressure air and transfer the cleaning water to prepare for the next cleaning operation after weighing.
[0110]
As described above, according to the concrete material measuring apparatus according to the present embodiment, the surface water of the fine aggregate A and the fine aggregate B is water in a state in which variation for each aggregate having different wet states is considered. Mass M w The mass of the aggregate is the mass M in the surface dry state. ai (i = 1,2,3, ... N) In other words, since the mass of aggregate and water is grasped under the same conditions as the formulation, concrete can be produced according to the formulation even if aggregates with different wet states are used.
[0111]
Moreover, according to the concrete material measuring apparatus 1 according to the present embodiment, the water level of the water-immersed aggregate in the measuring tank 5 is maintained at a desired water level by appropriately raising and lowering the water absorption pipe 16 with the water level holding device 8. As described above, since the water suction port provided at the lower end of the water suction pipe is positioned, when the water-immersed aggregate in the measuring tank 5 reaches a desired water level, excess water exceeding the desired water level is Then, the water is absorbed by the intake fan 18 via the water absorption pipe 16, and thus the volume of the water-immersed aggregate in the measuring tank 5 can be held at a predetermined volume, thereby saving the labor of volume measurement. It becomes possible.
[0112]
That is, while draining excess water using the water level holding device 8 so as not to exceed the first water level and the second water level, the total mass M of the submerged aggregate M fi (i = 1,2) is the target mass M of the submerged aggregate d2 The total capacity of the water-immersed aggregate V fi Not only is it unnecessary to measure (i = 1,2), but the total mass M of the water-immersed aggregate fi (i = 1,2) and total volume of water-immersed aggregate V fi Since (i = 1, 2) is equal to the initially set value, it is not necessary to modify the on-site blending, and it is possible to directly add it to the kneading mixer together with other concrete materials and knead.
[0113]
Moreover, according to the concrete material measuring apparatus 1 according to the present embodiment, when the water level of the water-immersed aggregate does not reach the first and second water levels set in advance, the first and second water levels are obtained. The total volume of water-immersed aggregate V fi It is not necessary to measure (i = 1,2) as in the case described above, and the total mass M of the water-immersed aggregate fi Re-measure (i = 1,2) to accurately control the amount of fine aggregate A and fine aggregate B and correct the on-site mix, resulting in the production of concrete as shown. Is possible.
[0114]
In addition, even in the case of multiple aggregates with different densities, particle sizes, etc., the effect of surface water due to the difference in wet conditions can be accurately grasped as part of the final water volume, This makes it possible to measure efficiently and with high accuracy.
[0115]
Further, according to the concrete material measuring apparatus 1 according to the present embodiment, the electrode type sensor 7 is disposed in the hollow tube 21 and fixed to the water absorption tube 16 together with the hollow tube 21, and Since the vertically downward low-pressure air flows, bubbles generated on the water surface in the measuring tank 5 can be removed by the low-pressure air flow, and the measurement accuracy of the electrode sensor 7 can be improved. If the position where the lower end of the hollow tube 21 is slightly submerged in the water surface of the water-immersed aggregate at the position where the lower end of the electrode-type sensor 7 is in contact with the surface of the water-immersed aggregate is removed once. There is no possibility that the bubbles again gather at the lower end of the electrode type sensor 7.
[0116]
Moreover, according to the concrete material measuring apparatus 1 according to the present embodiment, the bottom lid 11 and the measuring tank body 10 are connected by the link members 41 and 42 having different lengths, that is, rotation radii. When a pressing force is applied from the rod 44, the bottom lid 11 rotates so as to go around the side of the measuring tank body 10.
[0117]
Therefore, the lower space in the height direction necessary for completely opening the bottom lid 11 can be suppressed. That is, in the conventional opening / closing type, since the bottom lid hangs down when the bottom lid is opened, it is necessary to secure the opening / closing height of the bottom lid in the height direction accordingly. Since the lower space required for such opening and closing can be suppressed, the bottom opening of the measuring tank main body 10 can be lowered by that amount, and the charging into the kneading mixer can be reliably performed.
[0118]
Further, immediately before the bottom cover 11 is closed, the bottom cover is in a substantially parallel posture with the bottom opening of the measuring tank body 10 by the action of the two link members 41 and 42 described above. Therefore, almost equal pressure acts on the bottom opening of the weighing tank body 10 or the sealing material (not shown) provided on the bottom lid 11, and it is possible to ensure uniform water tightness along the bottom opening. In addition, it is possible to prevent partial damage to the sealing material.
[0119]
Further, according to the concrete material measuring apparatus 1 according to the present embodiment, since the cleaning water is sprayed on the upper surface of the bottom cover 11 by the cleaning water spraying apparatus 30, the bottom cover 11 of the bottom cover 11 is discharged when the water-immersed aggregate is discharged. Even if the aggregate is attached to the upper surface, the aggregate is washed with the above-mentioned washing water and blown away. Even if the bottom lid 11 is closed for the next measurement, the measuring tank body 10 and the bottom lid No aggregate is sandwiched between 11 and 11.
[0120]
Therefore, it is possible to prevent the occurrence of an error in measurement due to water leakage from the gap generated by the aggregate being sandwiched, and damage the seal member provided in the measurement tank body 10 or the bottom lid 11. There is nothing.
[0121]
Although not particularly mentioned in the present embodiment, the amount M of water supplied to the measuring tank 5 I For example, if the load cell 6 is measured in advance, the accumulated value of the water absorbed from the measuring tank 5 can be measured by the load cell 19 of the storage tank 17 for measuring water absorption. It can measure with high accuracy.
[0122]
That is, the amount M of water supplied to the measuring tank 5 O The amount of water absorption M from the measuring tank 5 measured by the load cell 19 O And total mass M fi (i = 1,2)
ΣM awj (j = 1, ... i) = M fi -(M I -M O (5)
Substituting for ΣM awj (j = 1, ... i)
ΣM awj (j = 1, ... i) -ΣM awj (j = 1) (6)
And M awi With the following formula:
(M awi -M ai ) / M ai (7)
By substituting for, the surface water ratio of the fine aggregate A and the fine aggregate B can be obtained, and can be used as a set value for the next measurement.
[0123]
Although not particularly mentioned in the present embodiment, the amount of air in the water-immersed aggregate is a (%), and V fi Instead of (i = 1,2), V fi If (i = 1, 2) · (1−a / 100) is used, it is possible to measure with higher accuracy in consideration of the air amount.
[0124]
Although not particularly mentioned in the present embodiment, when there is a possibility that the fine aggregate put into the measuring tank 5 may come out of the water surface and not become a water-immersed aggregate, the fine aggregates A and B are added. By lowering the vibrator during or after charging and operating the vibrator in such a state, the fine aggregates A and B charged in the measuring tank 5 are leveled by vibration of the vibrator, and the fine aggregate is It can be made not to come out on the surface of the water. When measuring the mass of the water-immersed aggregate, the vibrator may be pulled up and retracted to the next measurement at the raised position.
[0125]
In the present embodiment, two types of fine aggregates have been described as examples. However, it goes without saying that the number of types of aggregates is arbitrary, and is applicable to one type of fine aggregate. Needless to say, the present invention can also be applied to only aggregates or a combination of fine aggregates and coarse aggregates.
[0126]
In the present embodiment, the load cell 6 is a compression type and the number of installation is three. However, any load cell may be used as the water immersion aggregate mass measuring means, and for example, a tension type may be used. And 4 or more may be installed. Moreover, as long as the measurement tank 5 can be stably suspended, it may be one or two.
[0127]
Further, in this embodiment, the cleaning water supply means is configured by the cleaning water supply valve 37, the flow rate adjustment valve 36, the cleaning water pump 35, and the cleaning water supply tank 34, but how the cleaning water supply means of the present invention is configured. It is optional, and instead of such a configuration, for example, a water pipe and a valve provided in the water pipe may be used.
[0128]
【The invention's effect】
As described above, according to the concrete material measuring apparatus according to the present invention, the surface water of the aggregate is the mass M of the water in a state where the variation between the aggregates in different wet states is considered. w Can be calculated indirectly as a part of the mass, and the mass M of the aggregate in the surface dry state can be calculated. a Can be grasped as. In other words, since the mass of aggregate and water will be grasped under the same conditions as in the indicated composition, it is possible to produce concrete with the amount of water as indicated by the indicated composition even when using aggregates with different wet conditions. .
[0129]
[Brief description of the drawings]
FIG. 1 is an overall view of a concrete material measuring apparatus according to an embodiment.
FIG. 2 is a diagram showing the operation of the electrode sensor 7, the hollow tube 21 in which the sensor is disposed, and the water absorption tube 16.
FIG. 3 is a detailed side view of the measuring tank.
[Explanation of symbols]
1 Concrete material metering device
3 Aggregate hopper (aggregate water supply means)
4 Water supply pipe (water supply means)
5 Weighing tank
6 Load cell (Measuring means for submerged aggregate mass)
7 Electrode sensor (water level measuring means)
8 Water level holding device (water level holding means)
10 Weighing tank body
11 Bottom cover
16 Water absorption pipe
17 Storage tank for water absorption measurement
18 Intake fan
19 Load cell
21 Hollow tube
22 Low pressure air pump (low pressure air introduction means)
30 Washing water spraying device (cleaning water spraying means)
31 Cleaning nozzle
33 Wash water storage tank
34 Washing water supply tank (cleaning water supply means)
38 switching valve
39 High pressure air tank
40 Compressor
41, 42 Link member
43, 43 Actuator for opening and closing the bottom cover
45 Connecting member
46 Vertical guide body

Claims (5)

骨材を供給する骨材供給手段と、給水手段と、前記骨材供給手段から供給された骨材を前記給水手段から供給された水とともに水浸骨材として収容するとともに底部開口に水密性を保持可能な底蓋を開閉自在に取り付けてなる計量槽と、該計量槽内の水浸骨材の質量を計測する水浸骨材質量計測手段と、前記計量槽内の水浸骨材の水位を計測する水位計測手段と、前記計量槽内の水浸骨材の水位を所望の水位に保持するために該所望の水位を上回る水を前記計量槽内から吸水するとともにその吸水量を計測する水位保持手段とを備え、該水位保持手段を、昇降自在に設置された吸水管と該吸水管に連通接続され吸水された水を計量する吸水計量用貯留槽と該吸水計量用貯留槽に連通接続された吸気手段とで構成したことを特徴とするコンクリート材料の計量装置。Aggregate supply means for supplying aggregate, water supply means, and aggregate supplied from the aggregate supply means together with water supplied from the water supply means are accommodated as water-immersed aggregate, and the bottom opening is made watertight. A measuring tank having a bottom cover that can be held openably and closably, a water immersion aggregate mass measuring means for measuring the mass of the water immersed aggregate in the measuring tank, and a water level of the water immersed aggregate in the measuring tank Water level measuring means for measuring the water level, and in order to maintain the water level of the water-immersed aggregate in the measuring tank at a desired water level, water exceeding the desired water level is absorbed from the measuring tank and the amount of water absorption is measured. A water level holding means, wherein the water level holding means communicates with a water absorption pipe installed so as to be movable up and down, a water absorption measurement storage tank that is connected to the water absorption pipe and measures the water absorbed, and the water absorption measurement storage tank. Concrete characterized by comprising connected intake means Metering device of the door material. 前記水位計測手段を電極式センサーで構成するとともに該電極式センサーを前記吸水管に固定することで前記電極式センサーを前記吸水管に連動昇降できるように構成した請求項1記載のコンクリート材料の計量装置。2. The concrete material measurement according to claim 1, wherein the water level measuring means is constituted by an electrode type sensor and the electrode type sensor is fixed to the water absorption pipe so that the electrode type sensor can be moved up and down in conjunction with the water absorption pipe. apparatus. 前記電極式センサーを中空管内に配置して該中空管とともに前記吸水管に固定するとともに、前記中空管内を鉛直下向きの低圧空気が流れるように該中空管の上端に低圧空気導入手段を設けた請求項2記載のコンクリート材料の計量装置。The electrode-type sensor is disposed in the hollow tube and fixed to the water absorption tube together with the hollow tube, and low-pressure air introduction means is provided at the upper end of the hollow tube so that vertically downward low-pressure air flows in the hollow tube. The concrete material measuring device according to claim 2. 前記底蓋の近傍に取り付けられた洗浄ノズルから前記底蓋の上面に洗浄水を吹き付けることができるようになっている洗浄水吹付け手段を備え、該洗浄水吹付け手段を、前記洗浄ノズルに接続された洗浄水貯留タンクと、該洗浄水貯留タンクに接続された洗浄水供給手段と、前記洗浄水貯留タンクに切替バルブを介して連通接続された高圧空気タンクと、該高圧空気タンクに接続されたコンプレッサーとから構成するとともに、前記切替バルブを第一の切替位置にて前記洗浄水貯留タンクを前記高圧空気タンクに連通させるとともに、第2の切替位置にて大気に連通させるように構成した請求項1記載のコンクリート材料の計量装置。Washing water spraying means capable of spraying cleaning water onto the upper surface of the bottom cover from a cleaning nozzle attached in the vicinity of the bottom cover, the cleaning water spraying means being attached to the cleaning nozzle Connected to the wash water storage tank, wash water supply means connected to the wash water storage tank, a high pressure air tank connected to the wash water storage tank via a switching valve, and connected to the high pressure air tank The switching valve is configured to communicate the washing water storage tank to the high-pressure air tank at a first switching position and to communicate with the atmosphere at a second switching position. The metering device for concrete material according to claim 1. 前記底蓋と計量槽本体とを該底蓋が前記計量槽本体の側方側に移動しながら回動するように互いに長さの異なる2つのリンク部材で連結するとともに前記計量槽本体の側面に所定の底蓋開閉用アクチュエータをその下端にて固定されるように設置し、該底蓋開閉用アクチュエータのピストンロッドの先端と前記底蓋にピン接合された昇降ロッドの先端とを所定の連結部材を介して連結するとともに、該連結部材が前記計量槽本体の側面に突設された鉛直ガイド体に沿って摺動自在となるように前記連結部材を前記鉛直ガイド体に嵌合した請求項1記載のコンクリート材料の計量装置。The bottom lid and the weighing tank main body are connected by two link members having different lengths so that the bottom lid rotates while moving to the side of the weighing tank main body, and on the side surface of the weighing tank main body. A predetermined bottom lid opening / closing actuator is installed so as to be fixed at the lower end thereof, and a tip of a piston rod of the bottom lid opening / closing actuator and a tip of a lifting rod pin-connected to the bottom lid are connected to a predetermined connecting member. And connecting the connecting member to the vertical guide body so that the connecting member is slidable along a vertical guide body projecting from a side surface of the measuring tank main body. The concrete material measuring device described.
JP2001185885A 2001-06-20 2001-06-20 Concrete material measuring device Expired - Lifetime JP4099625B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001185885A JP4099625B2 (en) 2001-06-20 2001-06-20 Concrete material measuring device
PCT/JP2002/005721 WO2003000478A1 (en) 2001-06-20 2002-06-10 Weighing equipment for concrete material
US10/481,454 US7000458B2 (en) 2001-06-20 2002-06-10 Weighing equipment for concrete material
EP02733428A EP1405705A4 (en) 2001-06-20 2002-06-10 Weighing equipment for concrete material
KR1020037016550A KR100866855B1 (en) 2001-06-20 2002-06-10 Weighing equipment for concrete material
CNB028123654A CN100354094C (en) 2001-06-20 2002-06-10 Weighing equipment for concrete material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185885A JP4099625B2 (en) 2001-06-20 2001-06-20 Concrete material measuring device

Publications (2)

Publication Number Publication Date
JP2003001623A JP2003001623A (en) 2003-01-08
JP4099625B2 true JP4099625B2 (en) 2008-06-11

Family

ID=19025395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185885A Expired - Lifetime JP4099625B2 (en) 2001-06-20 2001-06-20 Concrete material measuring device

Country Status (1)

Country Link
JP (1) JP4099625B2 (en)

Also Published As

Publication number Publication date
JP2003001623A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US7578207B2 (en) Measuring apparatus and measuring method for concrete-forming materials
KR100866855B1 (en) Weighing equipment for concrete material
CN107349830A (en) material dry mixing device
EP0482720A1 (en) Method and device for dosing, mixing and applying a specific mortar
JP4099626B2 (en) Concrete material measuring device
JP4099625B2 (en) Concrete material measuring device
JP4736109B2 (en) Concrete material measuring device and measuring method
JP4662096B2 (en) Concrete material measuring device and measuring method
JP4831279B2 (en) Batcher plant
JP4666124B2 (en) Weighing container discharge mechanism
JP4666125B2 (en) Concrete material measuring device
CN209759100U (en) Quantitative flocculant powder adding device
JP3939581B2 (en) Cement-based fluidized solid material spraying system
KR20090050385A (en) Tne traveling manufacturing equipment of the foaming concrete
JP4144747B2 (en) Aggregate and water metering device and cement-based fluidized material spraying system using the same
KR102574358B1 (en) Premix powder quantitative supply device
CN215953613U (en) Small grinding test device for cement grinding aid
CN220389884U (en) Trace additive metering system for dry-mixed mortar
JP4793611B2 (en) Method and program for measuring concrete material and recording medium
CN213022542U (en) Integrated compaction instrument
CN219583212U (en) Raw material proportioning device for concrete production
JP2006076070A (en) Method and apparatus for manufacturing ready-mixed concrete
JP2002234025A (en) Measuring method for concrete material
JP2003039420A (en) Fine aggregate and water metering apparatus
JP2002248617A (en) Metering method of concrete material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6